def _index_where(arr, value, reverse=False):
    if not reverse:
        idx = pl.argmin(abs(arr - value))
    else:
        revidx = pl.argmin(abs(arr[::-1] - value))
        idx = len(arr) - (revidx + 1)
    return idx
def _mean_spectra(sim, tmin=0, tmax=1000):
    f = h5py.File(sim.output.spectra.path_file2D, "r")
    dset_times = f["times"]
    # nb_spectra = dset_times.shape[0]
    times = dset_times[...]
    # nt = len(times)

    dset_khE = f["khE"]
    kh = dset_khE[...]

    dset_spectrumEK = f["spectrum2D_EK"]
    dset_spectrumEA = f["spectrum2D_EA"]
    imin_plot = pl.argmin(abs(times - tmin))
    imax_plot = pl.argmin(abs(times - tmax))

    # tmin_plot = times[imin_plot]
    # tmax_plot = times[imax_plot]
    machine_zero = 1e-15
    EK = dset_spectrumEK[imin_plot:imax_plot + 1].mean(0)
    EA = dset_spectrumEA[imin_plot:imax_plot + 1].mean(0)
    EK[abs(EK) < 1e-15] = machine_zero
    EA[abs(EA) < 1e-15] = machine_zero
    E_tot = EK + EA
    f.close()

    return kh, E_tot, EK, EA
def pick_handler(event):
    artist = event.artist
    mouseevent = event.mouseevent
    
    i = argmin(sum((array(artist.get_data()).T - array([mouseevent.xdata, mouseevent.ydata]))**2, axis=1))
    
    x,y = array(artist.get_data()).T[i]
    
    Nelements = len(artist.get_data()[0])
    d = str(artist.get_url()[i]) if Nelements > 1 else str(artist.get_url())
    
    ax = artist.axes
    
    if not hasattr(ax, "annotation"):
        ax.annotation = ax.annotate(d,
            xy=(x,y), xycoords='data',
            xytext=(0,30), textcoords="offset points",
            size="larger", va="bottom", ha="center",
            bbox=dict(boxstyle="round", fc="w", alpha=0.5),
            arrowprops=dict(arrowstyle="->",
                            connectionstyle="arc3,rad=-0.2"), 
        )
        
    ax.annotation.xy = (x,y)
    ax.annotation.set_text(d)
    artist.figure.canvas.draw()
Example #4
0
    def getPreceedingNoise(self,tdData,timePreceedingSignal=-1):
        #retruns the preceeding noise in X and Y channel of tdData
        #it uses timePreceedingSignal to evaluate the noise, if not given,
        #it autodetects a "good" time
        
        #we should crop the data at least 2.5 ps before the main peak
        nearestdistancetopeak=2.5e-12
        if min(tdData[:,0])+timePreceedingSignal>-nearestdistancetopeak:
            timePreceedingSignal=-min(tdData[:,0])-nearestdistancetopeak
            print("Time Interval of preceeding noise to long, reset done")
            #dont use user input if higher than peak
        
        #get the first time
        starttime=min(tdData[:,0])
        if timePreceedingSignal<0:
            #determine length automatically            
            ratio=2
            ix_max=py.argmax(tdData[:,1])
            ix_min=py.argmin(tdData[:,1])
            earlier=min(ix_max,ix_min)
                #take only the first nts part            
            endtime=tdData[int(earlier/ratio),0]
        else:
            endtime=starttime+timePreceedingSignal

        #cut the data from starttime to endtime            
        noise=self.getShorterData(tdData,starttime,endtime)
        #detrend the noise
        noise=signal.detrend(noise[:,1:3],axis=0)
        return noise
Example #5
0
def pick_handler(event):
    artist = event.artist
    mouseevent = event.mouseevent

    i = argmin(
        sum((array(artist.get_data()).T -
             array([mouseevent.xdata, mouseevent.ydata]))**2,
            axis=1))

    x, y = array(artist.get_data()).T[i]

    Nelements = len(artist.get_data()[0])
    d = str(artist.get_url()[i]) if Nelements > 1 else str(artist.get_url())

    ax = artist.axes

    if not hasattr(ax, "annotation"):
        ax.annotation = ax.annotate(
            d,
            xy=(x, y),
            xycoords='data',
            xytext=(0, 30),
            textcoords="offset points",
            size="larger",
            va="bottom",
            ha="center",
            bbox=dict(boxstyle="round", fc="w", alpha=0.5),
            arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=-0.2"),
        )

    ax.annotation.xy = (x, y)
    ax.annotation.set_text(d)
    artist.figure.canvas.draw()
Example #6
0
    def extrude_mesh(self, l, z_offset):
        # accepts the number of layers and the length of extrusion

        mesh = self.mesh

        # Extrude vertices
        all_coords = []
        for i in linspace(0, z_offset, l):
            all_coords.append(
                hstack((mesh.coordinates(), i * ones((self.n_v2, 1)))))
        self.global_vertices = vstack(all_coords)

        # Extrude cells (tris to tetrahedra)
        for i in range(l - 1):
            for c in self.mesh.cells():
                # Make a prism out of 2 stacked triangles
                vertices = hstack((c + i * self.n_v2, c + (i + 1) * self.n_v2))

                # Determine prism orientation
                smallest_vertex_index = argmin(vertices)

                # Map to I-ordering of Dompierre et al.
                mapping = self.indirection_table[smallest_vertex_index]

                # Determine which subdivision scheme to use.
                if min(vertices[mapping][[1, 5]]) < min(
                        vertices[mapping][[2, 4]]):
                    local_tets = vstack((vertices[mapping][[0,1,2,5]],\
                                         vertices[mapping][[0,1,5,4]],\
                                         vertices[mapping][[0,4,5,3]]))
                else:
                    local_tets = vstack((vertices[mapping][[0,1,2,4]],\
                                         vertices[mapping][[0,4,2,5]],\
                                         vertices[mapping][[0,4,5,3]]))
                # Concatenate local tet to cell array
                self.global_tets = vstack((self.global_tets, local_tets))

        # Eliminate phantom initialization tet
        self.global_tets = self.global_tets[1:, :]

        # Query number of vertices and tets in new mesh
        self.n_verts = self.global_vertices.shape[0]
        self.n_tets = self.global_tets.shape[0]

        # Initialize new dolfin mesh of dimension 3
        self.new_mesh = Mesh()
        m = MeshEditor()
        m.open(self.new_mesh, 3, 3)
        m.init_vertices(self.n_verts, self.n_verts)
        m.init_cells(self.n_tets, self.n_tets)

        # Copy vertex data into new mesh
        for i, v in enumerate(self.global_vertices):
            m.add_vertex(i, Point(*v))

        # Copy cell data into new mesh
        for j, c in enumerate(self.global_tets):
            m.add_cell(j, *c)

        m.close()
Example #7
0
def spline_interpolate(tck, r_in):
    if not (type(r_in) in [list, py.ndarray]):
        r_in = [r_in]
        scaler_in = True
    else:
        scaler_in = False

    out_list = []
    for r in r_in:
        i_intp = py.argmin(abs(r - tck[0][:, 0]))

        if (r < tck[0][0, 0]):
            out = tck[1][0, -1]
        elif (r > tck[0][-1, -1]):
            out = 0.0  #tck[1][-1,-1]
        else:
            for i_intp, [r_min, r_max] in enumerate(tck[0]):
                if (r > r_min and r <= r_max):
                    break
            out = 0
            for ii in range(tck[2]):
                out += (r - tck[0][i_intp, 0])**(tck[2] -
                                                 (ii + 1)) * tck[1][i_intp, ii]
        out_list.append(out)

    if scaler_in:
        return out_list[0]
    else:
        return py.array(out_list)
Example #8
0
    def classify(self, x, k):
        d = self.X - tile(x.reshape(self.n, 1), self.N)
        dsq = sum(d * d, 0)
        minindex = argmin(dsq)
        temp = argsort(dsq)

        ### Custom code starting here ###

        # Save the data for each class around the point in a array
        score = [0, 0, 0]

        # With the help of k surrounding points score each class
        for x in range(0, k):
            if ((self.c[temp[x]]) == 1.0):
                score[0] += 1
            elif ((self.c[temp[x]]) == 2.0):
                score[1] += 1
            elif ((self.c[temp[x]]) == 3.0):
                score[2] += 1

        # Check to which class the point is classified
        if (score[0] > score[1] and score[0] > score[2]):
            return 1.0
        elif (score[1] > score[2]):
            return 2.0

