Example #1
0
def square_root_diffusion_exact(initial_val=0.05,
                                kappa=3.0,
                                theta=0.02,
                                sigma=0.1,
                                time_year=2,
                                num_samples=10000,
                                num_time_interval_discretization=50):
    x = np.zeros((num_time_interval_discretization + 1, num_samples))
    x[0] = initial_val
    dt = time_year / num_time_interval_discretization

    for t in range(1, num_time_interval_discretization + 1):
        df = 4 * theta * kappa / sigma**2
        c = (sigma**2 * (1 - np.exp(-kappa * dt))) / (4 * kappa)
        nc = np.exp(-kappa * dt) / c * x[t - 1]
        x[t] = c * npr.noncentral_chisquare(df, nc, size=num_samples)

    plt.figure(figsize=(10, 6))
    plt.hist(x[-1], bins=50)
    plt.title("Square root diffusion Exact")
    plt.xlabel('value')
    plt.ylabel('frequency')
    plt.show()

    plt.figure(figsize=(10, 6))
    plt.plot(x[:, :10], lw=1.5)
    plt.xlabel('time')
    plt.ylabel('index level')
    plt.title('Sample Path SRD Exact')
    plt.show()

    return x
Example #2
0
def geometric_brownian_motion_option_pricing(
        initial_val=100,
        num_samples=10000,
        riskless_rate=0.05,
        volatility_sigma=0.25,
        time_year=2.0,
        num_time_interval_discretization=50):
    dt = time_year / num_time_interval_discretization
    samples = np.zeros((num_time_interval_discretization + 1, num_samples))
    samples[0] = initial_val

    for t in range(1, num_time_interval_discretization + 1):
        samples[t] = samples[t - 1] * np.exp(
            (riskless_rate - 0.5 * (volatility_sigma**2)) * dt +
            volatility_sigma * np.sqrt(dt) * npr.standard_normal(num_samples))

    print(45 * "=")
    print(samples[1])
    plt.figure(figsize=(10, 6))
    plt.hist(samples[50], bins=50)
    plt.title("Geometric Brownian Motion")
    plt.xlabel('index level')
    plt.ylabel('frequency')
    plt.show()

    plt.figure(figsize=(10, 6))
    plt.plot(samples[:, :10], lw=1.5)
    plt.xlabel('time')
    plt.ylabel('index level')
    plt.title('Sample Path')
    plt.show()

    return samples
Example #3
0
def square_root_diffusion_euler(initial_val=0.05,
                                kappa=3.0,
                                theta=0.02,
                                sigma=0.1,
                                time_year=2,
                                num_samples=10000,
                                num_time_interval_discretization=50):
    dt = time_year / num_time_interval_discretization

    xh = np.zeros((num_time_interval_discretization + 1, num_samples))
    x = np.zeros_like(xh)
    xh[0] = initial_val
    x[0] = initial_val
    for t in range(1, num_time_interval_discretization + 1):
        xh[t] = (xh[t - 1] + kappa * (theta - np.maximum(xh[t - 1], 0)) * dt +
                 sigma * np.sqrt(np.maximum(xh[t - 1], 0)) * math.sqrt(dt) *
                 npr.standard_normal(num_samples))
    x = np.maximum(xh, 0)

    plt.figure(figsize=(10, 6))
    plt.hist(x[-1], bins=50)
    plt.xlabel('value')
    plt.ylabel('frequency')
    plt.title('Square root diffusion Approx Euler')
    plt.show()

    plt.figure(figsize=(10, 6))
    plt.plot(x[:, :10], lw=1.5)
    plt.xlabel('time')
    plt.ylabel('index level')
    plt.title('Sample Path SRD approx')
    plt.show()

    return x
Example #4
0
 def pure_data_plot(self,connect=False,suffix='',cmap=cm.jet,bg=cm.bone(0.3)):
     #fig=plt.figure()
     ax=plt.axes()
     plt.axhline(y=0,color='grey', zorder=-1)
     plt.axvline(x=0,color='grey', zorder=-2)
     if cmap is None:
         if connect: ax.plot(self.x,self.y, 'b-',lw=2,alpha=0.5)
         ax.scatter(self.x,self.y, marker='o', c='b', s=40)
     else:
         if connect:
             if cmap in [cm.jet,cm.brg]:
                 ax.plot(self.x,self.y, 'c-',lw=2,alpha=0.5,zorder=-1)
             else:
                 ax.plot(self.x,self.y, 'b-',lw=2,alpha=0.5)
         c=[cmap((f-self.f[0])/(self.f[-1]-self.f[0])) for f in self.f]
         #c=self.f
         ax.scatter(self.x, self.y, marker='o', c=c, edgecolors=c, zorder=True, s=40) #, cmap=cmap)
     #plt.axis('equal')
     ax.set_xlim(xmin=-0.2*amax(self.x), xmax=1.2*amax(self.x))
     ax.set_aspect('equal')  #, 'datalim')
     if cmap in [cm.jet,cm.brg]:
         ax.set_axis_bgcolor(bg)
     if self.ZorY == 'Z':
         plt.xlabel(r'resistance $R$ in Ohm'); plt.ylabel(r'reactance $X$ in Ohm')
     if self.ZorY == 'Y':
         plt.xlabel(r'conductance $G$ in Siemens'); plt.ylabel(r'susceptance $B$ in Siemens')
     if self.show: plt.show()
     else: plt.savefig(join(self.sdc.plotpath,'c{}_{}_circle_data'.format(self.sdc.case,self.ZorY)+self.sdc.suffix+self.sdc.outsuffix+suffix+'.png'), dpi=240)
     plt.close()
Example #5
0
def plot_weightings():
    """Plots all weighting functions defined in :module: splweighting."""
    from scipy.signal import freqz
    from pylab import plt, np

    sample_rate = 48000
    num_samples = 2 * 4096

    fig, ax = plt.subplots()

    for name, weight_design in sorted(_weighting_coeff_design_funsd.items()):
        b, a = weight_design(sample_rate)
        w, H = freqz(b, a, worN=num_samples)

        freq = w * sample_rate / (2 * np.pi)

        ax.semilogx(freq,
                    20 * np.log10(np.abs(H) + 1e-20),
                    label='{}-Weighting'.format(name))

    plt.legend(loc='lower right')
    plt.xlabel('Frequency / Hz')
    plt.ylabel('Damping / dB')
    plt.grid(True)
    plt.axis([10, 20000, -80, 5])
    return fig, ax
Example #6
0
    def plot2(self,
              figNum,
              time1,
              data1,
              time2,
              data2,
              title='',
              units='',
              options=''):
        plt.figure(figNum)
        #         plt.hold(True);
        plt.grid(True)
        if title:
            self.title = title
        if not units:
            self.units = units

    #     plt.cla()
        if self.preTitle:
            fig = plt.gcf()
            fig.canvas.set_window_title("Figure %d - %s" %
                                        (figNum, self.preTitle))
        plt.title("%s" % (self.title))
        plt.plot(time1, data1, options)
        plt.plot(time2, data2, options)
        plt.ylabel('(%s)' % (self.units))
        plt.xlabel('Time (s)')
        plt.margins(0.04)
Example #7
0
def plot_inv_conv(fvals, name, direc):
    plt.figure()
    plt.semilogy(fvals, 'ko-')
    plt.xlabel('Iterations')
    plt.ylabel('Cost Function')
    plt.savefig(os.path.join(direc, name + '.png'), dpi=300)
    plt.close()
Example #8
0
    def subplotSingle2x(self,
                        figNum,
                        plotNum,
                        numRows,
                        numCols,
                        time,
                        data,
                        title='',
                        units='',
                        options=''):

        print("subplotSingle2x")

        plt.figure(figNum)
        if title:
            self.title = title
        if not units:
            self.units = units
        if self.preTitle:
            fig = plt.gcf()
            fig.canvas.set_window_title("%s" % (figNum, self.preTitle))
        if not figNum in self.sharex.keys():
            self.sharex[figNum] = plt.subplot(numRows, numCols, plotNum)
            plt.plot(time, data, options)

        plt.subplot(numRows, numCols, plotNum, sharex=self.sharex[figNum])
        #         plt.hold(True);
        plt.grid(True)
        plt.title("%s" % (self.title))
        plt.plot(time, data, options)
        plt.ylabel('(%s)' % (self.units))
        plt.margins(0.04)
Example #9
0
def CHART_Running_Annual_Vol_with_Hourly_Samples(frequency,window,trading_hours_per_day):
    Trading_Hours_in_Trading_Year=252*trading_hours_per_day #Calculates Trading Hours in a year    
    Sample=data['Price'][frequency-1::frequency] #Creates New Sampling list based on frequency input
    Returns=np.log(Sample) - np.log(Sample.shift(1)) #Calculates Returns on New Sample    
    
    Running_Variance=Returns.rolling(window).var() #Calculates hourly running variance based on 'window size' input
    Running_Annual_Vol=np.sqrt(Running_Variance)*np.sqrt(Trading_Hours_in_Trading_Year/frequency)
    
    #Place Running Vols and Time Series in DataFrame
    DF=pd.DataFrame(Sample)
    DF['Running_Vol']=Running_Annual_Vol
    
