Example #1
0
def Ftry(lK, Rg, alpha, betas, beta, delta, omegat, ot):
    cb = np.cos(beta)
    sb = np.sin(beta)
    ca = np.cos(alpha)
    sa = np.sin(alpha)
    cbs = np.cos(betas)
    sbs = np.sin(betas)
    cot = np.cos(np.radians(omegat) + ot)
    sot = np.sin(np.radians(omegat) + ot)
    cotd = np.cos(np.radians(omegat) + ot + delta)
    sotd = np.sin(np.radians(omegat) + ot + delta)
    #
    ekxx = ca * cbs
    ekxy = ca * sbs
    ekxz = -sa
    #
    ekyx = -sbs
    ekyy = cbs
    ekyz = 0
    #
    ekzx = sa * cbs
    ekzy = sa * sbs
    ekzz = ca
    #
    ltx = ekxx * cotd + ekyx * sotd + cb * lK - cot * Rg
    lty = ekxy * cotd + ekyy * sotd - sot * Rg
    ltz = ekxz * cotd + sb * lK
    #
    return (ltx * ekyx + lty * ekyy + ltz * ekyz) / (ltx * ekzx + lty * ekzy +
                                                     ltz * ekzz)
 def rotate_by_pivot(p, pivot, angle):
     result = [None] * 2
     result[0] = (p[0] - pivot[0]) * np.cos(angle) + (
         p[1] - pivot[1]) * np.sin(angle) + pivot[0]
     result[1] = (p[0] - pivot[0]) * -np.sin(angle) + (
         p[1] - pivot[1]) * np.cos(angle) + pivot[1]
     return result
Example #3
0
def ek(alpha, betas):
    ca = np.cos(alpha)
    sa = np.sin(alpha)
    cbs = np.cos(betas)
    sbs = np.sin(betas)
    return np.array([[ca * cbs, -sbs, sa * cbs], [ca * sbs, cbs, sa * sbs],
                     [-sa, 0, ca]])
Example #4
0
def ltfree(lK, Rg, alpha, beta, delta, omegat):
    ltx = np.cos(alpha) * np.cos(np.radians(omegat) + delta) + np.cos(
        beta) * lK - np.cos(np.radians(omegat)) * Rg
    lty = np.sin(np.radians(omegat) + delta) - np.sin(np.radians(omegat)) * Rg
    ltz = -np.sin(alpha) * np.cos(np.radians(omegat) +
                                  delta) + np.sin(beta) * lK
    return np.sqrt(ltx * ltx + lty * lty + ltz * ltz)
Example #5
0
def Mgrz(lK, Rg, alpha, betas, beta, delta, omegat, ot):
    cb = np.cos(beta)
    sb = np.sin(beta)
    ca = np.cos(alpha)
    sa = np.sin(alpha)
    cbs = np.cos(betas)
    sbs = np.sin(betas)
    cot = np.cos(np.radians(omegat) + ot)
    sot = np.sin(np.radians(omegat) + ot)
    cotd = np.cos(np.radians(omegat) + ot + delta)
    sotd = np.sin(np.radians(omegat) + ot + delta)
    #
    ekxx = ca * cbs
    ekxy = ca * sbs
    ekxz = -sa
    #
    ekyx = -sbs
    ekyy = cbs
    ekyz = 0
    #
    ekzx = sa * cbs
    ekzy = sa * sbs
    ekzz = ca
    #
    eaxx = ekxx * cotd + ekyx * sotd
    eaxy = ekxy * cotd + ekyy * sotd
    eaxz = ekxz * cotd
    #
    ltx = eaxx + cb * lK - cot * Rg
    lty = eaxy - sot * Rg
    ltz = eaxz + sb * lK
    #
    vcz = cot * lty - sot * ltx
    #
    return vcz / (ltx * ekzx + lty * ekzy + ltz * ekzz)
 def rotate_arrow_and_text(BarNo):
     alpha = p*(BarNo-1)*alpha_c / 180 * np.pi
     x = x_ori* np.cos(alpha) + y_ori*-np.sin(alpha)
     y = x_ori* np.sin(alpha) + y_ori* np.cos(alpha)
     pu.pyx_arrow((x,y))
     pu.pyx_text(( np.sign(x)*(abs(x)-1), 
                   np.sign(y)*(abs(y)-1)
                  ), rf'${BarNo}$', scale=1.5)
     print(f'alpha={alpha/np.pi*180}')
Example #7
0
def rA(lK, R, alpha, betas, beta, delta, omegat):
    cb = np.cos(beta)
    sb = np.sin(beta)
    ca = np.cos(alpha)
    sa = np.sin(alpha)
    cbs = np.cos(betas)
    sbs = np.sin(betas)
    cotd = np.cos(np.radians(omegat) + delta)
    sotd = np.sin(np.radians(omegat) + delta)
    rAx = (ca * cbs * cotd - sbs * sotd) * R + cb * lK
    rAy = (ca * sbs * cotd + cbs * sotd) * R
    rAz = (-sa * cotd) * R + sb * lK
    return np.array([rAx, rAy, rAz])
Example #8
0
def cosgammag(lK, Rg, beta, delta, omegat):
    alpha  = 0.5*np.pi-beta
    cb     =  np.cos(beta)
    sb     =  np.sin(beta)
    cot    =  np.cos(np.radians(omegat))
    sot    =  np.sin(np.radians(omegat))
    cotd   =  np.cos(np.radians(omegat)+delta)
    sotd   =  np.sin(np.radians(omegat)+delta)
    ltx    =  np.cos(alpha)*cotd + cb*lK - cot*Rg
    lty    =                sotd         - sot*Rg
    ltz    = -np.sin(alpha)*cotd + sb*lK
    Rwx    =  cot*Rg
    Rwy    =  sot*Rg
    Rwz    =  0
    lt     =  np.sqrt(ltx*ltx+lty*lty+ltz*ltz)
    return (Rwx*lty-Rwy*ltx)/(lt*Rg)
Example #9
0
def rB(R, omegat):
    cot = np.cos(np.radians(omegat))
    sot = np.sin(np.radians(omegat))
    rBx = cot * R
    rBy = sot * R
    rBz = 0
    return np.array([rBx, rBy, rBz])
Example #10
0
 def f2(t):
     val  =  psi_mu_min*np.sin(2*np.pi*(1/x) *(t-pt1[0]))