        # If there are points with the same value, assign the class of the nearest neighbour.
        elif (score[0] == score[1] and score[0] == score[2]):
            return self.c[minindex]
        else:
            return 3.0
Example #9
0
  def extrude_mesh(self,l,z_offset):
    # accepts the number of layers and the length of extrusion

    # Extrude vertices
    all_coords = []
    for i in linspace(0,z_offset,l):
      all_coords.append(hstack((mesh.coordinates(),i*ones((self.n_v2,1)))))
    self.global_vertices = vstack(all_coords)

    # Extrude cells (tris to tetrahedra)
    for i in range(l-1):
      for c in self.mesh.cells():
        # Make a prism out of 2 stacked triangles
        vertices = hstack((c+i*self.n_v2,c+(i+1)*self.n_v2))

        # Determine prism orientation
        smallest_vertex_index = argmin(vertices)

        # Map to I-ordering of Dompierre et al.
        mapping = self.indirection_table[smallest_vertex_index]

        # Determine which subdivision scheme to use.
        if min(vertices[mapping][[1,5]]) < min(vertices[mapping][[2,4]]):
          local_tets = vstack((vertices[mapping][[0,1,2,5]],\
                               vertices[mapping][[0,1,5,4]],\
                               vertices[mapping][[0,4,5,3]]))
        else:
          local_tets = vstack((vertices[mapping][[0,1,2,4]],\
                               vertices[mapping][[0,4,2,5]],\
                               vertices[mapping][[0,4,5,3]]))
        # Concatenate local tet to cell array
        self.global_tets = vstack((self.global_tets,local_tets))

    # Eliminate phantom initialization tet
    self.global_tets = self.global_tets[1:,:]

    # Query number of vertices and tets in new mesh
    self.n_verts = self.global_vertices.shape[0]
    self.n_tets = self.global_tets.shape[0]

    # Initialize new dolfin mesh of dimension 3
    self.new_mesh = Mesh()
    m = MeshEditor()
    m.open(self.new_mesh,3,3)
    m.init_vertices(self.n_verts,self.n_verts)
    m.init_cells(self.n_tets,self.n_tets)

    # Copy vertex data into new mesh
    for i,v in enumerate(self.global_vertices):
      m.add_vertex(i,Point(*v))

    # Copy cell data into new mesh
    for j,c in enumerate(self.global_tets):
      m.add_cell(j,*c)

    m.close()
Example #10
0
File: io.py Project: MMaus/mutils
    def get_kin_apex(self, phases, return_times = False):
        """
        returns the kinematic state at the apices which are close to the given phases. Apex is re-calculated.
        
        :args:
            self: kin object (-> later: "self")
            phases (list): list of lists of apex phases. must match with length of "kin.raw_data". 
               The n'th list of apex phases will be assigned to the nth "<object>.raw_data" element.
            return_times (bool): if true, return only the times at which apex occurred.
    
        :returns:
           if lr_split is True:
              [[r_apices], [l_apices]]
           else:
              [[apices], ]
              where apices is the kinematic (from <object>.selection at the apices *around* the given phases.
              *NOTE* The apices themselves are re-computed for higher accuracy.
    
        """
        
        all_kin = []
        all_kin_orig = self.get_kin()
        all_apex_times = []
        if len(self.raw_dat) != len(phases):
            raise ValueError("length of phases list does not match number of datasets")
        for raw, phase, kin_orig in zip(self.raw_dat, phases, all_kin_orig):
            kin_apex = []
            kin_time = arange(len(raw['phi2'].squeeze()), dtype=float) / 250.
            # 1st: compute apex *times*
            apex_times = []
            for phi_apex in phase:
                # 1a: get "rough" estimate
                idx_apex = argmin(abs(raw['phi2'].squeeze() - phi_apex))
                # 1b: fit quadratic function to com_y
                idx_low = max(0, idx_apex - 4)
                idx_high = min(raw['com'].shape[0] - 1, idx_apex + 4)
                com_y_pt = raw['com'][idx_low:idx_high + 1, 2]            
                tp = arange(idx_high - idx_low + 1) # improve numerical accuracy: do not take absolute time
                p = polyfit(tp, com_y_pt, 2) # p: polynomial, highest power coeff first
                t0 = -p[1] / (2.*p[0]) # "real" index of apex (offset is 2: a value of 2
                           # indicates that apex is exactly at the measured frame
                t_apex = kin_time[idx_apex] + (t0 - 4.) / 250.
                apex_times.append(t_apex)
            
            if return_times:
                all_apex_times.append(array(apex_times))		    
            else:
                # 2nd: interpolate data
                dat = vstack([interp(apex_times, kin_time, kin_orig[row, :]) for row in arange(kin_orig.shape[0])])
                all_kin.append(dat)

        if return_times:
	    return all_apex_times

        return all_kin
Example #11
0
    def sort_ratios(self, ratios):
        """
        ::

            Sort and select tuning system ratios in ascending order by
            proximity to equal tempered pitch classes.
        """
        ratios.append(Fraction(2,1))
        res = list(set(ratios)) # eliminate duplicates
        res.sort() # in-place sort
        idx = [pylab.argmin( abs( pylab.array(res) - j) ) for j in self.pitch_ratios_eq]
        res = [res[i] for i in idx]
        return res
Example #12
0
    def sort_ratios(self, ratios):
        """
        ::

            Sort and select tuning system ratios in ascending order by
            proximity to equal tempered pitch classes.
        """
        ratios.append(Fraction(2,1))
        res = list(set(ratios)) # eliminate duplicates
        res.sort() # in-place sort
        idx = [pylab.argmin( abs( pylab.array(res) - j) ) for j in self.pitch_ratios_eq]
        res = [res[i] for i in idx]
        return res
Example #13
0
    def plotErrorFunction(self,l,freq):
        #plots the error function
        py.figure()
        resolution=300
        ix=py.argmin(abs(freq-self.H.getfreqs()))
        n_i=py.linspace(0.0,0.05,int(resolution/2))
        n_r=py.linspace(1,3,resolution)
        N_R,N_I=py.meshgrid(n_r,n_i)
        E_fu=py.zeros((len(n_i),len(n_r)))
        for i in range(len(n_r)):
            for k in range(len(n_i)):
                E_fu[k,i]=self.error_func([n_r[i],n_i[k]],self.H.fdData[ix,:3],l)
#        print(E_fu[:,2])
        py.pcolor(N_R,N_I,py.log10(E_fu))
        py.colorbar()
Example #14
0
	def classify(self, x, k):
		d = self.X - tile(x.reshape(self.n,1), self.N)
		
		# Occurrence of a class
		occd = {}
		for i in range(k):
			dsq = sum(d*d,0)
			minindex = argmin(dsq)
			if self.c[minindex] in occd:
				occd[self.c[minindex]] += 1
			else:
				occd[self.c[minindex]] = 1
			# Prevent next iter giving this index again
			d[:, minindex] = self.max + 1

		# Return the name of the class that occurred most
		return max(occd.iteritems(), key=operator.itemgetter(1))[0]
Example #15
0
    def minimize_residual_variances(self, **kwargs):
        """
        Syst. residuals behave as an underpartition measures, i.e. the larger is K the lower is  the residual( the more are patches  the better )
        stat. residuals behave as an overpartition measures, i.e. the larger is K the higher is the residuals (the lesser are the patches the worse, because you have less signal-to-noise in each patch)

        """
        self.Vu = pl.zeros_like(self.Kvals).reshape(-1, 1) * 1.0
        self.Vo = pl.zeros_like(self.Kvals).reshape(-1, 1) * 1.0
        nvals = len(self.Kvals)
        for j, K in enumerate(self.Kvals):
            if self.verbose:
                print(f"Running with K={K} clusters")
            clusters = AgglomerativeClustering(
                n_clusters=K,
                affinity="precomputed",
                linkage="average",
                connectivity=self.connectivity,
            )
            clusters.fit_predict(self._Affinity)
            msys, mstat = estimate_Stat_and_Sys_residuals(
                clusters.labels_,
                galactic_binmask=self.galactic_mask,
                **kwargs)
            m1 = pl.ma.masked_equal(msys[1], hp.UNSEEN).mask
            m2 = pl.ma.masked_equal(mstat[1], hp.UNSEEN).mask