    #Create Plot
    DF.Price.plot()
    plt.legend()
    plt.ylabel('Yield (%)')
    DF.Running_Vol.plot(secondary_y=True, style='g',rot=90)
    plt.xlabel('Date')
    plt.ylabel('Running Vol') 
    plt.title('10 Year Bund Yield vs Annualized Running Vol (Window Size=200)')
    plt.legend(bbox_to_anchor=(0.8, 1))
    plt.text(0.8, 5.4, "Frequency={}. Window Size={}. Trading Hours per Day={}".format(frequency, window,trading_hours_per_day))

    
    return plt
Example #10
0
def CHART_Running_Annual_Vol_with_Daily_Samples_on_Specific_Time_of_Day(frequency,sampling_time,window,trading_hours_per_day):
    Original_DAILY_Sample=data['Price'][sampling_time-1::trading_hours_per_day] #Grabs the Hourly Data and Converts it into Daily Data based on Sampling Time of Day AND Trading Hours per Day 
    NEW_Sample=Original_DAILY_Sample[frequency-1::frequency] #Creates New Sampling list based on sampling frequency input
    Returns=np.log(NEW_Sample) - np.log(NEW_Sample.shift(1)) #Calculates Returns on New Sample    
    Running_Variance=Returns.rolling(window).var() #Calculates daily running variance based on 'window size' input
    Running_Annual_Vol=np.sqrt(Running_Variance)*np.sqrt(252/frequency) 
    
    #Place NEW Sampled data (prices) and Running Vols in DataFrame
    DF=pd.DataFrame(NEW_Sample)
    DF['Running_Vol']=Running_Annual_Vol
    
    #Create Plot
    DF.Price.plot()
    plt.legend()
    #data.Price.plot()
    plt.ylabel('Yield (%)')
    DF.Running_Vol.plot(secondary_y=True, style='g',rot=90)
    plt.xlabel('Date')
    plt.ylabel('Running Vol') 
    plt.title('10 Year Bund Yield vs Annualized Running Vol ')
    plt.legend(bbox_to_anchor=(0.8, 1))
    plt.text(0.8, 3.5, "Sampling Time={}. Window Size={}. Trading Hours per Day={}".format(sampling_time, window,trading_hours_per_day))

    
    return plt
    def plot_cumu_disp_decomposition(self,
                                     site,
                                     cmpt,
                                     loc=2,
                                     leg_fs=7,
                                     if_ylim=False):
        self.plot_cumu_obs_linres(site, cmpt)
        y = self.plot_cumu_disp_pred_added(site, cmpt, label='pred.')
        y += self.plot_R_co(site,
                            cmpt,
                            style='-^',
                            label='Rco',
                            color='orange')
        y += self.plot_E_cumu_slip(site, cmpt, color='green')
        y += self.plot_R_aslip(site, cmpt, color='black')

        plt.grid('on')
        if if_ylim:
            plt.ylim(calculate_lim(y))

        plt.ylabel(r'meter')
        plt.legend(loc=loc, prop={'size': leg_fs})
        plt.gcf().autofmt_xdate()
        plt.title('Cumulative Disp.: {site} - {cmpt}'.format(
            site=get_site_true_name(site_id=site), cmpt=cmpt))
    def plot_post_disp_decomposition(
        self,
        site,
        cmpt,
        loc=2,
        leg_fs=7,
        marker_for_obs='x',
    ):
        y = self.plot_post_obs_linres(site,
                                      cmpt,
                                      label='obs.',
                                      marker=marker_for_obs)
        y += self.plot_post_disp_pred_added(site, cmpt, label='pred.')
        y += self.plot_R_co(site,
                            cmpt,
                            style='-^',
                            label='Rco',
                            color='orange')
        y += self.plot_E_aslip(site, cmpt, color='green')
        y += self.plot_R_aslip(site, cmpt, color='black')

        plt.grid('on')

        plt.legend(loc=loc, prop={'size': leg_fs})
        plt.ylabel(r'meter')
        plt.gcf().autofmt_xdate()
        plt.title('Postseismic Disp. : {site} - {cmpt}'.format(
            site=get_site_true_name(site_id=site), cmpt=cmpt))
Example #13
0
def print_statistics(a1, a2, a1_type, a2_type):
    ''' Prints selected statistics.        
        Parameters
        ==========
        a1, a2: ndarray objects
            results objects from simulation
        '''
    sta1 = scs.describe(a1)
    sta2 = scs.describe(a2)
    print('%14s %14s %14s' % ('statistic', 'data set 1', 'data set 2'))
    print(45 * "-")
    print('%14s %14.0f %14.0f' % ('size', sta1[0], sta2[0]))
    print('%14s %14.3f %14.3f' % ('min', sta1[1][0], sta2[1][0]))
    print('%14s %14.3f %14.3f' % ('max', sta1[1][1], sta2[1][1]))
    print('%14s %14.3f %14.3f' % ('mean', sta1[2], sta2[2]))
    print('%14s %14.3f %14.3f' % ('std', np.sqrt(sta1[3]), np.sqrt(sta2[3])))
    print('%14s %14.3f %14.3f' % ('skew', sta1[4], sta2[4]))
    print('%14s %14.3f %14.3f' % ('kurtosis', sta1[5], sta2[5]))
    a1_sort = np.sort(a1)
    a2_sort = np.sort(a2)

    plt.scatter(x=a1_sort, y=a2_sort, marker='.', color='darkred')
    plt.plot(a1_sort, a1_sort, linestyle='dashed', color='darkblue', alpha=0.4)
    plt.xlabel(a1_type)
    plt.ylabel(a2_type)
Example #14
0
def plot_roc_curve(fpr, tpr, label=None):
    """
    Plots Rceiver Operating Characteristic (ROC) curve from false_positive_rate(fpr), true_positive_rate(tpr)
    
    Requires imports:
    from sklearn.metrics import roc_curve
    
    Returns:
    Nothing
    """

    from pylab import mpl, plt
    import matplotlib.pyplot as plt
    import numpy as np
    plt.style.use('seaborn')
    mpl.rcParams['font.family'] = 'arial'
    np.random.seed(1000)
    np.set_printoptions(suppress=True, precision=4)

    plt.plot(fpr, tpr, linewidth=2, label=label)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.axis([0, 1, 0, 1])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Negatove Rate')
    plot_roc_curve(fpr, tpr)
Example #15
0
def lagger():
    
    global cols, scores
    lag_counts = range(1, lags + 1)
    cols = []
    scores = []
    
    for lag in range(1, lags + 1):
        col = 'lag_{}'.format(lag)
        data[col] = np.sign(data['returns'].shift(lag))
        cols.append(col)
        data.dropna(inplace=True)
        print('Iteration number: {}'.format(lag))
        %time model.fit(data[cols], np.sign(data['returns']))
        model.predict(data[cols])
        data['prediction'] = model.predict(data[cols])
        data['prediction'].value_counts()
        score = accuracy_score(data['prediction'], np.sign(data['returns']))
        scores.append(score)
        
    plt.figure()
    plt.plot(lag_counts, scores, lw=2)
    plt.xlabel('# of Lags')
    plt.ylabel('Test Score')
    
    return scores, cols
Example #16
0
def serve_css(name, length, keys, values):
    from pylab import plt, mpl
    mpl.rcParams['font.sans-serif'] = ['SimHei']
    mpl.rcParams['axes.unicode_minus'] = False
    from matplotlib.font_manager import FontProperties
    # font = FontProperties(fname="d:\Users\ll.tong\Desktop\msyh.ttf", size=12)
    font = FontProperties(fname="/usr/share/fonts/msyh.ttf", size=11)
    plt.xlabel(u'')
    plt.ylabel(u'出现次数',fontproperties=font)
    plt.title(u'词频统计',fontproperties=font)
    plt.grid()
    keys = keys.decode("utf-8").split(' ')
    values = values.split(' ')
    valuesInt = []
    for value in values:
        valuesInt.append(int(value))

    plt.xticks(range(int(length)), keys)
    plt.plot(range(int(length)), valuesInt)
    plt.xticks(rotation=defaultrotation, fontsize=9,fontproperties=font)
    plt.yticks(fontsize=10,fontproperties=font)
    name = name + str(datetime.now().date()).replace(':', '') + '.png'
    imgUrl = 'static/temp/' + name
    fig = matplotlib.pyplot.gcf()
    fig.set_size_inches(12.2, 2)
    plt.savefig(imgUrl, bbox_inches='tight', figsize=(20,4), dpi=100)
    plt.close()
    tempfile = static_file(name, root='./static/temp/')
    #os.remove(imgUrl)
    return tempfile
Example #17
0
def MakePlot(x, y, styles, labels, axlabels):
    plt.figure(figsize=(10, 6))
    for i in range(len(x)):
        plt.plot(x[i], y[i], styles[i], label=labels[i])
        plt.xlabel(axlabels[0])
        plt.ylabel(axlabels[1])
    plt.legend(loc=0)
    def draw(cls, t_max, agents_proportions, eco_idx, parameters):

        color_set = ["green", "blue", "red"]

        for agent_type in range(3):
            plt.plot(np.arange(t_max),
                     agents_proportions[:, agent_type],
                     color=color_set[agent_type],
                     linewidth=2.0,
                     label="Type-{} agents".format(agent_type))

            plt.ylim([-0.1, 1.1])

        plt.xlabel("$t$")
        plt.ylabel("Proportion of indirect exchanges")

