def plot_iou(checkpoint_dir, iou_list): x = range(0, len(iou_list)) y = iou_list plt.switch_backend('agg') plt.plot(x, y, color='red', marker='o', label='IOU') plt.xticks(range(0, len(iou_list) + 3, (len(iou_list) + 10) // 10)) plt.legend() plt.grid() plt.savefig(os.path.join(checkpoint_dir, 'iou_fig.pdf')) plt.close()
def plot_loss(checkpoint_dir, loss_list, save_pred_every): x = range(0, len(loss_list) * save_pred_every, save_pred_every) y = loss_list plt.switch_backend('agg') plt.plot(x, y, color='blue', marker='o', label='Train loss') plt.xticks(range(0, len(loss_list) * save_pred_every + 3, (len(loss_list) * save_pred_every + 10) // 10)) plt.legend() plt.grid() plt.savefig(os.path.join(checkpoint_dir, 'loss_fig.pdf')) plt.close()
def plot_precisonAndjac(checkpoint_dir, pre_list, jac_list): x = range(0, len(pre_list)) y = pre_list y2 = jac_list plt.switch_backend('agg') plt.plot(x, y, color='red', marker='o', label='precision') plt.plot(x, y2, color='blue', marker='o', label='jaccard') plt.xticks(range(0, len(pre_list) + 3, (len(pre_list) + 10) // 10)) plt.legend() plt.grid() plt.savefig(os.path.join(checkpoint_dir, 'precisionAndjac_fig1.pdf')) plt.close()
# coding=utf-8 import torch as t from torch import nn from torch.autograd import Variable from torch.optim import Adam from torchvision import transforms from torchvision.utils import make_grid from pylab import plt plt.switch_backend('agg') from lib.datareader.pytorch.cifar import Cifar10DataSet from lib.utils.progressbar.ProgressBar import ProgressBar class Config: lr = 0.0002 nz = 100 # noise dimension image_size = 64 image_size2 = 64 nc = 3 # chanel of img ngf = 64 # generate channel ndf = 64 # discriminative channel beta1 = 0.5 batch_size = 32 max_epoch = 10 # =1 when debug workers = 2 GPU_NUMS = 2 # use gpu or not opt=Config() transform=transforms.Compose([ transforms.Resize(opt.image_size) ,