            _, _, var_sys, var_stat = estimate_spectra(msys, mstat)

            self.Vo[j], self.Vu[j] = var_stat, var_sys

        # We have to match  Vo and Vu, we rescale Vo so that it ranges as Vu
        min_max_scaler = preprocessing.MinMaxScaler(
            feature_range=(self.Vu.min(), self.Vu.max()))
        self.Vu = min_max_scaler.fit_transform((self.Vu)).reshape(nvals)
        self.Vo = min_max_scaler.fit_transform((self.Vo)).reshape(nvals)

        Vsv = interp1d(self.Kvals,
                       pl.sqrt(self.Vu**2 + self.Vo**2).T,
                       kind="slinear")
        Krange = pl.arange(self.Kvals.min(), self.Kvals.max())
        minval = pl.argmin(Vsv(Krange) - Vsv(Krange).min())
        Kopt = Krange[minval]

        return Kopt
Example #16
0
    def minimize_partition_measures(self):
        self.Vu = pl.zeros_like(self.Kvals).reshape(-1, 1) * 1.0
        self.Vo = pl.zeros_like(self.Kvals).reshape(-1, 1) * 1.0
        nvals = len(self.Kvals)
        for j, K in enumerate(self.Kvals):
            if self.verbose:
                print(f"Running with K={K} clusters")
            clusters = AgglomerativeClustering(
                n_clusters=K,
                affinity="precomputed",
                linkage="average",
                connectivity=self.connectivity,
            )
            clusters.fit_predict(self._Affinity)
            mu, MD = self.intracluster_distance(K, clusters.labels_)
            dmu = self._metric.pairwise(mu[:, :self._nfeat])
            dmu = pl.ma.fix_invalid(dmu, fill_value=1.0).data
            if self._has_angles:
                dmuang = self.haversine.pairwise(mu[:, self._nfeat:])
                # dmuang =pl.ma.fix_invalid(dmuang,  fill_value=pl.pi).data

                dmu = pl.multiply(dmu, dmuang)

            pl.fill_diagonal(dmu, pl.inf)
            self.Vo[j] = K / dmu.min()  # overpartition meas.
            self.Vu[j] = MD.sum() / K  # underpartition meas.

        # We have to match  Vo and Vu, we rescale Vo so that it ranges as Vu
        min_max_scaler = preprocessing.MinMaxScaler(
            feature_range=(self.Vu.min(), self.Vu.max()))

        self.Vu = min_max_scaler.fit_transform((self.Vu)).reshape(nvals)
        self.Vo = min_max_scaler.fit_transform((self.Vo)).reshape(nvals)
        # minimizing the squared sum

        Vsv = interp1d(self.Kvals,
                       pl.sqrt(self.Vu**2 + self.Vo**2).T,
                       kind="slinear")

        Krange = pl.arange(self.Kvals.min(), self.Kvals.max())
        minval = pl.argmin(Vsv(Krange) - Vsv(Krange).min())

        Kopt = Krange[minval]
        return Kopt
def compute_registeration(P0, Yk):
	'''
    compute the registeration. which is transformation martix
    ref: http://www.cs.virginia.edu/~mjh7v/bib/Besl92.pdf
    Input:
        P0: Point set 
        Yk:  P0 corresponding Point set
    Output:
        qk: transform matrix
    '''

    # compute mu p and mu x

	mup = np.mean(P0, axis=0)

	Nx = len(P0)
	mux = np.mean(Yk, axis=0)
	
	# Cross-covariance martix sigma_px

	sigma_px =  (np.dot(P0.T,Yk) - np.dot(mup.T,mux))/Nx

	Aij = sigma_px - sigma_px.T
	tr = trace(sigma_px)

	Sym = sigma_px + sigma_px.T - tr*identity(3)

	Q_sigma_px = np.array([
        [tr,        Aij[1][2],     Aij[2][0],    Aij[0][1]], 
        [Aij[1][2], Sym[0][0],             0,            0],
        [Aij[2][0],         0,     Sym[1][1],            0],
        [Aij[0][1],         0,             0,    Sym[2][2]]])

    # eigenvalue to get optimal R and T

	w, v = np.linalg.eig(Q_sigma_px)

	qR = v[:, argmin(w)]

	R = get_rotation_matrix(qR)
	qT = (mux.T - R.dot(mup.T)).T

	return qR, qT
    for e in fl[1:]:

        data_add = pd.read_table(e, sep = ",")
        data_add.columns = ["Time", e[3:8]]
        means[k] = pd.merge(means[k], data_add, on = "Time")

    means[k]["0.435"] -= 273.15
    means[k]["0.455"] -= 273.15

    heights = pl.array(means[k].keys())[1:].astype(float)

    pl.figure()

    for level in filling_levels:

        index = pl.argmin(abs(means[k]["Time"] - (level / massflows[k])))

        pl.plot(means[k].loc[index][1:][0:].values, heights, \
            label = "filling level = " + str(level) + " kg" )

    pl.xlim([58.0, 76.0])
    pl.ylim([0.0, 2.4])
    pl.grid(True)

    pl.ylabel("Height (m)")
    pl.xlabel("Temperature ($^{\circ}$C)")

    pl.legend(loc="lower right")
    pl.title("Mean temperature per stratum in " + sim)

    pl.savefig(basedir + "fig_mean_per_sim/" + sim + ".png", bbox_inches='tight')
Example #19
0
def main():
    import optparse
    from numpy import sum

    # Parse command line
    parser = optparse.OptionParser(usage=USAGE)
    parser.add_option("-p",
                      "--plot",
                      action="store_true",
                      help="Generate pdf with IR-spectrum")
    parser.add_option("-i",
                      "--info",
                      action="store_true",
                      help="Set up/ Calculate vibrations & quit")
    parser.add_option("-s",
                      "--suffix",
                      action="store",
                      help="Call suffix for binary e.g. 'mpirun -n 4 '",
                      default='')
    parser.add_option("-r",
                      "--run",
                      action="store",
                      help="path to FHI-aims binary",
                      default='')
    parser.add_option("-x",
                      "--relax",
                      action="store_true",
                      help="Relax initial geometry")
    parser.add_option("-m",
                      "--molden",
                      action="store_true",
                      help="Output in molden format")
    parser.add_option("-w",
                      "--distort",
                      action="store_true",
                      help="Output geometry distorted along imaginary modes")
    parser.add_option("-t",
                      "--submit",
                      action="store",
                      help="""\
Path to submission script, string <jobname>
will be replaced by name + counter, string 
                            <outfile> will be replaced by filename""")
    parser.add_option("-d",
                      "--delta",
                      action="store",
                      type="float",
                      help="Displacement",
                      default=0.0025)

    options, args = parser.parse_args()
    if options.info:
        print __doc__
        sys.exit(0)
    if len(args) != 2:
        parser.error("Need exactly two arguments")

    AIMS_CALL = options.suffix + ' ' + options.run
    hessian_thresh = -1
    name = args[0]
    mode = args[1]
    delta = options.delta

    run_aims = False
    if options.run != '': run_aims = True

    submit_script = options.submit is not None

    if options.plot:
        import matplotlib as mpl
        mpl.use('Agg')
        from pylab import figure

    if options.plot or mode == '1':
        from pylab import savetxt, transpose, eig, argsort, sort,\
            sign, pi, dot, sum, linspace, argmin, r_, convolve

    # Constant from scipy.constants
    bohr = constants.value('Bohr radius') * 1.e10
    hartree = constants.value('Hartree energy in eV')
    at_u = constants.value('atomic mass unit-kilogram relationship')
    eV = constants.value('electron volt-joule relationship')
    c = constants.value('speed of light in vacuum')
    Ang = 1.0e-10
    hbar = constants.value('Planck constant over 2 pi')
    Avo = constants.value('Avogadro constant')
    kb = constants.value('Boltzmann constant in eV/K')
    hessian_factor = eV / (at_u * Ang * Ang)
    grad_dipole_factor = (eV / (1. / (10 * c))) / Ang  #(eV/Ang -> D/Ang)
    ir_factor = 1

    # Asign all filenames
    inputgeomerty = 'geometry.in.' + name
    inputcontrol = 'control.in.' + name
    atomicmasses = 'masses.' + name + '.dat'
    xyzfile = name + '.xyz'
    moldenname = name + '.molden'
    hessianname = 'hessian.' + name + '.dat'
    graddipolename = 'grad_dipole.' + name + '.dat'
    irname = 'ir.' + name + '.dat'
    deltas = array([-delta, delta])
    coeff = array([-1, 1])
    c_zero = -1. / (2. * delta)

    f = open('control.in', 'r')  # read control.in template
    template_control = f.read()
    f.close

    if submit_script:
        f = open(options.submit, 'r')  # read submission script template
        template_job = f.read()
        f.close

    folder = ''  # Dummy
    ########### Central Point ##################################################
    if options.relax and mode == '0':
        # First relax input geometry
        filename = name + '.out'
        folder = name + '_relaxation'
        if not os.path.exists(folder): os.mkdir(folder)  # Create folder
        shutil.copy('geometry.in', folder + '/geometry.in')  # Copy geometry
        new_control = open(folder + '/control.in', 'w')
        new_control.write(template_control +
                          'relax_geometry trm 1E-3\n')  # Relax!
        new_control.close()
        os.chdir(folder)  # Change directoy
        print 'Central Point'
        if run_aims:
            os.system(AIMS_CALL + ' > ' +
                      filename)  # Run aims and pipe the output

#  into a file named 'filename'
        if submit_script: replace_submission(template_job, name, 0, filename)
        os.chdir('..')