        # plt.suptitle('Direct choices proportion per type of agents', fontsize=14, fontweight='bold')
        plt.legend(loc='upper right', fontsize=12)

        print(parameters)

        plt.title(
            "Workforce: {}, {}, {};   displacement area: {};   vision area: {};   alpha: {};   tau: {}\n"
            .format(parameters["x0"], parameters["x1"], parameters["x2"],
                    parameters["movement_area"], parameters["vision_area"],
                    parameters["alpha"], parameters["tau"]),
            fontsize=12)

        if not path.exists("../../figures"):
            mkdir("../../figures")

        plt.savefig("../../figures/figure_{}.pdf".format(eco_idx))
        plt.show()
Example #19
0
    def test_screenstate_1(self):
        from gdesk import gui
        from pylab import plt
        from pathlib import Path

        gui.load_layout('console')

        samplePath = Path(r'./samples')

        gui.img.select(1)
        gui.img.open(samplePath / 'kodim05.png')
        gui.img.zoom_fit()
        plt.plot(gui.vs.mean(2).mean(1))
        plt.title('Column means of image 1')
        plt.xlabel('Column Number')
        plt.ylabel('Mean')
        plt.grid()
        plt.show()

        gui.img.select(2)
        gui.img.open(samplePath / 'kodim23.png')
        gui.img.zoom_full()
        plt.figure()
        plt.plot(gui.vs.mean(2).mean(0))
        plt.title('Row means of image 2')
        plt.xlabel('Row Number')
        plt.ylabel('Mean')
        plt.grid()
        plt.show()
Example #20
0
def link_level_bars(levels, usages, quantiles, scheme, direction, color, nnames, lnames, admat=None):
    """
    Bar plots of nodes' link usage of links at different levels.
    """
    if not admat:
        admat = np.genfromtxt('./settings/eadmat.txt')
    if color == 'solar':
        cmap = Oranges_cmap
    elif color == 'wind':
        cmap = Blues_cmap
    elif color == 'backup':
        cmap = 'Greys'
    nodes, links = usages.shape
    usageLevels = np.zeros((nodes, levels))
    usageLevelsNorm = np.zeros((nodes, levels))
    for node in range(nodes):
        nl = neighbor_levels(node, levels, admat)
        for lvl in range(levels):
            ll = link_level(nl, lvl, nnames, lnames)
            ll = np.array(ll, dtype='int')
            usageSum = sum(usages[node, ll])
            linkSum = sum(quantiles[ll])
            usageLevels[node, lvl] = usageSum / linkSum
            if lvl == 0:
                usageLevelsNorm[node, lvl] = usageSum
            else:
                usageLevelsNorm[node, lvl] = usageSum / usageLevelsNorm[node, 0]
        usageLevelsNorm[:, 0] = 1

    # plot all nodes
    usages = usageLevels.transpose()
    plt.figure(figsize=(11, 3))
    ax = plt.subplot()
    plt.pcolormesh(usages[:, loadOrder], cmap=cmap)
    plt.colorbar().set_label(label=r'$U_n^{(l)}$', size=11)
    ax.set_yticks(np.linspace(.5, levels - .5, levels))
    ax.set_yticklabels(range(1, levels + 1))
    ax.yaxis.set_tick_params(width=0)
    ax.xaxis.set_tick_params(width=0)
    ax.set_xticks(np.linspace(1, nodes, nodes))
    ax.set_xticklabels(loadNames, rotation=60, ha="right", va="top", fontsize=10)
    plt.ylabel('Link level')
    plt.savefig(figPath + '/levels/' + str(scheme) + '/' + 'total' + '_' + str(direction) + '_' + color + '.pdf', bbox_inches='tight')
    plt.close()

    # plot all nodes normalised to usage of first level
    usages = usageLevelsNorm.transpose()
    plt.figure(figsize=(11, 3))
    ax = plt.subplot()
    plt.pcolormesh(usages[:, loadOrder], cmap=cmap)
    plt.colorbar().set_label(label=r'$U_n^{(l)}$', size=11)
    ax.set_yticks(np.linspace(.5, levels - .5, levels))
    ax.set_yticklabels(range(1, levels + 1))
    ax.yaxis.set_tick_params(width=0)
    ax.xaxis.set_tick_params(width=0)
    ax.set_xticks(np.linspace(1, nodes, nodes))
    ax.set_xticklabels(loadNames, rotation=60, ha="right", va="top", fontsize=10)
    plt.ylabel('Link level')
    plt.savefig(figPath + '/levels/' + str(scheme) + '/' + 'total_norm_cont_' + str(direction) + '_' + color + '.pdf', bbox_inches='tight')
    plt.close()
    def hexbin_plot(self, var1, var2, force=False):

        fig_name = "{}/hexbin_{}_{}.pdf".format(self.fig_folder, var1, var2)
        if path.exists(fig_name) and not force:
            return

        if var1 == "customer_extra_view_choices" and var2 == "delta_position":

            print("Doing hexbin plot '{}' against '{}'.".format(var2, var1))

            x = np.asarray(self.stats.data[var1])
            y = np.asarray(self.stats.data[var2])

            fig = plt.figure()
            ax = fig.add_subplot(1, 1, 1)

            plt.xlim(self.range_var[var1])
            plt.ylim(self.range_var[var2])

            plt.xlabel(self.format_label(var1))
            plt.ylabel(self.format_label(var2))

            hb = ax.hexbin(x=x, y=y, gridsize=20, cmap='inferno')

            ax.set_facecolor('black')

            cb = fig.colorbar(hb, ax=ax)
            cb.set_label('counts')

            plt.savefig(fig_name)

            if self.display:
                plt.show()

            plt.close()
Example #22
0
def plot_comfort(fingers_org=range(1, 6, 1),
                 fingers_dst=range(1, 6, 1),
                 jumps=range(-12, 13, 1)):

    import seaborn
    from mpl_toolkits.mplot3d import Axes3D
    from pylab import plt

    xs, ys, zs, cs = calculate_comforts(fingers_org, fingers_dst, jumps)

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(xs, ys, zs, c=cs)
    ax.set_zlabel("Interval (half steps)", fontsize=15)
    ax.set_zlim(jumps[0], jumps[-1])
    # ax.set_zticks(jumps)

    plt.xticks(fingers_org)
    plt.xlim(fingers_org[0], fingers_org[-1])
    plt.xlabel("From finger", fontsize=15)

    plt.yticks(fingers_dst)
    plt.ylim(fingers_dst[0], fingers_dst[-1])
    plt.ylabel("To finger", fontsize=15)

    plt.title("Difficulty of finger passages", fontsize=25)

    plt.savefig('./figures/image.png', figsize=(16, 12), dpi=300)
    plt.show()
Example #23
0
def plot_stat(rows, cache):
    "Use matplotlib to plot DAS statistics"
    if not PLOT_ALLOWED:
        raise Exception('Matplotlib is not available on the system')
    if cache in ['cache', 'merge']:  # cachein, cacheout, mergein, mergeout
        name_in = '%sin' % cache
        name_out = '%sout' % cache
    else:  # webip, webq, cliip, cliq
        name_in = '%sip' % cache
        name_out = '%sq' % cache

    def format_date(date):
        "Format given date"
        val = str(date)
        return '%s-%s-%s' % (val[:4], val[4:6], val[6:8])

    date_range = [r['date'] for r in rows]
    formated_dates = [format_date(str(r['date'])) for r in rows]
    req_in = [r[name_in] for r in rows]
    req_out = [r[name_out] for r in rows]

    plt.plot(date_range, req_in , 'ro-',\
             date_range, req_out, 'gv-',)
    plt.grid(True)
    plt.axis([min(date_range), max(date_range), \
                0, max([max(req_in), max(req_out)])])
    plt.xticks(date_range, tuple(formated_dates), rotation=17)
    #    plt.xlabel('dates [%s, %s]' % (date_range[0], date_range[-1]))
    plt.ylabel('DAS %s behavior' % cache)
    plt.savefig('das_%s.pdf' % cache, format='pdf', transparent=True)
    plt.close()
Example #24
0
def example_filterbank():
    from pylab import plt
    import numpy as np

    x = _create_impulse(2000)
    gfb = GammatoneFilterbank(density=1)

    analyse = gfb.analyze(x)
    imax, slopes = gfb.estimate_max_indices_and_slopes()
    fig, axs = plt.subplots(len(gfb.centerfrequencies), 1)
    for (band, state), imx, ax in zip(analyse, imax, axs):
        ax.plot(np.real(band))
        ax.plot(np.imag(band))
        ax.plot(np.abs(band))
        ax.plot(imx, 0, 'o')
        ax.set_yticklabels([])
        [ax.set_xticklabels([]) for ax in axs[:-1]]

    axs[0].set_title('Impulse responses of gammatone bands')

    fig, ax = plt.subplots()

    def plotfun(x, y):
        ax.semilogx(x, 20 * np.log10(np.abs(y)**2))

    gfb.freqz(nfft=2 * 4096, plotfun=plotfun)
    plt.grid(True)
    plt.title('Absolute spectra of gammatone bands.')
    plt.xlabel('Normalized Frequency (log)')
    plt.ylabel('Attenuation /dB(FS)')
    plt.axis('Tight')
    plt.ylim([-90, 1])
    plt.show()

    return gfb
Example #25
0
def plot_stat(rows, cache):
    "Use matplotlib to plot DAS statistics"
    if  not PLOT_ALLOWED:
        raise Exception('Matplotlib is not available on the system')
    if  cache in ['cache', 'merge']: # cachein, cacheout, mergein, mergeout
        name_in  = '%sin' % cache
        name_out = '%sout' % cache
    else: # webip, webq, cliip, cliq
        name_in  = '%sip' % cache
        name_out = '%sq' % cache
    def format_date(date):
        "Format given date"
        val = str(date)
        return '%s-%s-%s' % (val[:4], val[4:6], val[6:8])
    date_range = [r['date'] for r in rows]
    formated_dates = [format_date(str(r['date'])) for r in rows]
    req_in  = [r[name_in] for r in rows]
    req_out = [r[name_out] for r in rows]