     if abs(val) > ell_limit: 
         list_of_saturated_time.append(t)
         return np.sign(val)*ell_limit
     else:
         return val
Example #11
0
def rK(lK, beta):
    cb = np.cos(beta)
    sb = np.sin(beta)
    rKx = cb * lK
    rKy = 0
    rKz = sb * lK
    return np.array([rKx, rKy, rKz])
Example #12
0
def cosgammak(lK, Rg, beta, delta, omegat):
    alpha  = 0.5*np.pi-beta
    cb     =  np.cos(beta)
    sb     =  np.sin(beta)
    ca     =  np.cos(alpha)
    sa     =  np.sin(alpha)
    cot    =  np.cos(np.radians(omegat))
    sot    =  np.sin(np.radians(omegat))
    cotd   =  np.cos(np.radians(omegat)+delta)
    sotd   =  np.sin(np.radians(omegat)+delta)
    Rax    =  ca*cotd
    Ray    =     sotd
    Raz    = -sa*cotd
    ltx    =  Rax + cb*lK - cot*Rg
    lty    =  Ray         - sot*Rg
    ltz    =  Raz + sb*lK
    lt     =  np.sqrt(ltx*ltx+lty*lty+ltz*ltz)
    return (sa*(Ray*ltz-Raz*lty) + ca*(Rax*lty-Ray*ltx))/lt
Example #13
0
def vt(lK, Rg, beta, delta, omegat):
    alpha  = 0.5*np.pi-beta
    cb     =  np.cos(beta)
    sb     =  np.sin(beta)
    ca     =  np.cos(alpha)
    sa     =  np.sin(alpha)
    cot    =  np.cos(np.radians(omegat))
    sot    =  np.sin(np.radians(omegat))
    cotd   =  np.cos(np.radians(omegat)+delta)
    sotd   =  np.sin(np.radians(omegat)+delta)
    ltx    =  ca*cotd + cb*lK - cot*Rg
    lty    =     sotd         - sot*Rg
    ltz    = -sa*cotd + sb*lK
    lt     =  np.sqrt(ltx*ltx+lty*lty+ltz*ltz)
    dltxdt = -ca*sotd         + sot*Rg
    dltydt =     cotd         - cot*Rg
    dltzdt =  sa*sotd
    return (ltx*dltxdt+lty*dltydt+ltz*dltzdt)/lt
Example #14
0
 def GenSinPeak(self, x, begin, end, amp):
     """Generates a sinusoid peak between 'begin' and 'end' on the [x] axis with the amplitude 'amp'"""
     index = range(len(x))
     y = [0] * len(x)
     for i in index:
         if (x[i] < end) and (x[i] > begin):
             y[i] = amp * np.sin(x[i] * np.pi /
                                 (end - begin) - np.pi * begin /
                                 (end - begin))
     return y
Example #15
0
 def f2(t):
     val = psi_mu_min * np.sin(2 * np.pi * (freq2 / x) * (t - pt1[0]))
     if abs(val) > ell_limit:
         if t < pt2[0]:
             list_of_saturated_time_before_t2.append(t)
         else:
             list_of_saturated_time_after_t2.append(t)
         return np.sign(val) * ell_limit
     else:
         return val
def wall(xvals, parms):
    #position=p[0];  intensity=p[1]; slit=p[2];  stth=p[3];  background=p[4];  thickness=p[5];  absorption=p[6]
    midpoint = parms[0]
    i0 = parms[1]
    w = parms[2]
    theta = parms[3]
    ib = parms[4]
    thick = parms[5]
    u = parms[6]
    midpoint = parms[0]
    x0 = midpoint - thick / 2.0
    th = np.deg2rad(theta)
    p = w * np.cos(th)
    Atot = w * w / np.sin(2.0 * th)
    out = []
    for x in xvals:
        if (x <= (x0 - p)):
            val = ib
        #elif ((x0-p) >= (x-thick)) and ((x0+p) >= x):         #Gauge volume is smaller than thickness
        if ((x > (x0 - p)) and (x0 - p > (x - thick)) and (x <= x0)):
            val = ib + i0 * ((x - (x0 - p)) * ((x -
                                                (x0 - p)) * np.tan(th))) / Atot
        elif ((x > x0) and (x <= x0 + p) and (x0 - p > (x - thick))):
            val = ib + i0 * (Atot - (x0 + p - x) *
                             (x0 + p - x) * np.tan(th)) / Atot
        elif (x0 - p > (x - thick)
              and (x0 + p < x)):  #Gauge volume is smaller than thickness
            val = ib + i0
        elif (x0 - p < (x - thick)
              and (x0 + p > x)):  #Gauge volume is larger than thickness
            A2 = (x0 + p - x) * (x0 + p - x) * np.tan(th)
            A3 = ((x - thick) - (x0 - p)) * (((x - thick) -
                                              (x0 - p)) * np.tan(th))
            val = ib + i0 * (Atot - A2 - A3) / Atot
        elif ((x0 - p) < (x - thick)) and ((x0 + p) < x) and (x0 >=
                                                              (x - thick)):
            A3 = ((x - thick) - (x0 - p)) * (((x - thick) -
                                              (x0 - p)) * np.tan(th))
            val = ib + i0 * (Atot - A3) / Atot
        elif (x0 < (x - thick) and ((x0 + p >= (x - thick)))):
            A2 = (x0 + p - (x - thick)) * ((x0 + p) - (x - thick)) * np.tan(th)
            val = ib + i0 * (A2 / Atot)
        elif (x0 + p < (x - thick)):
            val = ib