    ############################################################################
    # Check for relaxed geometry
    if os.path.exists(folder + '/geometry.in.next_step'):
        geometry = open(folder + '/geometry.in.next_step', 'r')
    else:
        geometry = open('geometry.in', 'r')

    # Read input geometry
    n_line = 0
    struc = structure()
    lines = geometry.readlines()

    for line in lines:
        n_line = n_line + 1
        if line.rfind('set_vacuum_level') != -1:  # Vacuum Level
            struc.vacuum_level = float(split_line(line)[-1])
        if line.rfind('lattice_vector') != -1:  # Lattice vectors and periodic
            lat = split_line(line)[1:]
            struc.lattic_vector = append(struc.lattic_vector,
                                         float64(array(lat))[newaxis, :],
                                         axis=0)
            struc.periodic = True
        if line.rfind('atom') != -1:  # Set atoms
            line_vals = split_line(line)
            at = Atom(line_vals[-1], line_vals[1:-1])
            if n_line < len(lines):
                nextline = lines[n_line]
                if nextline.rfind(
                        'constrain_relaxation') != -1:  # constrained?
                    at = Atom(line_vals[-1], line_vals[1:-1], True)
                else:
                    at = Atom(line_vals[-1], line_vals[1:-1])
            struc.join(at)
    geometry.close()
    n_atoms = struc.n()
    n_constrained = n_atoms - sum(struc.constrained)

    # Atomic mass file
    mass_file = open(atomicmasses, 'w')
    mass_vector = zeros([0])
    for at_unconstrained in struc.atoms[struc.constrained == False]:
        mass_vector = append(mass_vector,
                             ones(3) * 1. / sqrt(at_unconstrained.mass()))
        line = '{0:10.5f}'.format(at_unconstrained.mass())
        for i in range(3):
            line = line + '{0:11.4f}'.format(at_unconstrained.coord[i])
        line = line + '{0:}\n'.format(at_unconstrained.kind)
        mass_file.writelines(line)
    mass_file.close()

    # Init
    dip = zeros([n_constrained * 3, 3])
    hessian = zeros([n_constrained * 3, n_constrained * 3])
    index = 0
    counter = 1

    # Set up / Read folders for displaced atoms
    for atom in arange(n_atoms)[struc.constrained == False]:
        for coord in arange(3):
            for delta in deltas:
                filename=name+'.i_atom_'+str(atom)+'.i_coord_'+str(coord)+'.displ_'+\
                 str(delta)+'.out'
                folder=name+'.i_atom_'+str(atom)+'.i_coord_'+str(coord)+'.displ_'+\
                 str(delta)
                if mode == '0':  # Put new geometry and control.in into folder
                    struc_new = copy.deepcopy(struc)
                    struc_new.atoms[atom].coord[coord]=\
                                                struc_new.atoms[atom].coord[coord]+delta
                    geoname='geometry.i_atom_'+str(atom)+'.i_coord_'+str(coord)+\
                            '.displ_'+str(delta)+'.in'
                    if not os.path.exists(folder): os.mkdir(folder)
                    new_geo = open(folder + '/geometry.in', 'w')
                    newline='#\n# temporary structure-file for finite-difference '+\
                     'calculation of forces\n'
                    newline=newline+'# displacement {0:8.4f} of \# atom '.format(delta)+\
                      '{0:5} direction {1:5}\n#\n'.format(atom,coord)
                    new_geo.writelines(newline + struc_new.to_str())
                    new_geo.close()
                    new_control = open(folder + '/control.in', 'w')
                    template_control = template_control.replace(
                        'relax_geometry', '#relax_geometry')
                    new_control.write(template_control+'compute_forces .true. \n'+\
                        'final_forces_cleaned '+\
                        '.true. \noutput dipole \n')
                    new_control.close()
                    os.chdir(folder)  # Change directoy
                    print 'Processing atom: '+str(atom+1)+'/'+str(n_atoms)+', coord.: '+\
                      str(coord+1)+'/'+str(3)+', delta: '+str(delta)
                    if run_aims:
                        os.system(AIMS_CALL + ' > ' +
                                  filename)  # Run aims and pipe the output
                #  into a file named 'filename'
                    if submit_script:
                        replace_submission(template_job, name, counter,
                                           filename)
                    # os.system('qsub job.sh') # Mind the environment variables
                    os.chdir('..')

                if mode == '1':  # Read output
                    forces_reached = False
                    atom_count = 0
                    data = open(folder + '/' + filename)
                    for line in data.readlines():
                        if line.rfind(
                                'Dipole correction potential jump') != -1:
                            dip_jump = float(split_line(line)[-2])  # Periodic
                        if line.rfind('| Total dipole moment [eAng]') != -1:
                            dip_jump = float64(
                                split_line(line)[-3:])  # Cluster
                        if forces_reached and atom_count < n_atoms:  # Read Forces
                            struc.atoms[atom_count].force = float64(
                                split_line(line)[2:])
                            atom_count = atom_count + 1
                            if atom_count == n_atoms:
                                forces_reached = False
                        if line.rfind('Total atomic forces') != -1:
                            forces_reached = True
                    data.close()
                    if struc.periodic:
                        dip[index, 2] = dip[
                            index,
                            2] + dip_jump * coeff[deltas == delta] * c_zero
                    else:
                        dip[index, :] = dip[index, :] + dip_jump * coeff[
                            deltas == delta] * c_zero
                    forces = array([])
                    for at_unconstrained in struc.atoms[struc.constrained ==
                                                        False]:
                        forces = append(
                            forces,
                            coeff[deltas == delta] * at_unconstrained.force)
                    hessian[index, :] = hessian[index, :] + forces * c_zero
                counter = counter + 1
            index = index + 1
    if mode == '1':  # Calculate vibrations
        print 'Entering hessian diagonalization'
        print 'Number of atoms                = ' + str(n_atoms)
        print 'Name of Hessian input file     = ' + hessianname
        print 'Name of grad dipole input file = ' + graddipolename
        print 'Name of Masses  input file     = ' + atomicmasses
        print 'Name of XYZ output file        = ' + xyzfile
        print 'Threshold for Matrix elements  = ' + str(hessian_thresh)
        if (hessian_thresh < 0.0):            print '     All matrix elements are taken'+\
' into account by default\n'
        savetxt(hessianname, hessian)
        savetxt(graddipolename, dip)

        mass_mat = mass_vector[:, newaxis] * mass_vector[newaxis, :]
        hessian[abs(hessian) < hessian_thresh] = 0.0
        hessian = hessian * mass_mat * hessian_factor
        hessian = (hessian + transpose(hessian)) / 2.
        # Diagonalize hessian (scipy)
        print 'Solving eigenvalue system for Hessian Matrix'
        freq, eig_vec = eig(hessian)
        print 'Done ... '
        eig_vec = eig_vec[:, argsort(freq)]
        freq = sort(sign(freq) * sqrt(abs(freq)))
        ZPE = hbar * (freq) / (2.0 * eV)
        freq = (freq) / (200. * pi * c)

        grad_dipole = dip * grad_dipole_factor
        eig_vec = eig_vec * mass_vector[:, newaxis] * ones(
            len(mass_vector))[newaxis, :]
        infrared_intensity = sum(dot(transpose(grad_dipole),eig_vec)**2,axis=0)*\
                             ir_factor
        reduced_mass = sum(eig_vec**2, axis=0)
        norm = sqrt(reduced_mass)
        eig_vec = eig_vec / norm