    plt.plot(date_range, req_in , 'ro-',
             date_range, req_out, 'gv-',
    )
    plt.grid(True)
    plt.axis([min(date_range), max(date_range), \
                0, max([max(req_in), max(req_out)])])
    plt.xticks(date_range, tuple(formated_dates), rotation=17)
#    plt.xlabel('dates [%s, %s]' % (date_range[0], date_range[-1]))
    plt.ylabel('DAS %s behavior' % cache)
    plt.savefig('das_%s.pdf' % cache, format='pdf', transparent=True)
    plt.close()
Example #26
0
def square_root_diffusion_euler():
    x0 = 0.25
    kappa = 3.0
    theta = 0.15
    sigma = 0.1
    I = 10000
    M = 50
    dt = T / M
    xh = np.zeros((M + 1, I))
    x = np.zeros_like(xh)
    xh[0] = x0
    x[0] = x0
    for t in range(1, M + 1):
        xh[t] = (xh[t - 1] + kappa * (theta - np.maximum(xh[t - 1], 0)) * dt +
                 sigma * np.sqrt(np.maximum(xh[t - 1], 0)) * math.sqrt(dt) *
                 npr.standard_normal(I))
    x = np.maximum(xh, 0)
    plt.figure(figsize=(10, 6))
    plt.hist(x[-1], bins=50)
    plt.xlabel('value(SRT(T)')
    plt.ylabel('frequency')
    plt.show()
    plt.figure(figsize=(10, 6))
    plt.plot(x[:, :100], lw=1.5)
    plt.xlabel('time')
    plt.ylabel('index level')
    plt.show()
    return x
Example #27
0
def plot_zipf(*freq):
	'''
	basic plotting using matplotlib and pylab
	'''
	ranks, frequencies = [], []
	langs, colors = [], []
	langs = ["English", "German", "Finnish"]
	colors = ['#FF0000', '#00FF00', '#0000FF']
	if bonus_part:
		colors.extend(['#00FFFF', '#FF00FF', '#FFFF00'])
		langs.extend(["English (Stemmed)", "German (Stemmed)", "Finnish (Stemmed)"])

	plt.subplot(111) # 1, 1, 1

	num = 6 if bonus_part else 3
	for i in xrange(num):
		ranks.append(range(1, len(freq[i]) + 1))
		frequencies.append([e[1] for e in freq[i]])

		# log x and y axi, both with base 10
		plt.loglog(ranks[i], frequencies[i], marker='', basex=10, color=colors[i], label=langs[i])

	plt.legend()
	plt.grid(True)
	plt.title("Zipf's law!")

	plt.xlabel('Rank')
	plt.ylabel('Frequency')

	plt.show()
Example #28
0
def jump_diffusion():
    S0 = 100.0
    r = 0.05
    sigma = 0.2
    lamb = 0.05
    mu = -0.6
    delta = 0.25
    rj = lamb * (math.exp(mu + 0.5 * delta**2) - 1)
    T = 1.0
    M = 50
    I = 10000
    dt = T / M

    S = np.zeros((M + 1, I))
    S[0] = S0
    sn1 = npr.standard_normal((M + 1, I))
    sn2 = npr.standard_normal((M + 1, I))
    poi = npr.poisson(lamb * dt, (M + 1, I))
    for t in range(1, M + 1, 1):
        S[t] = S[t - 1] * (np.exp(
            (r - rj - 0.5 * sigma**2) * dt + sigma * math.sqrt(dt) * sn1[t]) +
                           (np.exp(mu + delta * sn2[t]) - 1) * poi[t])
    S[t] = np.maximum(S[t], 0)
    plt.figure(figsize=(10, 6))
    plt.hist(S[-1], bins=50)
    plt.xlabel('value')
    plt.ylabel('frequency')
    plt.show()

    plt.figure(figsize=(10, 6))
    plt.plot(S[:, :100], lw=1.)
    plt.xlabel('time')
    plt.ylabel('index level')
    plt.show()
Example #29
0
    def curve_plot(self, variable, t_max):

        print("Doing curve plot for variable '{}'.".format(variable))

        var = Variable(name=variable)

        if var.data is None:
            self.extract_single_dimension(var, t_max=t_max)

        x = np.arange(t_max)

        mean = var.data["mean"]
        std = var.data["std"]

        plt.plot(x, mean, c='black', lw=2)
        plt.plot(x, mean + std, c='black', lw=.1)
        plt.plot(x, mean - std, c='black', lw=.1)
        plt.fill_between(x, mean + std, mean - std, color='black', alpha=.1)
        plt.xlabel("t")
        plt.ylabel(self.format_label(variable))
        plt.savefig("{}/curve_plot_{}.pdf".format(self.fig_folder, variable))

        if self.display:
            plt.show()

        plt.close()
    def draw(cls, t_max, agents_proportions, eco_idx, parameters):

        color_set = ["green", "blue", "red"]

        for agent_type in range(3):
            plt.plot(np.arange(t_max), agents_proportions[:, agent_type],
                     color=color_set[agent_type], linewidth=2.0, label="Type-{} agents".format(agent_type))

            plt.ylim([-0.1, 1.1])

        plt.xlabel("$t$")
        plt.ylabel("Proportion of indirect exchanges")

        # plt.suptitle('Direct choices proportion per type of agents', fontsize=14, fontweight='bold')
        plt.legend(loc='upper right', fontsize=12)

        print(parameters)

        plt.title(
            "Workforce: {}, {}, {};   displacement area: {};   vision area: {};   alpha: {};   tau: {}\n"
            .format(
                parameters["x0"],
                parameters["x1"],
                parameters["x2"],
                parameters["movement_area"],
                parameters["vision_area"],
                parameters["alpha"],
                parameters["tau"]
                          ), fontsize=12)

        if not path.exists("../../figures"):
            mkdir("../../figures")

        plt.savefig("../../figures/figure_{}.pdf".format(eco_idx))
        plt.show()
Example #31
0
    def hexbin_plot(self, var1, var2):

        print("Doing hexbin plot '{}' against '{}'.".format(var2, var1))

        x = np.asarray(self.stats.data[var1])
        y = np.asarray(self.stats.data[var2])

        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)

        plt.xlim(self.range_var[var1])
        plt.ylim(self.range_var[var2])

        plt.xlabel(self.format_label(var1))
        plt.ylabel(self.format_label(var2))

        hb = ax.hexbin(x=x, y=y, gridsize=20, cmap='inferno')

        ax.set_facecolor('black')

        cb = fig.colorbar(hb, ax=ax)
        cb.set_label('counts')

        plt.savefig("{}/hexbin_{}_{}.pdf".format(self.fig_folder, var1, var2))

        if self.display:
            plt.show()

        plt.close()
Example #32
0
def example_filterbank():
    from pylab import plt
    import numpy as np

    x = _create_impulse(2000)
    gfb = GammatoneFilterbank(density=1)

    analyse = gfb.analyze(x)
    imax, slopes = gfb.estimate_max_indices_and_slopes()
    fig, axs = plt.subplots(len(gfb.centerfrequencies), 1)
    for (band, state), imx, ax in zip(analyse, imax, axs):
        ax.plot(np.real(band))
        ax.plot(np.imag(band))
        ax.plot(np.abs(band))
        ax.plot(imx, 0, 'o')
        ax.set_yticklabels([])
        [ax.set_xticklabels([]) for ax in axs[:-1]]

    axs[0].set_title('Impulse responses of gammatone bands')

    fig, ax = plt.subplots()

    def plotfun(x, y):
        ax.semilogx(x, 20*np.log10(np.abs(y)**2))

    gfb.freqz(nfft=2*4096, plotfun=plotfun)
    plt.grid(True)
    plt.title('Absolute spectra of gammatone bands.')
    plt.xlabel('Normalized Frequency (log)')
    plt.ylabel('Attenuation /dB(FS)')
    plt.axis('Tight')
    plt.ylim([-90, 1])
    plt.show()

    return gfb
def plot_weightings():
    """Plots all weighting functions defined in :module: splweighting."""
    from scipy.signal import freqz
    from pylab import plt, np

    sample_rate = 48000
    num_samples = 2*4096

    fig, ax = plt.subplots()

    for name, weight_design in sorted(
            _weighting_coeff_design_funsd.items()):
        b, a = weight_design(sample_rate)
        w, H = freqz(b, a, worN=num_samples)

        freq = w*sample_rate / (2*np.pi)

        ax.semilogx(freq, 20*np.log10(np.abs(H)+1e-20),
                    label='{}-Weighting'.format(name))

    plt.legend(loc='lower right')
    plt.xlabel('Frequency / Hz')
    plt.ylabel('Damping / dB')
    plt.grid(True)
    plt.axis([10, 20000, -80, 5])
    return fig, ax
Example #34
0
    def generate_start_time_figures(self):
        recording_time_grouped_by_patient = self.pain_data[["PatientID", "NRSTimeFromEndSurgery_mins"]].groupby("PatientID")
        recording_start_minutes = recording_time_grouped_by_patient.min()

        fig1 = "fig1.pdf"
        fig2 = "fig2.pdf"

        plt.figure(figsize=[8,4])
        plt.title("Pain score recording start times", fontsize=14).set_y(1.05) 
        plt.ylabel("Occurrences", fontsize=14)
        plt.xlabel("Recording Start Time (minutes)", fontsize=14)
        plt.hist(recording_start_minutes.values, bins=20, color="0.5")
        plt.savefig(os.path.join(self.tmp_directory, fig1), bbox_inches="tight")

        plt.figure(figsize=[8,4])
        plt.title("Pain score recording start times, log scale", fontsize=14).set_y(1.05) 
        plt.ylabel("Occurrences", fontsize=14)
        plt.xlabel("Recording Start Time (minutes)", fontsize=14)
        plt.hist(recording_start_minutes.values, bins=20, log=True, color="0.5")
        plt.savefig(os.path.join(self.tmp_directory, fig2), bbox_inches="tight")