        #elif ((x0-p) < (x-thick)) and ((x0+p) >= x):         #Gauge volume is larger than thickness
        #    A2 = (x0+p-x)*(x0+p-x)*np.tan(th)
        #    A3 = ((x-thick)-(x0-p))*(((x-thick)-(x0-p))*np.tan(th))
        #    val = ib + i0*(Atot-A2-A3)/Atot

        out = out + [val]
    return np.array(out)
Example #17
0
def arc(r0, R, e, n, phi0, phi):
    e1 = e / np.sqrt(np.sum(e * e))  # normalize
    en = n / np.sqrt(np.sum(n * n))  # normalize
    ip = np.argmax(phi > phi0)  # find end index
    e2 = np.cross(en, e1)
    cp = np.cos(np.radians(phi[:ip]))
    sp = np.sin(np.radians(phi[:ip]))
    #    r  = cp*e1+sp*e2
    r = np.zeros((3, ip))
    r[0, :] = r0[0] + R * (cp * e1[0] + sp * e2[0])
    r[1, :] = r0[1] + R * (cp * e1[1] + sp * e2[1])
    r[2, :] = r0[2] + R * (cp * e1[2] + sp * e2[2])
    return r
Example #18
0
def Marz(lK, Rg, alpha, betas, beta, delta, omegat, ot):
    cb = np.cos(beta)
    sb = np.sin(beta)
    ca = np.cos(alpha)
    sa = np.sin(alpha)
    cbs = np.cos(betas)
    sbs = np.sin(betas)
    cot = np.cos(np.radians(omegat) + ot)
    sot = np.sin(np.radians(omegat) + ot)
    cotd = np.cos(np.radians(omegat) + ot + delta)
    sotd = np.sin(np.radians(omegat) + ot + delta)
    #
    ekxx = ca * cbs
    ekxy = ca * sbs
    ekxz = -sa
    #
    ekyx = -sbs
    ekyy = cbs
    ekyz = 0
    #
    ekzx = sa * cbs
    ekzy = sa * sbs
    ekzz = ca
    #
    eaxx = ekxx * cotd + ekyx * sotd
    eaxy = ekxy * cotd + ekyy * sotd
    eaxz = ekxz * cotd
    #
    ltx = eaxx + cb * lK - cot * Rg
    lty = eaxy - sot * Rg
    ltz = eaxz + sb * lK
    #
    vcx = eaxy * ltz - eaxz * lty
    vcy = eaxz * ltx - eaxx * ltz
    vcz = eaxx * lty - eaxy * ltx
    #
    d = ltx * ekzx + lty * ekzy + ltz * ekzz
    #
    return np.where(d > dmin, (vcx * ekzx + vcy * ekzy + vcz * ekzz) / d, 0.0)
Example #19
0
    def transformCoords(self, points, deg_addTheta=0):
        # This function takes in an nx2 array of coordinates of the form
        # [x,y] and returns rotated and translated coordinates. The
        # translation and rotation are described by obj.anchor_xy and
        # obj.theta. The optional "addTheta" argument adds an
        # additional angle of "addTheta" to the obj.theta attribute.