        # The rest is output, xyz, IR,...
        print 'Results\n'
        print 'List of all frequencies found:'
        print 'Mode number      Frequency [cm^(-1)]   Zero point energy [eV]   '+\
              'IR-intensity [D^2/Ang^2]'
        for i in range(len(freq)):
            print '{0:11}{1:25.8f}{2:25.8f}{3:25.8f}'.format(
                i + 1, freq[i], ZPE[i], infrared_intensity[i])
        print '\n'
        print 'Summary of zero point energy for entire system:'
        print '| Cumulative ZPE               = {0:15.8f} eV'.format(sum(ZPE))
        print '| without first six eigenmodes = {0:15.8f} eV\n'.format(
            sum(ZPE) - sum(ZPE[:6]))
        print 'Stability checking - eigenvalues should all be positive for a '+\
               'stable structure. '
        print 'The six smallest frequencies should be (almost) zero:'
        string = ''
        for zz in ZPE[:6]:
            string = string + '{0:25.8f}'.format(zz)
        print string
        print 'Compare this with the largest eigenvalue, '
        print '{0:25.8f}'.format(freq[-1])

        nums = arange(n_atoms)[struc.constrained == False]
        nums2 = arange(n_atoms)[struc.constrained]
        newline = ''
        newline_ir = '[INT]\n'
        if options.molden:
            newline_molden = '[Molden Format]\n[GEOMETRIES] XYZ\n'
            newline_molden = newline_molden + '{0:6}\n'.format(n_atoms) + '\n'
            for i_atoms in range(n_constrained):
                newline_molden = newline_molden + '{0:6}'.format(
                    struc.atoms[nums[i_atoms]].kind)
                for i_coord in range(3):
                    newline_molden = newline_molden + '{0:10.4f}'.format(
                        struc.atoms[nums[i_atoms]].coord[i_coord])
                newline_molden = newline_molden + '\n'
            newline_molden = newline_molden + '[FREQ]\n'
            for i in range(len(freq)):
                newline_molden = newline_molden + '{0:10.3f}\n'.format(freq[i])
            newline_molden = newline_molden + '[INT]\n'
            for i in range(len(freq)):
                newline_molden = newline_molden + '{0:17.6e}\n'.format(
                    infrared_intensity[i])
            newline_molden = newline_molden + '[FR-COORD]\n'
            newline_molden = newline_molden + '{0:6}\n'.format(n_atoms) + '\n'
            for i_atoms in range(n_constrained):
                newline_molden = newline_molden + '{0:6}'.format(
                    struc.atoms[nums[i_atoms]].kind)
                for i_coord in range(3):
                    newline_molden = newline_molden + '{0:10.4f}'.format(
                        struc.atoms[nums[i_atoms]].coord[i_coord] / bohr)
                newline_molden = newline_molden + '\n'
            newline_molden = newline_molden + '[FR-NORM-COORD]\n'

        for i in range(len(freq)):
            newline = newline + '{0:6}\n'.format(n_atoms)
            if freq[i] > 0:
                newline = newline + 'stable frequency at '
            elif freq[i] < 0:
                newline = newline + 'unstable frequency at '
                if options.distort and freq[i] < -50:
                    struc_new = copy.deepcopy(struc)
                    for i_atoms in range(n_constrained):
                        for i_coord in range(3):
                            struc_new.atoms[i_atoms].coord[i_coord]=\
                            struc_new.atoms[i_atoms].coord[i_coord]+\
                           eig_vec[(i_atoms)*3+i_coord,i]
                    geoname = name + '.distorted.vibration_' + str(
                        i + 1) + '.geometry.in'
                    new_geo = open(geoname, 'w')
                    newline_geo = '#\n# distorted structure-file for based on eigenmodes\n'
                    newline_geo=newline_geo+\
                            '# vibration {0:5} :{1:10.3f} 1/cm\n#\n'.format(i+1,freq[i])
                    new_geo.writelines(newline_geo + struc_new.to_str())
                    new_geo.close()
            elif freq[i] == 0:
                newline = newline + 'translation or rotation '
            newline = newline + '{0:10.3f} 1/cm IR int. is '.format(freq[i])
            newline = newline + '{0:10.4e} D^2/Ang^2; red. mass is '.format(
                infrared_intensity[i])
            newline = newline + '{0:5.3f} a.m.u.; force const. is '.format(
                1.0 / reduced_mass[i])
            newline = newline + '{0:5.3f} mDyne/Ang.\n'.format(
                ((freq[i] *
                  (200 * pi * c))**2) * (1.0 / reduced_mass[i]) * at_u * 1.e-2)
            if options.molden:                newline_molden=newline_molden+\
                                      'vibration {0:6}\n'.format(i+1)
            for i_atoms in range(n_constrained):
                newline = newline + '{0:6}'.format(
                    struc.atoms[nums[i_atoms]].kind)
                for i_coord in range(3):
                    newline = newline + '{0:10.4f}'.format(
                        struc.atoms[nums[i_atoms]].coord[i_coord])
                for i_coord in range(3):
                    newline = newline + '{0:10.4f}'.format(
                        eig_vec[(i_atoms) * 3 + i_coord, i])
                    if options.molden:
                        newline_molden = newline_molden + '{0:10.4f}'.format(
                            eig_vec[(i_atoms) * 3 + i_coord, i] / bohr)
                newline = newline + '\n'
                if options.molden: newline_molden = newline_molden + '\n'
            for i_atoms in range(n_atoms - n_constrained):
                newline = newline + '{0:6}'.format(
                    struc.atoms[nums2[i_atoms]].kind)
                for i_coord in range(3):
                    newline = newline + '{0:10.4f}'.format(
                        struc.atoms[nums2[i_atoms]].coord[i_coord])
                for i_coord in range(3):
                    newline = newline + '{0:10.4f}'.format(0.0)
                newline = newline + '\n'
            newline_ir = newline_ir + '{0:10.4e}\n'.format(
                infrared_intensity[i])
        xyz = open(xyzfile, 'w')
        xyz.writelines(newline)
        xyz.close()
        ir = open(irname, 'w')
        ir.writelines(newline_ir)
        ir.close()
        if options.molden:
            molden = open(moldenname, 'w')
            molden.writelines(newline_molden)
            molden.close()

        if mode == '1' and options.plot:
            x = linspace(freq.min() - 500, freq.max() + 500, 1000)
            z = zeros(len(x))
            for i in range(len(freq)):
                z[argmin(abs(x - freq[i]))] = infrared_intensity[i]
            window_len = 150
            gauss = signal.gaussian(window_len, 10)
            s = r_[z[window_len - 1:0:-1], z, z[-1:-window_len:-1]]
            z_convolve = convolve(gauss / gauss.sum(), s,
                                  mode='same')[window_len - 1:-window_len + 1]
            fig = figure(0)
            ax = fig.add_subplot(111)
            ax.plot(x, z_convolve, 'r', lw=2)
            ax.set_xlim([freq.min() - 500, freq.max() + 500])
            ax.set_ylim([-0.01, ax.get_ylim()[1]])
            ax.set_yticks([])
            ax.set_xlabel('Frequency [1/cm]', size=20)
            ax.set_ylabel('Intensity [a.u.]', size=20)
            fig.savefig(name + '_IR_spectrum.pdf')

        print '\n Done. '
Example #20
0
def fig3_struct(path, fig, ax1, tmin=0, tmax=1000):
    sim = fls.load_sim_for_plot(path, merge_missing_params=True)
    path_file = os.path.join(path, "increments.h5")
    f = h5py.File(path_file, "r")
    dset_times = f["times"]
    times = dset_times[...]

    if tmax is None:
        tmax = times.max()

    rxs = f["rxs"][...]

    oper = f["/info_simul/params/oper"]
    nx = oper.attrs["nx"]
    Lx = oper.attrs["Lx"]
    deltax = Lx / nx

    rxs = pl.array(rxs, dtype=pl.float64) * deltax

    imin_plot = pl.argmin(abs(times - tmin))
    imax_plot = pl.argmin(abs(times - tmax))

    S_uL2JL = f["struc_func_uL2JL"][imin_plot:imax_plot + 1].mean(0)
    S_uT2JL = f["struc_func_uT2JL"][imin_plot:imax_plot + 1].mean(0)
    S_c2h2uL = f["struc_func_c2h2uL"][imin_plot:imax_plot + 1].mean(0)
    S_Kolmo = f["struc_func_Kolmo"][imin_plot:imax_plot + 1].mean(0)
    # S_uT2uL = f['struc_func_uT2uL'][imin_plot:imax_plot + 1].mean(0)

    eps = _eps(sim, tmin)
    S_Kolmo_theo = -4 * eps * rxs
    Lf = pl.pi / _k_f(sim.params)

    ax1.set_xscale("log")
    ax1.set_yscale("linear")