        #save the figures in panel format
        f = open(os.path.join(self.tmp_directory, "tmp.tex"), 'w')
        f.write(r"""
            \documentclass[%
            ,float=false % this is the new default and can be left away.
            ,preview=true
            ,class=scrartcl
            ,fontsize=20pt
            ]{standalone}
            \usepackage[active,tightpage]{preview}
            \usepackage{varwidth}
            \usepackage{graphicx}
            \usepackage[justification=centering]{caption}
            \usepackage{subcaption}
            \usepackage[caption=false,font=footnotesize]{subfig}
            \renewcommand{\thesubfigure}{\Alph{subfigure}}
            \begin{document}
            \begin{preview}
            \begin{figure}[h]
                \begin{subfigure}{0.5\textwidth}
                        \includegraphics[width=\textwidth]{""" + fig1 + r"""}
                        \caption{Normal scale}
                \end{subfigure}\begin{subfigure}{0.5\textwidth}
                        \includegraphics[width=\textwidth]{""" + fig2 + r"""}
                        \caption{Log scale}
                \end{subfigure}
            \end{figure}
            \end{preview}
            \end{document}
        """)
        f.close()
        subprocess.call(["pdflatex", 
                            "-halt-on-error", 
                            "-output-directory", 
                            self.tmp_directory, 
                            os.path.join(self.tmp_directory, "tmp.tex")])
        shutil.move(os.path.join(self.tmp_directory, "tmp.pdf"), 
                    os.path.join(self.output_directory, "pain_score_start_times.pdf"))
Example #35
0
 def plot_charts(self):
     print(self.final_portfolio_valuation)
     plt.figure(figsize=(10, 6))
     plt.hist( self.final_portfolio_valuation, bins=100)
     plt.title("Final Exit Valuation complete Portfolio after {} year as Geometric Brownian Motion".format(self.max_year))
     plt.xlabel('Exit Valuation')
     plt.ylabel('frequency');
     plt.show()
Example #36
0
    def plot(self, new_plot=False, xlim=None, ylim=None, title=None, figsize=None,
             xlabel=None, ylabel=None, fontsize=None, show_legend=True, grid=True):
        """
        Plot data using matplotlib library. Use show() method for matplotlib to see result or ::

            %pylab inline

        in IPython to see plot as cell output.

        :param bool new_plot: create or not new figure
        :param xlim: x-axis range
        :param ylim: y-axis range
        :type xlim: None or tuple(x_min, x_max)
        :type ylim: None or tuple(y_min, y_max)
        :param title: title
        :type title: None or str
        :param figsize: figure size
        :type figsize: None or tuple(weight, height)
        :param xlabel: x-axis name
        :type xlabel: None or str
        :param ylabel: y-axis name
        :type ylabel: None or str
        :param fontsize: font size
        :type fontsize: None or int
        :param bool show_legend: show or not labels for plots
        :param bool grid: show grid or not

        """
        xlabel = self.xlabel if xlabel is None else xlabel
        ylabel = self.ylabel if ylabel is None else ylabel
        figsize = self.figsize if figsize is None else figsize
        fontsize = self.fontsize if fontsize is None else fontsize
        self.fontsize_ = fontsize
        self.show_legend_ = show_legend
        title = self.title if title is None else title
        xlim = self.xlim if xlim is None else xlim
        ylim = self.ylim if ylim is None else ylim
        new_plot = self.new_plot or new_plot

        if new_plot:
            plt.figure(figsize=figsize)

        plt.xlabel(xlabel, fontsize=fontsize)
        plt.ylabel(ylabel, fontsize=fontsize)
        plt.title(title, fontsize=fontsize)
        plt.tick_params(axis='both', labelsize=fontsize)
        plt.grid(grid)

        if xlim is not None:
            plt.xlim(xlim)

        if ylim is not None:
            plt.ylim(ylim)

        self._plot()

        if show_legend:
            plt.legend(loc='best', scatterpoints=1)
Example #37
0
def create_plot(x, y, styles, labels, axlabels):
    plt.figure(figsize=(10, 6))

    plt.scatter(x[0], y[0])
    plt.scatter(x[1], y[1])
    plt.xlabel(axlabels[0])
    plt.ylabel(axlabels[1])
    plt.legend(loc=0)
    plt.show()
Example #38
0
def convert_all_to_png(vis_path, out_dir="maps_png", size=None):

    units = {
        'gas_density': 'Gas Density [g/cm$^3$]',
        'Tm': 'Temperature [K]',
        'Tew': 'Temperature [K]',
        'S': 'Entropy []',
        'dm': 'DM Density [g/cm$^3$]',
        'v': 'Velocity [km/s]'
    }

    log_list = ['gas_density']

    for vis_file in os.listdir(vis_path):
        if ".dat" not in vis_file:
            continue
        print "converting %s" % vis_file
        map_type = re.search('sigma_(.*)_[xyz]', vis_file).group(1)

        (image, pixel_size,
         axis_values) = read_visualization_data(vis_path + "/" + vis_file,
                                                size)
        print "image width in Mpc/h: ", axis_values[-1] * 2.0

        x, y = np.meshgrid(axis_values, axis_values)

        cmap_max = image.max()
        cmap_min = image.min()
        ''' plotting '''
        plt.figure(figsize=(5, 4))

        if map_type in log_list:
            plt.pcolor(x, y, image, norm=LogNorm(vmax=cmap_max, vmin=cmap_min))
        else:
            plt.pcolor(x, y, image, vmax=cmap_max, vmin=cmap_min)

        cbar = plt.colorbar()
        if map_type in units.keys():
            cbar.ax.set_ylabel(units[map_type])

        plt.axis(
            [axis_values[0], axis_values[-1], axis_values[0], axis_values[-1]])

        del image

        plt.xlabel(r"$Mpc/h$", fontsize=18)
        plt.ylabel(r"$Mpc/h$", fontsize=18)

        out_file = vis_file.replace("dat", "png")

        plt.savefig(out_dir + "/" + out_file, dpi=150)

        plt.close()
        plt.clf()
Example #39
0
def plot_treward(agent):
    ''' Function to plot the total reward
        per training eposiode.
    '''
    plt.figure(figsize=(10, 6))
    x = range(1, len(agent.averages) + 1)
    y = np.polyval(np.polyfit(x, agent.averages, deg=3), x)
    plt.plot(x, agent.averages, label='moving average')
    plt.plot(x, y, 'r--', label='regression')
    plt.xlabel('episodes')
    plt.ylabel('total reward')
    plt.legend()
Example #40
0
 def plot_smoothed_alpha_comparison(self,rmsval,suffix=''):
     plt.plot(self.f,self.alpha,'ko',label='data set')
     plt.plot(self.f,self.salpha,'c-',lw=2,label='smoothed angle $\phi$')
     plt.xlabel('frequency in Hz')
     plt.ylabel('angle $\phi$ in coordinates of circle')
     plt.legend()
     ylims=plt.axes().get_ylim()
     plt.yticks((arange(9)-4)*0.5*pi, ['$-2\pi$','$-3\pi/2$','$-\pi$','$-\pi/2$','$0$','$\pi/2$','$\pi$','$3\pi/2$','$2\pi$'])
     plt.ylim(ylims)
     plt.title('RMS offset from smooth curve: {:.4f}'.format(rmsval))
     if self.show: plt.show()
     else: plt.savefig(join(self.sdc.plotpath,'salpha','c{}_salpha_on_{}_circle'.format(self.sdc.case,self.ZorY)+self.sdc.suffix+self.sdc.outsuffix+suffix+'.png'), dpi=240)
     plt.close()
Example #41
0
def convert_all_to_png(vis_path, out_dir = "maps_png", size = None) :

    units = { 'gas_density' : 'Gas Density [g/cm$^3$]',
              'Tm' : 'Temperature [K]',
              'Tew' : 'Temperature [K]',
              'S' : 'Entropy []',
              'dm' : 'DM Density [g/cm$^3$]',
              'v' : 'Velocity [km/s]' }

    log_list = ['gas_density']

    for vis_file in os.listdir(vis_path) :
        if ".dat" not in vis_file :
            continue
        print "converting %s" % vis_file
        map_type = re.search('sigma_(.*)_[xyz]', vis_file).group(1)

        (image, pixel_size, axis_values) = read_visualization_data(vis_path+"/"+vis_file, size)
        print "image width in Mpc/h: ", axis_values[-1]*2.0

        x, y = np.meshgrid( axis_values, axis_values )

        cmap_max = image.max()
        cmap_min = image.min()


        ''' plotting '''
        plt.figure(figsize=(5,4))

        if map_type in log_list:
            plt.pcolor(x,y,image, norm=LogNorm(vmax=cmap_max, vmin=cmap_min))
        else :
            plt.pcolor(x,y,image, vmax=cmap_max, vmin=cmap_min)

        cbar = plt.colorbar()
        if map_type in units.keys() :
            cbar.ax.set_ylabel(units[map_type])

        plt.axis([axis_values[0], axis_values[-1],axis_values[0], axis_values[-1]])

        del image

        plt.xlabel(r"$Mpc/h$", fontsize=18)
        plt.ylabel(r"$Mpc/h$", fontsize=18)

        out_file = vis_file.replace("dat", "png")

        plt.savefig(out_dir+"/"+out_file, dpi=150 )

        plt.close()
        plt.clf()
Example #42
0
def plot_fault_framework(fault_framework):
    fm = fault_framework
    plt.plot(fm.Y_PC, fm.DEP, '-o')
    plt.axis('equal')
    plt.axhline(0, color='black')
    plt.gca().set_yticks(fm.DEP)
    plt.gca().set_xticks(fm.Y_PC)
    plt.grid('on')
    plt.xlabel('From trench to continent(km)')
    plt.ylabel('depth (km)')

    for xi, yi, dip in zip(fm.Y_PC, fm.DEP, fm.DIP_D):
        plt.text(xi, yi, 'dip = %.1f'%dip)