        transCoords = []
        for point in points:

            # 旋转方向和eMach是反一下的,我是Park变换。
            cosT = np.cos(self.theta + (deg_addTheta * np.pi / 180))
            sinT = np.sin(self.theta + (deg_addTheta * np.pi / 180))

            transCoords.append([
                points[0] * cosT + points[1] * sinT,
                points[0] * -sinT + points[1] * cosT
            ])
        return np.array(transCoords)
def transmission(xvals, parms):
    #position=p[0];  intensity=p[1]; slit=p[2];  stth=p[3];  background=p[4];  thickness=p[5];  absorption=p[6]
    #x0=p[0];        i0=p[1];        w=p[2];     theta=p[3];  ib=p[4];    thick=p[5];   u=p[6];
    #th = np.deg2rad(theta)
    #p0 = w * np.cos(th)/np.cos(2*th)
    #out = []
    #for x in xvals:
    #    if x < (x0 - p0):
    #        val = ib
    #    elif ((x>=x0-p0) and (x < x0)):
    #        val = i0*(x-x0+p0)*(x-x0+p0)+ib
    #    elif ((x>=x0) and (x<(x0+p0))):
    #        val = i0*(2.0*p0*p0-(x0+p0-x)*(x0+p0-x))+ib
    #    elif (x>=x0+p0):
    #        val=2*i0*p0*p0 +ib
    #    out = out + [val]
    x0 = parms[0]
    i0 = parms[1]
    w = parms[2]
    theta = parms[3]
    ib = parms[4]
    thick = parms[5]
    u = parms[6]
    th = np.deg2rad(theta)
    p = w * np.cos(th)
    Atot = w * w / np.sin(2.0 * th)
    out = []
    for x in xvals:
        if (x <= (x0 - p)):
            val = ib
        elif ((x > (x0 - p)) and (x <= x0)):
            val = ib + i0 * ((x - (x0 - p)) * ((x -
                                                (x0 - p)) * np.tan(th))) / Atot
        elif ((x > x0) and (x <= x0 + p)):
            val = ib + i0 * (Atot - (x0 + p - x) *
                             (x0 + p - x) * np.tan(th)) / Atot
        elif (x > x0 + p):
            val = ib + i0
        out = out + [val]
    return np.array(out)
Example #21
0
def gammak2(lK, Rg, beta, delta, omegat):
    alpha = 0.5 * np.pi - beta
    cb = np.cos(beta)
    sb = np.sin(beta)
    cot = np.cos(np.radians(omegat))
    sot = np.sin(np.radians(omegat))
    cotd = np.cos(np.radians(omegat) + delta)
    sotd = np.sin(np.radians(omegat) + delta)
    cotdt = np.cos(np.radians(omegat + 90) + delta)
    sotdt = np.sin(np.radians(omegat + 90) + delta)
    ltx = np.cos(alpha) * cotd + cb * lK - cot * Rg
    lty = sotd - sot * Rg
    ltz = -np.sin(alpha) * cotd + sb * lK
    eyrx = np.cos(alpha) * cotdt
    eyry = sotdt
    eyrz = -np.sin(alpha) * cotdt
    lt = np.sqrt(ltx * ltx + lty * lty + ltz * ltz)
    return np.degrees(np.arccos((eyrx * ltx + eyry * lty + eyrz * ltz) / lt))
Example #22
0
                ann.set_text('???')

    def hide_annotations(self):
        for ann in self.annotations:
            ann.set_visible(False)


# ---------------------------------------------------------------------

t = np.linspace(0.0, 1.0, 11)

s1 = t
s2 = -t
s3 = t**2
s4 = -(t**2)
s5 = np.sin(t * 2 * np.pi)
s6 = np.cos(t * 2 * np.pi)

fig = figure()

ax1 = fig.add_subplot(321)
ax1.plot(t, s1)
ax1.scatter(t, s1)

ax2 = fig.add_subplot(322)
ax2.plot(t, s2)
ax2.scatter(t, s2)

ax3 = fig.add_subplot(323)
ax3.plot(t, s3)
ax3.scatter(t, s3)
Example #23
0
from pylab import plt, np, xlim, ylim, figure, plot, xticks, yticks, subplot, show

x = np.arange(-5.0, 5.0, 0.02)
y1 = np.sin(x)

plt.figure(1)
plt.subplot(211)
plt.plot(x, y1)

plt.subplot(212)
# 设置x轴范围
xlim(-2.5, 2.5)
# 设置y轴范围
ylim(-1, 1)
plt.plot(x, y1)

# evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

# red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()

'==========================================='
plt.figure(1)  # 第一张图
plt.subplot(211)  # 第一张图中的第一张子图
plt.plot([1, 2, 3])
plt.subplot(212)  # 第一张图中的第二张子图
plt.plot([4, 5, 6])

plt.figure(2)  # 第二张图
 def f1(t):
     return psi_mu_max * np.sin(2 * np.pi * (freq1 / x) * t) - BIAS
Example #25
0
from matplotlib.widgets import MultiCursor
from pylab import figure, show, np

t = np.arange(0.0, 2.0, 0.01)
s1 = np.sin(2*np.pi*t)
s2 = np.sin(4*np.pi*t)
fig = figure()
ax1 = fig.add_subplot(211)
ax1.plot(t, s1)

ax2 = fig.add_subplot(212, sharex=ax1)
ax2.plot(t, s2)

multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1,
                    horizOn=False, vertOn=True)
show()
Example #26
0
 def rotate(_, x, y):
     return np.cos(_) * x + np.sin(_) * y, -np.sin(_) * x + np.cos(_) * y
Example #27
0
def my_3d_plot_non_dominated_fronts(pop,
                                    paretoPoints,
                                    fea_config_dict,
                                    az=180,
                                    comp=[0, 1, 2],
                                    plot_option=1):
    """
    Plots solutions to the DTLZ problems in three dimensions. The Pareto Front is also
    visualized if the problem id is 2,3 or 4.
    Args:
        pop (:class:`~pygmo.population`): population of solutions to a dtlz problem
        az (``float``): angle of view on which the 3d-plot is created
        comp (``list``): indexes the fitness dimension for x,y and z axis in that order
    Returns:
        ``matplotlib.axes.Axes``: the current ``matplotlib.axes.Axes`` instance on the current figure
    Raises:
        ValueError: if *pop* does not contain a DTLZ problem (veryfied by its name only) or if *comp* is not of length 3
    Examples:
        >>> import pygmo as pg
        >>> udp = pg.dtlz(prob_id = 1, fdim =3, dim = 5)
        >>> pop = pg.population(udp, 40)
        >>> udp.plot(pop) # doctest: +SKIP
    """
    from mpl_toolkits.mplot3d import axes3d
    import matplotlib.pyplot as plt
    import numpy as np
    # from pylab import mpl
    # mpl.rcParams['font.family'] = ['Times New Roman']
    # mpl.rcParams['font.size'] = 16.0

    # if (pop.problem.get_name()[:-1] != "DTLZ"):
    #     raise(ValueError, "The problem seems not to be from the DTLZ suite")

    if (len(comp) != 3):
        raise (
            ValueError,
            "The kwarg *comp* needs to contain exactly 3 elements (ids for the x,y and z axis)"
        )

    # Create a new figure
    fig = plt.figure(figsize=(12, 8))
    ax = fig.add_subplot(111, projection='3d')

    # plot the points
    fits = np.transpose(pop.get_f())
    try:
        pass
        # ax.plot(fits[comp[0]], fits[comp[1]], fits[comp[2]], 'ro')
    except IndexError:
        print('Error. Please choose correct fitness dimensions for printing!')

    if False:
        # Plot pareto front for dtlz 1
        if plot_option == 1:  # (pop.problem.get_name()[-1] in ["1"]):

            X, Y = np.meshgrid(np.linspace(0, 0.5, 100),
                               np.linspace(0, 0.5, 100))
            Z = -X - Y + 0.5
            # remove points not in the simplex
            for i in range(100):
                for j in range(100):
                    if X[i, j] < 0 or Y[i, j] < 0 or Z[i, j] < 0:
                        Z[i, j] = float('nan')

            ax.set_xlim(0, 1.)
            ax.set_ylim(0, 1.)
            ax.set_zlim(0, 1.)

            ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
            plt.plot([0, 0.5], [0.5, 0], [0, 0])

        # Plot pareto fronts for dtlz 2,3,4
        if plot_option == 2:  # (pop.problem.get_name()[-1] in ["2", "3", "4"]):
            # plot the wireframe of the known optimal pareto front
            thetas = np.linspace(0, (np.pi / 2.0), 30)
            # gammas = np.linspace(-np.pi / 4, np.pi / 4, 30)
            gammas = np.linspace(0, (np.pi / 2.0), 30)

            x_frame = np.outer(np.cos(thetas), np.cos(gammas))
            y_frame = np.outer(np.cos(thetas), np.sin(gammas))
            z_frame = np.outer(np.sin(thetas), np.ones(np.size(gammas)))

            ax.set_autoscalex_on(False)
            ax.set_autoscaley_on(False)
            ax.set_autoscalez_on(False)

            ax.set_xlim(0, 1.8)
            ax.set_ylim(0, 1.8)
            ax.set_zlim(0, 1.8)

            ax.plot_wireframe(x_frame, y_frame, z_frame)

    # https://stackoverflow.com/questions/37000488/how-to-plot-multi-objectives-pareto-frontier-with-deap-in-python
    # def simple_cull(inputPoints, dominates):
    #     paretoPoints = set()
    #     candidateRowNr = 0
    #     dominatedPoints = set()
    #     while True:
    #         candidateRow = inputPoints[candidateRowNr]
    #         inputPoints.remove(candidateRow)
    #         rowNr = 0
    #         nonDominated = True
    #         while len(inputPoints) != 0 and rowNr < len(inputPoints):
    #             row = inputPoints[rowNr]
    #             if dominates(candidateRow, row):
    #                 # If it is worse on all features remove the row from the array
    #                 inputPoints.remove(row)
    #                 dominatedPoints.add(tuple(row))
    #             elif dominates(row, candidateRow):
    #                 nonDominated = False
    #                 dominatedPoints.add(tuple(candidateRow))
    #                 rowNr += 1
    #             else:
    #                 rowNr += 1

    #         if nonDominated:
    #             # add the non-dominated point to the Pareto frontier
    #             paretoPoints.add(tuple(candidateRow))

    #         if len(inputPoints) == 0:
    #             break
    #     return paretoPoints, dominatedPoints
    # def dominates(row, candidateRow):
    #     return sum([row[x] >= candidateRow[x] for x in range(len(row))]) == len(row)
    # import random
    # print(inputPoints)
    # inputPoints = [[random.randint(70,100) for i in range(3)] for j in range(500)]
    # print(inputPoints)
    # quit()
    # inputPoints = [(x,y,z) for x,y,z in zip(fits[comp[0]], fits[comp[1]], fits[comp[2]])]
    # paretoPoints, dominatedPoints = simple_cull(inputPoints, dominates)
    x = [coords[0] / 1000 for coords in paretoPoints]
    y = [coords[1] for coords in paretoPoints]
    z = [coords[2] for coords in paretoPoints]

    # from surface_fitting import surface_fitting
    # surface_fitting(x,y,z)
    # quit()

    if False:
        pass
    else:
        import pandas as pd
        from pylab import cm
        print(dir(cm))
        df = pd.DataFrame({'x': x, 'y': y, 'z': z})

        # 只有plot_trisurf这一个函数,输入是三个以为序列的,其他都要meshgrid得到二维数组的(即ndim=2的数组)
        # # https://jakevdp.github.io/PythonDataScienceHandbook/04.12-three-dimensional-plotting.html
        # surf = ax.plot_trisurf(df.x, df.y, df.z, cmap=cm.magma, linewidth=0.1, edgecolor='none')
        # surf = ax.plot_trisurf(x, y, z, cmap='viridis', edgecolor='none')
        # surf = ax.plot_trisurf(df.x, df.y, df.z, cmap=cm.magma, linewidth=0.1)
        surf = ax.plot_trisurf(df.x,
                               df.y * 100,
                               df.z,
                               cmap=cm.Spectral,
                               linewidth=0.1)

        with open('./%s_PF_points.txt' % (fea_config_dict['run_folder'][:-1]),
                  'w') as f:
            f.write('TRV,eta,OC\n')
            f.writelines([
                '%g,%g,%g\n' % (a, b, c)
                for a, b, c in zip(df.x, df.y * 100, df.z)
            ])
        # quit()

        fig.colorbar(surf, shrink=0.5, aspect=5)

        ax.set_xlabel(' \n$\\rm -TRV$ [$\\rm kNm/m^3$]')
        ax.set_ylabel(' \n$-\\eta$ [%]')
        ax.set_yticks(np.arange(-96, -93.5, 0.5))
        ax.set_zlabel(r'$O_C$ [1]')

        # Try to export data from plot_trisurf # https://github.com/WoLpH/numpy-stl/issues/19
        # print(surf.get_vector())

        # plt.savefig('./plots/avgErrs_vs_C_andgamma_type_%s.png'%(k))
        # plt.show()

        # # rotate the axes and update
        # for angle in range(0, 360):
        #     ax.view_init(30, angle)
        #     plt.draw()
        #     plt.pause(.001)

    ax.view_init(azim=245, elev=15)
    # fig.tight_layout()