    # ax1.plot(rxs / Lf,
    #          (S_uL2JL+S_uT2JL+S_c2h2uL)/S_Kolmo_theo,
    #          'y', linewidth=1, label='sum check')
    def _label(x, y):
        pre = ""
        if y == "uu":
            y = r"\mathbf{u}"
            y2 = r"|\delta {}|^2".format(y)
        else:
            if y == "h":
                pre = "c ^ 2"
            y2 = r"(\delta {})^2".format(y)

        return "$ -\langle {} \delta {} {} \\rangle $".format(pre, x, y2)

    ax1.set_xlabel("$r/L_f$")
    label1 = _label("J_L", "uu")
    label2 = _label("u_L", "h")
    label3 = label1[:-10] + " + " + label2[10:]

    def label_norm(label):
        str_norm = " / (4\epsilon r)$"
        return label.rstrip(" $") + str_norm

    ax1.set_ylabel(label_norm(label3))

    ax1.plot(rxs / Lf,
             S_Kolmo / S_Kolmo_theo,
             "k",
             linewidth=2,
             label=(label3))
    ax1.plot(
        rxs / Lf,
        (S_uL2JL + S_uT2JL) / S_Kolmo_theo,
        "r:",
        linewidth=2,
        label=(label1),
    )
    ax1.plot(rxs / Lf,
             S_c2h2uL / S_Kolmo_theo,
             "b--",
             linewidth=2,
             label=(label2))
    # ax1.plot(rxs / Lf, S_uL2JL / S_Kolmo_theo,
    #          'r--', linewidth=2, label=_label('J_L', 'u_L'))
    # ax1.plot(rxs / Lf, S_uT2JL / S_Kolmo_theo,
    #          'r-.', linewidth=2, label=_label('J_L', 'u_T'))

    # cond = rxs < 6 * deltax
    # ax1.plot(rxs[cond] / Lf, 1.e0 * rxs[cond] ** 3 / S_Kolmo_theo[cond],
    #          'y', linewidth=2, label='$r^3/S; r<6dx$')

    ax1.axhline(1.0, color="k", ls=":")
    # ax1.plot(rxs, pl.ones(rxs.shape), 'k:', linewidth=1)
    ax1.set_xlim([None, 2])
    ax1.set_ylim([-0.1, 1.1])
    ax1.legend(loc=8)
Example #21
0
        w=eval('p.'+window+'(window_len)')
    y=p.convolve(w/w.sum(),s,mode='same')
    return y[window_len:-window_len+1]

for peak in set(index['peak']):
    lf = [index['files'][(index['peak']==peak)*(index['beam']==i)] for i in [0,1]]
    d = [[p.genfromtxt(f,skip_header=2,delimiter=',') for f in x] for x in lf]
    d = [[[x[s:e,:] for s,e in [get_tri_range(x[:,4])]][0] for x in y] for y in d]

    sc = 30
    dsr = [smooth(x[:,3],sc) for x in d[1][1:]]
    ddr = [smooth(x[:,3],sc) for x in d[0]]
    p.figure()
    p.title("peak:%i"%(peak))
    [plot(x) for x in ddr]
    dsx = [p.argmin(x[1500:]).flatten()[0] for x in dsr]
    ddx = [p.argmin(x[1500:]).flatten()[0] for x in ddr]
    dcut = min(dsx+ddx)
    ds = [smooth(x[:,2]-x[:,3],sc)[s-dcut:] for x,s in zip(d[1][1:],dsx)]
    dd = [smooth(x[:,2]-x[:,3],sc)[s-dcut:] for x,s in zip(d[0],ddx)]
    dsr = [x[s-dcut:] for x,s in zip(dsr,dsx)]
    ddr = [x[s-dcut:] for x,s in zip(ddr,ddx)]
    avg_range = range(min(map(len,ds+dd)))
    dsa = p.array([p.mean([x[i] for x in ds]) for i in avg_range])
    dda = p.array([p.mean([x[i] for x in dd]) for i in avg_range])

    [plot(x,'r') for x in ds]
    [plot(x,'b') for x in dd]
    plot(dsa)
    plot(dda)
    plot(dsa-dda)
Example #22
0
	def classify(self, x):
		d = self.X - tile(x.reshape(self.n,1), self.N)
		dsq = sum(d*d,0)
		minindex = argmin(dsq)
		return self.c[minindex]
Example #23
0
        means[k] = pd.merge(means[k], data_add, on = "Time")

        if (sim == "m1_dt25_upper_inlet") & (e == "qt_0.095.csv"):

            means[k][e[3:8]] += (273.15 + 60.0)

    means[k]["0.435"] -= 273.15
    means[k]["0.455"] -= 273.15

    heights = pl.array(means[k].keys())[1:].astype(float)

    for level in filling_levels:

        # Huhn

        index = pl.argmin(abs(means[k]["Time"] - (level / massflows[k])))

        means_index = means[k].loc[index][1:]

        Tmin = means_index.min()
        Tmax = means_index.max()

        Tlb = Tmin + 0.1 * (Tmax - Tmin)
        Tub = Tmin + 0.9 * (Tmax - Tmin)

        pTlb = pl.argmin(means_index[means_index >= Tlb])

        pTub = pl.argmax(means_index[means_index <= Tub])

        eTlb = means_index[pTlb]
        eTub = means_index[pTub]
    for e in fl[1:]:

        data_add = pd.read_table(e, sep = ",")
        data_add.columns = ["Time", e[3:8]]
        means[k] = pd.merge(means[k], data_add, on = "Time")

    means[k]["0.435"] -= 273.15
    means[k]["0.455"] -= 273.15

    heights = pl.array(means[k].keys())[1:].astype(float)

    pl.figure()

    for level in filling_levels:

        index = pl.argmin(abs(means[k]["Time"] - (level / massflows[k])))

        pl.plot(means[k].loc[index][1:][0:].values, heights, \
            label = "filling level = " + str(level) + " kg" )

    pl.xlim(58, 76)
    pl.ylim([0.0, 2.4])
    pl.grid(True)

    pl.legend(loc="lower right")
    pl.title("Mean temperature per stratum in " + sim)
    pl.xlabel("Temperature ($^{\circ}$C)")
    pl.ylabel("Height (m)")

    pl.savefig(basedir + "fig_comp_baffle_m035_dt25/" + sim + ".png", \
        bbox_inches='tight')
Example #25
0
def main():
  import optparse
  from numpy import sum

  # Parse command line
  parser = optparse.OptionParser(usage=USAGE)
  parser.add_option("-p", "--plot", action="store_true",
                    help="Generate pdf with IR-spectrum, broadened with Lorentzian")
  parser.add_option("-i", "--info", action="store_true",
                      help="Set up/ Calculate vibrations & quit")
  parser.add_option("-s", "--suffix", action="store",
                    help="Call suffix for binary e.g. 'mpirun -n 4 '",
                    default='')
  parser.add_option("-r", "--run", action="store",
                    help="path to FHI-aims binary",default='')
  parser.add_option("-x", "--relax", action="store_true",
                    help="Relax initial geometry")
  parser.add_option("-m", "--molden", action="store_true",
                    help="Output in molden format")
  parser.add_option("-w", "--distort", action="store_true",
                    help="Output geometry distorted along imaginary modes")
  parser.add_option("-t", "--submit", action="store",
                    help="""\
Path to submission script, string <jobname>
will be replaced by name + counter, string 
                            <outfile> will be replaced by filename""")
  parser.add_option("-d", "--delta", action="store", type="float",
                    help="Displacement", default=0.0025)
  parser.add_option("-b", "--broadening", action="store", type="float",
                    help="Broadening for IR-spectrum in cm^{-1}", default=5)

  options, args = parser.parse_args()
  if options.info:
      print __doc__
      sys.exit(0)
  if len(args) != 2:
      parser.error("Need exactly two arguments")
  
  AIMS_CALL=options.suffix+' '+options.run
  hessian_thresh = -1
  name=args[0]
  mode=args[1] 
  delta=options.delta
  broadening=options.broadening

  run_aims=False
  if options.run!='': run_aims=True
  
  submit_script = options.submit is not None
  
  if options.plot:
    import matplotlib as mpl
    mpl.use('Agg') 
    from pylab import figure

  if options.plot or mode=='1' or mode=='2':
    from pylab import savetxt, transpose, eig, argsort, sort,\
		      sign, pi, dot, sum, linspace, argmin, r_, convolve
		 