    plt.gca().invert_yaxis()
Example #43
0
 def plot_overview(self,suffix=''):
     x=self.x; y=self.y; r=self.radius; cx,cy=self.center.real,self.center.imag
     ax=plt.axes()
     plt.scatter(x,y, marker='o', c='b', s=40)
     plt.axhline(y=0,color='grey', zorder=-1)
     plt.axvline(x=0,color='grey', zorder=-2)
     t=linspace(0,2*pi,201)
     circx=r*cos(t) + cx
     circy=r*sin(t) + cy
     plt.plot(circx,circy,'g-')
     plt.plot([cx],[cy],'gx',ms=12)
     if self.ZorY == 'Z':
         philist,flist=[self.phi_a,self.phi_p,self.phi_n],[self.fa,self.fp,self.fn]
     elif self.ZorY == 'Y':
         philist,flist=[self.phi_m,self.phi_s,self.phi_r],[self.fm,self.fs,self.fr]
     for p,f in zip(philist,flist):
         if f is not None:
             xpos=cx+r*cos(p); ypos=cy+r*sin(p); xos=0.2*(xpos-cx); yos=0.2*(ypos-cy)
             plt.plot([0,xpos],[0,ypos],'co-')
             ax.annotate('{:.3f} Hz'.format(f), xy=(xpos,ypos),  xycoords='data',
                         xytext=(xpos+xos,ypos+yos), textcoords='data', #textcoords='offset points',
                         arrowprops=dict(arrowstyle="->", shrinkA=0, shrinkB=10)
                         )
     #plt.xlim(0,0.16)
     #plt.ylim(-0.1,0.1)
     plt.axis('equal')
     if self.ZorY == 'Z':
         plt.xlabel(r'resistance $R$ in Ohm'); plt.ylabel(r'reactance $X$ in Ohm')
     if self.ZorY == 'Y':
         plt.xlabel(r'conductance $G$ in Siemens'); plt.ylabel(r'susceptance $B$ in Siemens')
     plt.title("fitting the admittance circle with Powell's method")
     tx1='best fit (fmin_powell):\n'
     tx1+='center at G+iB = {:.5f} + i*{:.8f}\n'.format(cx,cy)
     tx1+='radius = {:.5f};  '.format(r)
     tx1+='residue: {:.2e}'.format(self.resid)
     txt1=plt.text(-r,cy-1.1*r,tx1,fontsize=8,ha='left',va='top')
     txt1.set_bbox(dict(facecolor='gray', alpha=0.25))
     idxlist=self.to_be_annotated('triple')
     ofs=self.annotation_offsets(idxlist,factor=0.1,xshift=0.15)
     for i,j in enumerate(idxlist):
         xpos,ypos = x[j],y[j]; xos,yos = ofs[i].real,ofs[i].imag
         ax.annotate('{:.1f} Hz'.format(self.f[j]), xy=(xpos,ypos),  xycoords='data',
                     xytext=(xpos+xos,ypos+yos), textcoords='data', #textcoords='offset points',
                     arrowprops=dict(arrowstyle="->", shrinkA=0, shrinkB=10)
                     )
     if self.show: plt.show()
     else: plt.savefig(join(self.sdc.plotpath,'c{}_fitted_{}_circle'.format(self.sdc.case,self.ZorY)+suffix+'.png'), dpi=240)
     plt.close()
Example #44
0
    def update_img((expected, output)):
        plt.cla()
        plt.ylim((vmin, vmin+vmax))
        plt.xlim((vmin, vmin+vmax))
        ax = fig.add_subplot(111)
        plt.plot([vmin, vmin+vmax], [vmin, vmin+vmax])
        ax.grid(True)
        plt.xlabel("expected output")
        plt.ylabel("network output")
        plt.legend()

        expected = expected*vmax + vmin
        output = output*vmax + vmin
        #scat.set_offsets((expected, output))
        scat = ax.scatter(expected, output)
        return scat
    def test_dep(self):
        xf = arange(0, 425)
        deps = self.fm.get_dep(xf)
        plt.plot(xf,deps)

        plt.gca().set_yticks(self.fm.DEP)
        plt.gca().set_xticks(self.fm.Y_PC)
        
        plt.grid('on')
        plt.title('Ground x versus depth')
        plt.xlabel('Ground X (km)')
        plt.ylabel('depth (km)')
        plt.axis('equal')
        plt.gca().invert_yaxis()
        plt.savefig(join(self.outs_dir, '~Y_PC_vs_deps.png'))
        plt.close()
Example #46
0
 def start_plot(self,w=1.3,connect=False):
     self.fig=plt.figure()
     self.ax=plt.axes()
     plt.axhline(y=0,color='grey', zorder=-1)
     plt.axvline(x=0,color='grey', zorder=-2)
     self.plot_data(connect=connect)
     #plt.axis('equal')
     self.ax.set_aspect('equal', 'datalim')
     if self.center is not None:
         cx,cy=self.center.real,self.center.imag; r=self.radius
         self.ax.axis([cx-w*r,cx+w*r,cy-w*r,cy+w*r])
     else:
         xmx=amax(self.x); ymn,ymx=amin(self.y),amax(self.y)
         cx=0.5*xmx; cy=0.5*(ymn+ymx); r=0.5*(ymx-ymn)
         self.ax.axis([cx-w*r,cx+w*r,cy-w*r,cy+w*r])
     if self.ZorY == 'Z':
         plt.xlabel(r'resistance $R$ in Ohm'); plt.ylabel(r'reactance $X$ in Ohm')
     if self.ZorY == 'Y':
         plt.xlabel(r'conductance $G$ in Siemens'); plt.ylabel(r'susceptance $B$ in Siemens')
Example #47
0
def _plot_base(dep, val, deplim_small, xlim_small, xlabel):
    plt.subplot(1,2,1)
    plt.plot(val, dep)
    plt.gca().invert_yaxis()
    plt.grid('on')
    plt.ylabel('depth/km')
    plt.xlabel(xlabel)
    locs, labels = plt.xticks()
    plt.setp(labels, rotation=-45)

    plt.subplot(1,2,2)
    plt.plot(val, dep)
    plt.gca().invert_yaxis()
    plt.grid('on')
    plt.ylim(deplim_small)
    plt.xlim(xlim_small)
    plt.xlabel(xlabel)
    locs, labels = plt.xticks()
    plt.setp(labels, rotation=-45)
Example #48
0
def plotter(mode,Bc,Tc,Q):
    col = ['#000080','#0000FF','#4169E1','#6495ED','#00BFFF','#B0E0E6']
    plt.figure()
    ax = plt.subplot(111)
    for p in range(Bc.shape[1]):
        plt.plot(Tc[:,p],Bc[:,p],'-',color=str(col[p]))
    plt.xlabel('Tc [TW]')
    plt.ylabel('Bc normalised to total EU load')
    plt.title(str(mode)+' flow')
    
    # Shrink current axis by 25% to make room for legend
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.75, box.height])

    plt.legend(\
        ([str(Q[i]*100) for i in range(len(Q))]),\
        loc='center left', bbox_to_anchor=(1, 0.5),title='Quantiles')
    
    plt.savefig('figures/bctc_'+str(mode)+'.eps')
Example #49
0
def freqz(sosmat, nsamples=44100, sample_rate=44100, plot=True):
    """Plots Frequency response of sosmat."""
    from pylab import np, plt, fft, fftfreq
    x = np.zeros(nsamples)
    x[nsamples/2] = 0.999
    y, states = sosfilter_double_c(x, sosmat)
    Y = fft(y)
    f = fftfreq(len(x), 1.0/sample_rate)
    if plot:
        plt.grid(True)
        plt.axis([0, sample_rate / 2, -100, 5])
        L = 20*np.log10(np.abs(Y[:len(x)/2]) + 1e-17)
        plt.semilogx(f[:len(x)/2], L, lw=0.5)
        plt.hold(True)
        plt.title('freqz sos filter')
        plt.xlabel('Frequency / Hz')
        plt.ylabel('Damping /dB(FS)')
        plt.xlim((10, sample_rate/2))
        plt.hold(False)
    return x, y, f, Y
    def plot_vel_decomposition(self, site, cmpt, loc=0, leg_fs=7,
                       if_ylim=False
                       ):
        y = self.plot_pred_vel_added(site, cmpt, label='total')
        y += self.plot_vel_R_co(site, cmpt,
                            style='-^', label='Rco', color='orange')
        y += self.plot_vel_E_cumu_slip(site, cmpt, color='green')
        y += self.plot_vel_R_aslip(site, cmpt, color='black')
        
        plt.grid('on')
        if if_ylim:
            plt.ylim(calculate_lim(y))

        plt.ylabel(r'mm/yr')
        plt.legend(loc=loc, prop={'size':leg_fs})
        plt.gcf().autofmt_xdate()
        plt.title('Cumulative Disp.: {site} - {cmpt}'.format(
            site = get_site_true_name(site_id=site),
            cmpt = cmpt
            ))
    def plot_post_disp_decomposition(self, site, cmpt, loc=2, leg_fs=7,
                       added_label = None,
                       marker_for_obs = 'x',
                       ):
        y = self.plot_post_obs_linres(site,cmpt, label='obs.', marker=marker_for_obs)
        y += self.plot_post_disp_pred_from_result_file(site,cmpt, label='pred.')
        y += self.plot_R_co(site, cmpt,
                            style = '-^', label='Rco', color='orange')
        y += self.plot_E_aslip(site, cmpt, color='green')

        plt.grid('on')

        self.plot_post_disp_pred_added(site, cmpt, label=added_label)
        