    # Y730
    # fig.savefig(r'C:\Users\horyc\Desktop/3D-plot.png', dpi=300, layout='tight')

    # ax.view_init(azim=az)
    # ax.set_xlim(0, 1.)
    # ax.set_ylim(0, 1.)
    # ax.set_zlim(0, 10.)
    return ax
Example #28
0
 def iPark(P, theta):
     return [
         P[0] * np.cos(theta) + P[1] * -np.sin(theta),
         P[0] * np.sin(theta) + P[1] * np.cos(theta)
     ]
def reflection1(xvals, parms):
    #position=p[0];  intensity=p[1]; slit=p[2];  stth=p[3];  background=p[4];  thickness=p[5];  absorption=p[6]
    x0 = parms[0]
    i0 = parms[1]
    w = parms[2]
    theta = parms[3]
    ib = parms[4]
    thick = parms[5]
    u = parms[6]
    th = np.deg2rad(theta)
    p = w * np.sin(th)
    Atot = w * w / np.sin(2.0 * th)
    out = []
    ni = 5
    irng = np.array(range(1, ni + 1))

    for x in xvals:
        if x < (x0 - p):
            val = ib
        elif ((x0 - p) < x and x0 > x):
            l1 = x - (x0 - p)
            nrleft = int(np.ceil(l1 / (2 * p) * ni))
            if nrleft < 1: nrleft = 1
            irngleft = np.array(range(1, nrleft + 1))
            dl1 = l1 / float(nrleft)
            dl = irngleft * dl1
            triA = dl * dl / np.tan(th)  #triangle areas
            secA = [triA[0]
                    ] + [triA[i] - triA[i - 1]
                         for i in range(1, nrleft)]  #section areas
            secA = np.array(secA)
            m1 = np.linspace(
                x0 - p + dl1 / 2.0, x - dl1 / 2.0, nrleft
            )  #section midpoint position - path length calculated from this
            plen = np.abs(2 * m1 / np.sin(th))
            val = ib + np.sum(i0 * secA * np.exp(-u * plen))

        elif (x0 <= x) and (x0 + p >= x):
            l1 = p
            nrleft = int(np.ceil(l1 / (2 * p) * ni))
            if nrleft < 1: nrleft = 1
            irngleft = np.array(range(1, nrleft + 1))
            dl1left = l1 / float(nrleft)
            dlleft = irngleft * dl1left
            triAleft = dlleft * dlleft / np.tan(th)  #triangle areas
            secAleft = [triAleft[0]] + [
                triAleft[i] - triAleft[i - 1] for i in range(1, nrleft)
            ]  #section areas
            secAleft = np.array(secAleft)
            m1left = np.linspace(x0 - p + dl1left / 2.0, x0 - dl1left / 2.0,
                                 nrleft) + (x - x0)
            plenleft = np.abs(2 * m1left / np.sin(th))
            valleft = np.sum(i0 * secAleft * np.exp(-u * plenleft))

            l2 = x - x0
            nrright = int(np.ceil(x - x0 / (2 * p) * ni))
            if nrright < 1: nrright = 1
            irngright = np.array(range(1, nrright + 1))
            dl1right = l2 / float(nrright)
            dlright = p - np.append(0.0, dl1right * irngright)
            triAright = dlright * dlright / np.tan(th)
            secAright = [
                triAright[i] - triAright[i + 1] for i in range(nrright)
            ]
            secAright = np.array(secAright)
            m1right = np.linspace(x - x0 - dl1right / 2.0, dl1right / 2.0,
                                  nrright)
            plenright = np.abs(2 * m1right / np.sin(th))
            valright = np.sum(i0 * secAright * np.exp(-u * plenright))

            val = ib + valleft + valright

        elif (x > x0 + p):
            l1 = p
            #nrleft = int(np.ceil(l1/(x-(x0-p))*ni));
            nrleft = int(np.ceil(l1 / (2 * p) * ni))
            if nrleft < 1: nrleft = 1
            irngleft = np.array(range(1, nrleft + 1))
            dl1left = l1 / float(nrleft)
            dlleft = irngleft * dl1left
            triAleft = dlleft * dlleft / np.tan(th)  #triangle areas
            secAleft = [triAleft[0]] + [
                triAleft[i] - triAleft[i - 1] for i in range(1, nrleft)
            ]  #section areas
            secAleft = np.array(secAleft)
            m1left = np.linspace(x0 - p + dl1left / 2.0, x0 - dl1left / 2.0,
                                 nrleft) + (x - x0)
            plenleft = np.abs(2 * m1left / np.sin(th))
            valleft = np.sum(i0 * secAleft * np.exp(-u * plenleft))