  # Constant from scipy.constants
  bohr=constants.value('Bohr radius')*1.e10
  hartree=constants.value('Hartree energy in eV')
  at_u=constants.value('atomic mass unit-kilogram relationship')
  eV=constants.value('electron volt-joule relationship')
  c=constants.value('speed of light in vacuum')
  Ang=1.0e-10
  hbar=constants.value('Planck constant over 2 pi')
  Avo=constants.value('Avogadro constant')
  kb=constants.value('Boltzmann constant in eV/K')
  pi=constants.pi
  hessian_factor   = eV/(at_u*Ang*Ang) 
  grad_dipole_factor=(eV/(1./(10*c)))/Ang  #(eV/Ang -> D/Ang)
  ir_factor = 1
  
  # Asign all filenames
  inputgeomerty = 'geometry.in.'+name
  inputcontrol  = 'control.in.'+name
  atomicmasses  = 'masses.'+name+'.dat'; 
  xyzfile       = name+'.xyz';
  moldenname    =name+'.molden';
  hessianname   = 'hessian.'+name+'.dat'; 
  graddipolename   = 'grad_dipole.'+name+'.dat'; 
  irname   = 'ir.'+name+'.dat'; 
  deltas=array([-delta,delta])
  coeff=array([-1,1])
  c_zero = - 1. / (2. * delta)


  f=open('control.in','r')                   # read control.in template
  template_control=f.read()
  f.close

  if submit_script:
    f=open(options.submit,'r')               # read submission script template
    template_job=f.read()
    f.close

  folder=''                                  # Dummy
  ########### Central Point ##################################################
  if options.relax and (mode=='0' or mode=='2'):
    # First relax input geometry
    filename=name+'.out'
    folder=name+'_relaxation' 
    if not os.path.exists(folder): os.mkdir(folder)            # Create folder
    shutil.copy('geometry.in', folder+'/geometry.in')          # Copy geometry
    new_control=open(folder+'/control.in','w')
    new_control.write(template_control+'relax_geometry trm 1E-3\n') # Relax!
    new_control.close()
    os.chdir(folder)                             # Change directoy
    print 'Central Point'
    if run_aims:
      os.system(AIMS_CALL+' > '+filename)       # Run aims and pipe the output 
						#  into a file named 'filename'
    if submit_script: replace_submission(template_job, name, 0, filename)
    os.chdir('..') 

  ############################################################################
  # Check for relaxed geometry
  if os.path.exists(folder+'/geometry.in.next_step'):  
    geometry=open(folder+'/geometry.in.next_step','r')
  else:
    geometry=open('geometry.in','r')
    
  # Read input geometry  
  n_line=0
  struc=structure()
  lines=geometry.readlines()

  for line in lines:
    n_line= n_line+1
    if line.rfind('set_vacuum_level')!=-1:   # Vacuum Level
      struc.vacuum_level=float(split_line(line)[-1])
    if line.rfind('lattice_vector')!=-1:    # Lattice vectors and periodic
      lat=split_line(line)[1:]
      struc.lattice_vector=append(struc.lattice_vector,float64(array(lat))
			  [newaxis,:],axis=0)
      struc.periodic=True
    if line.rfind('atom')!=-1:              # Set atoms
      line_vals=split_line(line)
      at=Atom(line_vals[-1],line_vals[1:-1])
      if n_line<len(lines):
	  nextline=lines[n_line]
	  if nextline.rfind('constrain_relaxation')!=-1: # constrained?
	    at=Atom(line_vals[-1],line_vals[1:-1],True)
	  else:
	    at=Atom(line_vals[-1],line_vals[1:-1])
      struc.join(at)         
  geometry.close()  
  n_atoms= struc.n()
  n_constrained=n_atoms-sum(struc.constrained)

  # Atomic mass file
  mass_file=open(atomicmasses,'w')
  mass_vector=zeros([0])
  for at_unconstrained in struc.atoms[struc.constrained==False]:
      mass_vector=append(mass_vector,ones(3)*1./sqrt(at_unconstrained.mass()))
      line='{0:10.5f}'.format(at_unconstrained.mass())
      for i in range(3):
	line=line+'{0:11.4f}'.format(at_unconstrained.coord[i])
      line=line+'{0:}\n'.format(at_unconstrained.kind)
      mass_file.writelines(line)
  mass_file.close()

  # Init
  dip = zeros([n_constrained*3,3])
  hessian = zeros([n_constrained*3,n_constrained*3])
  index=0
  counter=1
  
  # Set up / Read folders for displaced atoms
  for atom in arange(n_atoms)[struc.constrained==False]:
    for coord in arange(3):
      for delta in deltas:
	filename=name+'.i_atom_'+str(atom)+'.i_coord_'+str(coord)+'.displ_'+\
		str(delta)+'.out'
	folder=name+'.i_atom_'+str(atom)+'.i_coord_'+str(coord)+'.displ_'+\
		str(delta)       
	if mode=='0' or mode=='2':   # Put new geometry and control.in into folder
	  struc_new=copy.deepcopy(struc)
	  struc_new.atoms[atom].coord[coord]=\
	                              struc_new.atoms[atom].coord[coord]+delta
	  geoname='geometry.i_atom_'+str(atom)+'.i_coord_'+str(coord)+\
	          '.displ_'+str(delta)+'.in'
	  if not os.path.exists(folder): os.mkdir(folder)
	  new_geo=open(folder+'/geometry.in','w')
	  newline='#\n# temporary structure-file for finite-difference '+\
		  'calculation of forces\n'
	  newline=newline+'# displacement {0:8.4f} of \# atom '.format(delta)+\
			  '{0:5} direction {1:5}\n#\n'.format(atom,coord)
	  new_geo.writelines(newline+struc_new.to_str())
	  new_geo.close()
	  new_control=open(folder+'/control.in','w')
	  template_control=template_control.replace('relax_geometry',
	                                           '#relax_geometry')
	  new_control.write(template_control+'compute_forces .true. \n'+\
			    'final_forces_cleaned '+\
			    '.true. \n')
	  new_control.close()
	  os.chdir(folder)                                   # Change directoy
	  print 'Processing atom: '+str(atom+1)+'/'+str(n_atoms)+', coord.: '+\
				 str(coord+1)+'/'+str(3)+', delta: '+str(delta)
	  if run_aims:                           
	    os.system(AIMS_CALL+' > '+filename)# Run aims and pipe the output 
						#  into a file named 'filename'
	  if submit_script: replace_submission(template_job, name, counter, 
	                                       filename)
	  # os.system('qsub job.sh') # Mind the environment variables
	  os.chdir('..') 

	if mode=='1' or mode=='2':   # Read output 
	  forces_reached=False
	  atom_count=0
	  data=open(folder+'/'+filename)
	  for line in data.readlines():
	    if line.rfind('Dipole correction potential jump')!=-1:
	      dip_jump = float(split_line(line)[-2]) # Periodic
	    if line.rfind('| Total dipole moment [eAng]')!=-1:
	      dip_jump = float64(split_line(line)[-3:]) # Cluster
	    if forces_reached and atom_count<n_atoms: # Read Forces
	      struc.atoms[atom_count].force=float64(split_line(line)[2:])
	      atom_count=atom_count+1
	      if atom_count==n_atoms:
		forces_reached=False
	    if line.rfind('Total atomic forces')!=-1:
	      forces_reached=True
	  data.close()
	  if struc.periodic:
	    pass
      #dip[index,2]=dip[index,2]+dip_jump*coeff[deltas==delta]*c_zero
	  else:
	    dip[index,:]=dip[index,:]+dip_jump*coeff[deltas==delta]*c_zero
	  forces=array([])
	  for at_unconstrained in struc.atoms[struc.constrained==False]:
	    forces=append(forces,coeff[deltas==delta]*at_unconstrained.force)
	  hessian[index,:]=hessian[index,:]+forces*c_zero
	counter=counter+1
      index=index+1  
  if mode=='1' or mode=='2': # Calculate vibrations
    print 'Entering hessian diagonalization'
    print 'Number of atoms                = '+str(n_atoms)
    print 'Name of Hessian input file     = '+hessianname
    print 'Name of grad dipole input file = '+graddipolename
    print 'Name of Masses  input file     = '+atomicmasses
    print 'Name of XYZ output file        = '+xyzfile
    print 'Threshold for Matrix elements  = '+str(hessian_thresh)
    if (hessian_thresh < 0.0): print '     All matrix elements are taken'+\
				    ' into account by default\n'
    savetxt(hessianname,hessian)
    savetxt(graddipolename,dip)