        plt.legend(loc=loc, prop={'size':leg_fs})
        plt.ylabel(r'm')
        plt.gcf().autofmt_xdate()
        plt.title('Postseismic Disp. : {site} - {cmpt}'.format(
            site = get_site_true_name(site_id = site),
            cmpt = cmpt
            ))
    def plot_cumu_disp_decomposition(self, site, cmpt, loc=2, leg_fs=7,
                       if_ylim=False,
                       added_label = None,
                       ):        
        self.plot_cumu_obs_linres(site, cmpt)
        y = self.plot_cumu_disp_pred_from_result_file(site, cmpt, label='pred.')
        y += self.plot_R_co(site, cmpt,
                            style='-^', label='Rco', color='orange')
        y += self.plot_E_cumu_slip(site, cmpt, color='green')

        plt.grid('on')
        if if_ylim:
            plt.ylim(calculate_lim(y))

        self.plot_cumu_disp_pred_added(site, cmpt, label=added_label)
        plt.ylabel(r'm')
        plt.legend(loc=loc, prop={'size':leg_fs})
        plt.gcf().autofmt_xdate()
        plt.title('Cumulative Disp.: {site} - {cmpt}'.format(
            site = get_site_true_name(site_id=site),
            cmpt = cmpt
            ))
def plotLive(combine_Type, combine_Name, lat_Name, long_Name, massFlow_Name, filename):
    data = pd.read_csv(filename)

    if combine_Type != 0:

        comb_df = data[data[combine_Name] == combine_Type]
        lat_df = comb_df[lat_Name]
        lon_df = comb_df[long_Name]
        y = comb_df[massFlow_Name]

    else:

        lat_df = data[lat_Name]
        lon_df = data[long_Name]
        y = data[massFlow_Name]

    e,n = convertToUTM(lat_df, lon_df)

    def makeFig():
        plt.plot(x,y)


    plt.ylabel('Easting')
    plt.xlabel('Northing')


    plt.ion() # enable interactivity
    plt.grid()
    fig = plt.figure() # make a figure

    x=list()
    y=list()

    for i in arange(len(n)):
        x.append(n[i])
        y.append(e[i])
        i+=1
        drawnow(makeFig)
Example #54
0
def plot_L_curve(files,
                 nlin_pars = ['log10_He_','log10_visM_','rake'],
                 nlin_pars_ylabels = [r'$log_{10}(He)$',
                                      r'$log_{10}(visM)$',
                                      'rake'],
                 ):
    nreses = collect_from_result_files(files, 'residual_norm_weighted')
    nroughs = collect_from_result_files(files, 'roughening_norm')
    num_subplots = 1 + len(nlin_pars)

    x1 = amin(nreses)
    x2 = amax(nreses)
    dx = x2 - x1
    xlim = (x1-dx*0.02, x2+dx*0.2)
    xticks = range(int(x1), int(x2),5)

    plt.subplot(num_subplots,1,1)
    plt.loglog(nreses, nroughs,'o-')
    plt.xlim(xlim)
    plt.gca().set_xticks(xticks)
    plt.gca().get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
    plt.ylabel('roughening')
    plt.xlabel('Residual Norm')
    plt.grid('on')

    nth = 2
    for par, par_label in zip(nlin_pars, nlin_pars_ylabels):
        y = collect_from_result_files(files, par)
        plt.subplot(num_subplots,1,nth)
        plt.semilogx(nreses, y,'o-')
        plt.xlim(xlim)
        plt.gca().set_xticks(xticks)
        plt.gca().get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
        plt.ylabel(par_label)
        plt.xlabel('Residual Norm')
        plt.grid('on')
        nth += 1
import h5py
from pylab import plt

def collect_results(outs_files, key):
    outs = []
    for file in outs_files:
        with h5py.File(file, 'r') as fid:
            out = fid[key][...]
            outs.append(out)
    return outs

files = sorted(glob.glob('../outs/ano_??.h5'))
nrough1 = collect_results(files, 'regularization/roughening/norm')
nres1 = collect_results(files, 'misfit/norm_weighted')


files = sorted(glob.glob('../../run0/outs/ano_??.h5'))
nrough0 = collect_results(files, 'regularization/roughening/norm')
nres0 = collect_results(files, 'misfit/norm_weighted')

plt.loglog(nres0, nrough0, '.', label='Result0')
plt.loglog(nres1, nrough1, '.', label='Result1')
plt.grid('on')
plt.xlabel('norm of weighted residual')
plt.ylabel('norm of solution roughness')
plt.xlim([.7,5])
plt.legend()

plt.savefig('compare_misfit.png')
plt.show()
Fv = []
# For each frequency bin, estimate the stats
t_init = time()
for t in time_bins:
    covmats = covest.fit_transform(epochs_data[:, ::1, t:(t+window)])
    p_test = PermutationDistance(1000, metric='riemann', mode='pairwise')
    p, F = p_test.test(covmats, labels, verbose=False)
    pv.append(p)
    Fv.append(F[0])
duration = time() - t_init
# plot result
fig, axes = plt.subplots(1, 1, figsize=[6, 3], sharey=True)
sig = 0.05
times = np.array(time_bins)/float(Fs) + tmin

axes.plot(times, Fv, lw=2, c='k')
plt.xlabel('Time (sec)')
plt.ylabel('Score')

a = np.where(np.diff(np.array(pv) < sig))[0]
a = a.reshape(int(len(a)/2), 2)
st = (times[1] - times[0])/2.0
for p in a:
    axes.axvspan(times[p[0]]-st, times[p[1]]+st, facecolor='g', alpha=0.5)
axes.legend(['Score', 'p<%.2f' % sig])
axes.set_title('Pairwise distance - %.1f sec.' % duration)

sns.despine()
plt.tight_layout()
plt.show()
import numpy as np
from pylab import plt
import h5py

from epochs import epochs

def read_inland_rms_from_files(files):
    rms = []        
    for file in files:
        with h5py.File(file) as fid:
            rms.append(fid['misfit/rms_inland'][...])
    return np.asarray(rms)

nrough = 10
files = sorted(glob.glob('../outs/epoch_????_rough_%02d.h5'%nrough))
rms = read_inland_rms_from_files(files)
plt.plot(epochs, rms*100., 'o-', label='RMS (afterslip only model)')

with open('rms_deconv.pkl','rb') as fid:
    t,y = pickle.load(fid)

plt.plot(t, np.asarray(y)*100., 'o-', label='RMS (afterslip + viscoelastic relax.)')

plt.xlabel('days after the mainshock')
plt.ylabel('RMS misfit (cm)')
plt.grid('on')
plt.title('Slip only RMS misfit')
plt.legend(loc=0)
plt.savefig('rms_static_vs_deconv.png')
plt.show()
Example #58
0
        Hes.append(m[-2])
        rakes.append(m[-1])

        nrough = fid['regularization/roughening/norm'][...]
        nroughs.append(nrough)

xlim = (7, 22)
xlim = None
xticks = range(7,22)

plt.subplot(411)    
plt.semilogx(nreses, visMs,'o')
plt.xlim(xlim)
plt.gca().set_xticks(xticks)
plt.grid('on')
plt.ylabel('log10(visM/(Pa.s))')

plt.subplot(412)    
plt.semilogx(nreses, Hes,'o')
plt.xlim(xlim)
plt.gca().set_xticks(xticks)
plt.grid('on')
plt.ylabel('He/km')

plt.subplot(413)    
plt.semilogx(nreses, rakes,'o')
plt.xlim(xlim)
plt.gca().set_xticks(xticks)
plt.ylabel('rake')
plt.grid('on')
Example #59
0
def get_linear_model_histogramDouble(code, ptype='f', dtype='d', start=None, end=None, vtype='close', filter='n',
                                     df=None):
    # 399001','cyb':'zs399006','zxb':'zs399005
    # code = '999999'
    # code = '601608'
    # code = '000002'
    # asset = ts.get_hist_data(code)['close'].sort_index(ascending=True)
    # df = tdd.get_tdx_Exp_day_to_df(code, 'f').sort_index(ascending=True)
    # vtype='close'
    # if vtype == 'close' or vtype==''
    # ptype=
    if start is not None and filter == 'y':
        if code not in ['999999', '399006', '399001']:
            index_d, dl = tdd.get_duration_Index_date(dt=start)
            log.debug("index_d:%s dl:%s" % (str(index_d), dl))
        else:
            index_d = cct.day8_to_day10(start)
            log.debug("index_d:%s" % (index_d))
        start = tdd.get_duration_price_date(code, ptype='low', dt=index_d)
        log.debug("start:%s" % (start))
    if df is None:
        # df = tdd.get_tdx_append_now_df(code, ptype, start, end).sort_index(ascending=True)
        df = tdd.get_tdx_append_now_df_api(code, ptype, start, end).sort_index(ascending=True)
    if not dtype == 'd':
        df = tdd.get_tdx_stock_period_to_type(df, dtype).sort_index(ascending=True)
    asset = df[vtype]
    log.info("df:%s" % asset[:1])
    asset = asset.dropna()
    dates = asset.index

    if not code.startswith('999') or not code.startswith('399'):
        if code[:1] in ['5', '6', '9']:
            code2 = '999999'
        elif code[:1] in ['3']:
            code2 = '399006'
        else:
            code2 = '399001'
        df1 = tdd.get_tdx_append_now_df_api(code2, ptype, start, end).sort_index(ascending=True)
        # df1 = tdd.get_tdx_append_now_df(code2, ptype, start, end).sort_index(ascending=True)
        if not dtype == 'd':
            df1 = tdd.get_tdx_stock_period_to_type(df1, dtype).sort_index(ascending=True)
        asset1 = df1.loc[asset.index, vtype]
        startv = asset1[:1]
        # asset_v=asset[:1]
        # print startv,asset_v
        asset1 = asset1.apply(lambda x: round(x / asset1[:1], 2))
        # print asset1[:4]