            l2 = p
            nrright = int(np.ceil(l2 / (2 * p) * ni))
            if nrright < 1: nrright = 1
            irngright = np.array(range(1, nrright + 1))
            dl1right = l2 / float(nrright)
            dlright = p - np.append(0.0, dl1right * irngright)
            triAright = dlright * dlright / np.tan(th)
            secAright = [
                triAright[i] - triAright[i + 1] for i in range(nrright)
            ]
            secAright = np.array(secAright)
            m1right = np.linspace(dlright[0] - dl1right / 2.0, dlright[-1] +
                                  dl1right / 2.0, nrright) + (x - (x0 + p))
            plenright = np.abs(2 * m1right / np.sin(th))
            valright = np.sum(i0 * secAright * np.exp(-u * plenright))

            val = ib + valleft + valright

        out = out + [val]
    return np.array(out)
def reflection(xvals, p):
    #position=p[0];  intensity=p[1]; slit=p[2];  stth=p[3];  background=p[4];  thickness=p[5];  absorption=p[6]
    x0 = p[0]
    i0 = p[1]
    w = p[2]
    theta = p[3]
    ib = p[4]
    thick = p[5]
    u = p[6]
    th = np.deg2rad(theta)
    p0 = w * np.sin(th) / np.sin(2 * th)
    out = []
    for x in xvals:
        if x < (x0 - p0):
            val = ib
        elif ((x >= (x0 - p0)) and (x < x0)):
            val = i0 * ((x - x0 + p0) / u) - i0 * (np.sin(th) /
                                                   (2 * u * u)) * (1 - np.exp(
                                                       (-2 * u / np.sin(th)) *
                                                       (x - x0 + p0))) + ib
        elif ((x >= x0) and (x < (x0 + p0))):
            val = i0 * (np.sin(th) / (2 * u * u)) * (np.exp(
                (-2 * u / np.sin(th)) * (x - x0 + p0)) - 2 * np.exp(
                    (-2 * u / np.sin(th)) *
                    (x - x0)) + 1) + i0 * ((x0 + p0 - x) / u) + ib
        elif (x >= (x0 + p0)):
            val = i0 * np.sin(th) / (
                2 * u * u) * (np.exp(-2 * u * (x - x0 + p0) / np.sin(th)) -
                              2 * np.exp(-2 * u * (x - x0) / np.sin(th)) +
                              np.exp(-2 * u * (x - x0 - p0) / np.sin(th))) + ib
        out = out + [val]
    return np.array(out)
Example #31
0
                ann.set_text('???')

    def hide_annotations(self):
        for ann in self.annotations:
            ann.set_visible(False)
        

# ---------------------------------------------------------------------

t = np.linspace(0.0, 1.0, 11)

s1 = t
s2 = -t
s3 = t**2
s4 = -(t**2)
s5 = np.sin(t*2*np.pi)
s6 = np.cos(t*2*np.pi)

fig = figure()

ax1 = fig.add_subplot(321)
ax1.plot(t, s1)
ax1.scatter(t, s1)

ax2 = fig.add_subplot(322)
ax2.plot(t, s2)
ax2.scatter(t, s2)

ax3 = fig.add_subplot(323)
ax3.plot(t, s3)
ax3.scatter(t, s3)
Example #32
0
from __future__ import print_function
from pylab import figure, show, np

Ntests = 3
t = np.arange(0.0, 1.0, 0.05)
s = np.sin(2 * np.pi * t)

# scatter creates a RegPolyCollection
fig = figure()
ax = fig.add_subplot(Ntests, 1, 1)
N = 100
x, y = 0.9 * np.random.rand(2, N)
area = np.pi * (10 * np.random.rand(N)) ** 2  # 0 to 10 point radiuses
ax.scatter(x, y, s=area, marker='^', c='r', label='scatter')
ax.legend()

# vlines creates a LineCollection
ax = fig.add_subplot(Ntests, 1, 2)
ax.vlines(t, [0], np.sin(2 * np.pi * t), label='vlines')
ax.legend()

# vlines creates a LineCollection
ax = fig.add_subplot(Ntests, 1, 3)
ax.plot(t, s, 'b-', lw=2, label='a line')
ax.legend()

fig.savefig('legend_unit')
show()
Example #33
0
from pylab import figure, show, np

Ntests = 3
t = np.arange(0.0, 1.0, 0.05)
s = np.sin(2 * np.pi * t)

# scatter creates a RegPolyCollection
fig = figure()
ax = fig.add_subplot(Ntests, 1, 1)
N = 100
x, y = 0.9 * np.random.rand(2, N)
area = np.pi * (10 * np.random.rand(N))**2  # 0 to 10 point radiuses
ax.scatter(x, y, s=area, marker='^', c='r', label='scatter')
ax.legend()

# vlines creates a LineCollection
ax = fig.add_subplot(Ntests, 1, 2)
ax.vlines(t, [0], np.sin(2 * np.pi * t), label='vlines')
ax.legend()

# vlines creates a LineCollection
ax = fig.add_subplot(Ntests, 1, 3)
ax.plot(t, s, 'b-', lw=2, label='a line')
ax.legend()

fig.savefig('legend_unit')
show()