    # 画出价格随时间变化的图像
    # _, ax = plt.subplots()
    # fig = plt.figure()
    fig = plt.figure(figsize=(16, 10))
    # fig = plt.figure(figsize=(16, 10), dpi=72)
    # fig.autofmt_xdate() #(no fact)

    # plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
    plt.subplots_adjust(left=0.05, bottom=0.08, right=0.95, top=0.95, wspace=0.15, hspace=0.25)
    # set (gca,'Position',[0,0,512,512])
    # fig.set_size_inches(18.5, 10.5)
    # fig=plt.fig(figsize=(14,8))
    ax1 = fig.add_subplot(321)
    # asset=asset.apply(lambda x:round( x/asset[:1],2))
    ax1.plot(asset)
    # ax1.plot(asset1,'-r', linewidth=2)
    ticks = ax1.get_xticks()
    # start, end = ax1.get_xlim()
    # print start, end, len(asset)
    # print ticks, ticks[:-1]
    # (ticks[:-1] if len(asset) > end else np.append(ticks[:-1], len(asset) - 1))
    ax1.set_xticklabels([dates[i] for i in (np.append(ticks[:-1], len(asset) - 1))],
                        rotation=15)  # Label x-axis with dates
    # 拟合
    X = np.arange(len(asset))
    x = sm.add_constant(X)
    model = regression.linear_model.OLS(asset, x).fit()
    a = model.params[0]
    b = model.params[1]
    # log.info("a:%s b:%s" % (a, b))
    log.info("X:%s a:%s b:%s" % (len(asset), a, b))
    Y_hat = X * b + a

    # 真实值-拟合值,差值最大最小作为价值波动区间
    # 向下平移
    i = (asset.values.T - Y_hat).argmin()
    c_low = X[i] * b + a - asset.values[i]
    Y_hatlow = X * b + a - c_low

    # 向上平移
    i = (asset.values.T - Y_hat).argmax()
    c_high = X[i] * b + a - asset.values[i]
    Y_hathigh = X * b + a - c_high
    plt.plot(X, Y_hat, 'k', alpha=0.9);
    plt.plot(X, Y_hatlow, 'r', alpha=0.9);
    plt.plot(X, Y_hathigh, 'r', alpha=0.9);
    # plt.xlabel('Date', fontsize=12)
    plt.ylabel('Price', fontsize=12)
    plt.title(code + " | " + str(dates[-1])[:11], fontsize=14)
    plt.legend([asset.iat[-1]], fontsize=12, loc=4)
    plt.grid(True)

    # plt.legend([code]);
    # plt.legend([code, 'Value center line', 'Value interval line']);
    # fig=plt.fig()
    # fig.figsize = [14,8]
    scale = 1.1
    zp = zoompan.ZoomPan()
    figZoom = zp.zoom_factory(ax1, base_scale=scale)
    figPan = zp.pan_factory(ax1)

    ax2 = fig.add_subplot(323)
    # ax2.plot(asset)
    # ticks = ax2.get_xticks()
    ax2.set_xticklabels([dates[i] for i in (np.append(ticks[:-1], len(asset) - 1))], rotation=15)
    # plt.plot(X, Y_hat, 'k', alpha=0.9)
    n = 5
    d = (-c_high + c_low) / n
    c = c_high
    while c <= c_low:
        Y = X * b + a - c
        plt.plot(X, Y, 'r', alpha=0.9);
        c = c + d
    # asset=asset.apply(lambda x:round(x/asset[:1],2))
    ax2.plot(asset)
    # ax2.plot(asset1,'-r', linewidth=2)
    # plt.xlabel('Date', fontsize=12)
    plt.ylabel('Price', fontsize=12)
    plt.grid(True)

    # plt.title(code, fontsize=14)
    # plt.legend([code])

    # 将Y-Y_hat股价偏离中枢线的距离单画出一张图显示,对其边界线之间的区域进行均分,大于0的区间为高估,小于0的区间为低估,0为价值中枢线。
    ax3 = fig.add_subplot(322)
    # distance = (asset.values.T - Y_hat)
    distance = (asset.values.T - Y_hat)[0]
    if code.startswith('999') or code.startswith('399'):
        ax3.plot(asset)
        plt.plot(distance)
        ticks = ax3.get_xticks()
        ax3.set_xticklabels([dates[i] for i in (np.append(ticks[:-1], len(asset) - 1))], rotation=15)
        n = 5
        d = (-c_high + c_low) / n
        c = c_high
        while c <= c_low:
            Y = X * b + a - c
            plt.plot(X, Y - Y_hat, 'r', alpha=0.9);
            c = c + d
        ax3.plot(asset)
        # plt.xlabel('Date', fontsize=12)
        plt.ylabel('Price-center price', fontsize=14)
        plt.grid(True)
    else:
        as3 = asset.apply(lambda x: round(x / asset[:1], 2))
        ax3.plot(as3)
        ax3.plot(asset1, '-r', linewidth=2)
        plt.grid(True)
        zp3 = zoompan.ZoomPan()
        figZoom = zp3.zoom_factory(ax3, base_scale=scale)
        figPan = zp3.pan_factory(ax3)
    # plt.title(code, fontsize=14)
    # plt.legend([code])



    # 统计出每个区域内各股价的频数,得到直方图,为了更精细的显示各个区域的频数,这里将整个边界区间分成100份。

    ax4 = fig.add_subplot(325)
    log.info("assert:len:%s %s" % (len(asset.values.T - Y_hat), (asset.values.T - Y_hat)[0]))
    # distance = map(lambda x:int(x),(asset.values.T - Y_hat)/Y_hat*100)
    # now_distanse=int((asset.iat[-1]-Y_hat[-1])/Y_hat[-1]*100)
    # log.debug("dis:%s now:%s"%(distance[:2],now_distanse))
    # log.debug("now_distanse:%s"%now_distanse)
    distance = (asset.values.T - Y_hat)
    now_distanse = asset.iat[-1] - Y_hat[-1]
    # distance = (asset.values.T-Y_hat)[0]
    pd.Series(distance).plot(kind='hist', stacked=True, bins=100)
    # plt.plot((asset.iat[-1].T-Y_hat),'b',alpha=0.9)
    plt.axvline(now_distanse, hold=None, label="1", color='red')
    # plt.axhline(now_distanse,hold=None,label="1",color='red')
    # plt.axvline(asset.iat[0],hold=None,label="1",color='red',linestyle="--")
    plt.xlabel('Undervalue ------------------------------------------> Overvalue', fontsize=12)
    plt.ylabel('Frequency', fontsize=14)
    # plt.title('Undervalue & Overvalue Statistical Chart', fontsize=14)
    plt.legend([code, asset.iat[-1], str(dates[-1])[5:11]], fontsize=12)
    plt.grid(True)

    # plt.show()
    # import os
    # print(os.path.abspath(os.path.curdir))


    ax5 = fig.add_subplot(326)
    # fig.figsize=(5, 10)
    log.info("assert:len:%s %s" % (len(asset.values.T - Y_hat), (asset.values.T - Y_hat)[0]))
    # distance = map(lambda x:int(x),(asset.values.T - Y_hat)/Y_hat*100)
    distance = (asset.values.T - Y_hat) / Y_hat * 100
    now_distanse = ((asset.iat[-1] - Y_hat[-1]) / Y_hat[-1] * 100)
    log.debug("dis:%s now:%s" % (distance[:2], now_distanse))
    log.debug("now_distanse:%s" % now_distanse)
    # n, bins = np.histogram(distance, 50)
    # print n, bins[:2]
    pd.Series(distance).plot(kind='hist', stacked=True, bins=100)
    # plt.plot((asset.iat[-1].T-Y_hat),'b',alpha=0.9)
    plt.axvline(now_distanse, hold=None, label="1", color='red')
    # plt.axhline(now_distanse,hold=None,label="1",color='red')
    # plt.axvline(asset.iat[0],hold=None,label="1",color='red',linestyle="--")
    plt.xlabel('Undervalue ------------------------------------------> Overvalue', fontsize=14)
    plt.ylabel('Frequency', fontsize=12)
    # plt.title('Undervalue & Overvalue Statistical Chart', fontsize=14)
    plt.legend([code, asset.iat[-1]], fontsize=12)
    plt.grid(True)

    ax6 = fig.add_subplot(324)
    h = df.loc[:, ['open', 'close', 'high', 'low']]
    highp = h['high'].values
    lowp = h['low'].values
    openp = h['open'].values
    closep = h['close'].values
    lr = LinearRegression()
    x = np.atleast_2d(np.linspace(0, len(closep), len(closep))).T
    lr.fit(x, closep)
    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
    xt = np.atleast_2d(np.linspace(0, len(closep) + 200, len(closep) + 200)).T
    yt = lr.predict(xt)
    bV = []
    bP = []
    for i in range(1, len(highp) - 1):
        if highp[i] <= highp[i - 1] and highp[i] < highp[i + 1] and lowp[i] <= lowp[i - 1] and lowp[i] < lowp[i + 1]:
            bV.append(lowp[i])
            bP.append(i)

    d, p = LIS(bV)

    idx = []
    for i in range(len(p)):
        idx.append(bP[p[i]])
    lr = LinearRegression()
    X = np.atleast_2d(np.array(idx)).T
    Y = np.array(d)
    lr.fit(X, Y)
    estV = lr.predict(xt)
    ax6.plot(closep, linewidth=2)
    ax6.plot(idx, d, 'ko')
    ax6.plot(xt, estV, '-r', linewidth=3)
    ax6.plot(xt, yt, '-g', linewidth=3)
    plt.grid(True)

    # plt.tight_layout()
    zp2 = zoompan.ZoomPan()
    figZoom = zp2.zoom_factory(ax6, base_scale=scale)
    figPan = zp2.pan_factory(ax6)
    # plt.ion()
    plt.show(block=False)