    mass_mat=mass_vector[:,newaxis]*mass_vector[newaxis,:]
    hessian[abs(hessian)<hessian_thresh]=0.0
    hessian=hessian*mass_mat*hessian_factor
    hessian=(hessian+transpose(hessian))/2.
    # Diagonalize hessian (scipy)
    print 'Solving eigenvalue system for Hessian Matrix'
    freq, eig_vec = eig(hessian)
    print 'Done ... '
    eig_vec=eig_vec[:,argsort(freq)]
    freq=sort(sign(freq)*sqrt(abs(freq)))
    ZPE=hbar*(freq)/(2.0*eV)
    freq = (freq)/(200.*pi*c)
    
    
    grad_dipole = dip * grad_dipole_factor
    eig_vec = eig_vec*mass_vector[:,newaxis]*ones(len(mass_vector))[newaxis,:]
    infrared_intensity = sum(dot(transpose(grad_dipole),eig_vec)**2,axis=0)*\
                         ir_factor
    reduced_mass=sum(eig_vec**2,axis=0)
    norm = sqrt(reduced_mass)
    eig_vec = eig_vec/norm
    
    # The rest is output, xyz, IR,...
    print 'Results\n'
    print 'List of all frequencies found:'
    print 'Mode number      Frequency [cm^(-1)]   Zero point energy [eV]   '+\
          'IR-intensity [D^2/Ang^2]'
    for i in range(len(freq)):
      print '{0:11}{1:25.8f}{2:25.8f}{3:25.8f}'.format(i+1,freq[i],ZPE[i],
                                                       infrared_intensity[i])
    print '\n'
    print 'Summary of zero point energy for entire system:'
    print '| Cumulative ZPE               = {0:15.8f} eV'.format(sum(ZPE))
    print '| without first six eigenmodes = {0:15.8f} eV\n'.format(sum(ZPE)-
                                                                 sum(ZPE[:6]))
    print 'Stability checking - eigenvalues should all be positive for a '+\
           'stable structure. '
    print 'The six smallest frequencies should be (almost) zero:'
    string=''
    for zz in ZPE[:6]: string=string+'{0:25.8f}'.format(zz)
    print string
    print 'Compare this with the largest eigenvalue, '
    print '{0:25.8f}'.format(freq[-1])
    
    nums=arange(n_atoms)[struc.constrained==False]
    nums2=arange(n_atoms)[struc.constrained]
    newline=''
    newline_ir='[INT]\n'
    if options.molden:
      newline_molden='[Molden Format]\n[GEOMETRIES] XYZ\n'
      newline_molden=newline_molden+'{0:6}\n'.format(n_atoms)+'\n'
      for i_atoms in range(n_constrained):
	newline_molden=newline_molden+'{0:6}'.format(
	                                      struc.atoms[nums[i_atoms]].kind)
	for i_coord in range(3):
	  newline_molden=newline_molden+'{0:10.4f}'.format(
	                            struc.atoms[nums[i_atoms]].coord[i_coord])
	newline_molden=newline_molden+'\n'
      newline_molden=newline_molden+'[FREQ]\n'   
      for i in range(len(freq)):
	newline_molden=newline_molden+'{0:10.3f}\n'.format(freq[i])
      newline_molden=newline_molden+'[INT]\n' 
      for i in range(len(freq)):
	newline_molden=newline_molden+'{0:17.6e}\n'.format(
	                                                infrared_intensity[i])
      newline_molden=newline_molden+'[FR-COORD]\n'
      newline_molden=newline_molden+'{0:6}\n'.format(n_atoms)+'\n'
      for i_atoms in range(n_constrained):
	newline_molden=newline_molden+'{0:6}'.format(
	                                      struc.atoms[nums[i_atoms]].kind)
	for i_coord in range(3):
	  newline_molden=newline_molden+'{0:10.4f}'.format(
	                       struc.atoms[nums[i_atoms]].coord[i_coord]/bohr)
	newline_molden=newline_molden+'\n'
      newline_molden=newline_molden+'[FR-NORM-COORD]\n'
    
    for i in range(len(freq)):
      newline=newline+'{0:6}\n'.format(n_atoms)
      if freq[i]>0:
	newline=newline+'stable frequency at '
      elif freq[i]<0:
	newline=newline+'unstable frequency at '
	if options.distort and freq[i]<-50:
	  struc_new=copy.deepcopy(struc)
	  for i_atoms in range(n_constrained):
	    for i_coord in range(3):
	      struc_new.atoms[i_atoms].coord[i_coord]=\
	      struc_new.atoms[i_atoms].coord[i_coord]+\
		    eig_vec[(i_atoms)*3+i_coord,i]                        
	  geoname=name+'.distorted.vibration_'+str(i+1)+'.geometry.in'
	  new_geo=open(geoname,'w')
	  newline_geo='#\n# distorted structure-file for based on eigenmodes\n'
	  newline_geo=newline_geo+\
	          '# vibration {0:5} :{1:10.3f} 1/cm\n#\n'.format(i+1,freq[i])
	  new_geo.writelines(newline_geo+struc_new.to_str())
	  new_geo.close()
      elif freq[i]==0:
	newline=newline+'translation or rotation '
      newline=newline+'{0:10.3f} 1/cm IR int. is '.format(freq[i])
      newline=newline+'{0:10.4e} D^2/Ang^2; red. mass is '.format(
                                                        infrared_intensity[i])
      newline=newline+'{0:5.3f} a.m.u.; force const. is '.format(
                                                          1.0/reduced_mass[i])
      newline=newline+'{0:5.3f} mDyne/Ang.\n'.format(((freq[i]*(200*pi*c))**2)*
	      (1.0/reduced_mass[i])*at_u*1.e-2)
      if options.molden: newline_molden=newline_molden+\
                                               'vibration {0:6}\n'.format(i+1)
      for i_atoms in range(n_constrained):
	newline=newline+'{0:6}'.format(struc.atoms[nums[i_atoms]].kind)
	for i_coord in range(3):
	  newline=newline+'{0:10.4f}'.format(
	                            struc.atoms[nums[i_atoms]].coord[i_coord])
	for i_coord in range(3):
	  newline=newline+'{0:10.4f}'.format(eig_vec[(i_atoms)*3+i_coord,i])
	  if options.molden: newline_molden=newline_molden+'{0:10.4f}'.format(
	                     eig_vec[(i_atoms)*3+i_coord,i]/bohr)
	newline=newline+'\n'
	if options.molden: newline_molden=newline_molden+'\n'
      for i_atoms in range(n_atoms-n_constrained):
	newline=newline+'{0:6}'.format(struc.atoms[nums2[i_atoms]].kind)
	for i_coord in range(3):
	  newline=newline+'{0:10.4f}'.format(
	                           struc.atoms[nums2[i_atoms]].coord[i_coord])
	for i_coord in range(3):
	  newline=newline+'{0:10.4f}'.format(0.0)
	newline=newline+'\n'
      newline_ir=newline_ir+'{0:10.4e}\n'.format(infrared_intensity[i])
    xyz=open(xyzfile,'w')
    xyz.writelines(newline)
    xyz.close()
    ir=open(irname,'w')
    ir.writelines(newline_ir)
    ir.close()
    if options.molden:
      molden=open(moldenname,'w')
      molden.writelines(newline_molden)
      molden.close()
    
    if (mode=='1' or mode=='2') and options.plot:
      x=linspace(freq.min()-500,freq.max()+500,1000)
      z=zeros(len(x))
      for i in range(len(freq)):
	z[argmin(abs(x-freq[i]))]=infrared_intensity[i]
      window_len=150
      lorentzian=lorentz(pi,broadening,arange(250))#signal.gaussian(window_len,broadening)
      s=r_[z[window_len-1:0:-1],z,z[-1:-window_len:-1]]
      z_convolve=convolve(lorentzian/lorentzian.sum(),s,mode='same')[
	                                           window_len-1:-window_len+1]
      fig=figure(0)
      ax=fig.add_subplot(111)
      ax.plot(x,z_convolve,'r',lw=2)
      ax.set_xlim([freq.min()-500,freq.max()+500])
      ax.set_ylim([-0.01,ax.get_ylim()[1]])
      ax.set_yticks([])
      ax.set_xlabel('Frequency [1/cm]',size=20)
      ax.set_ylabel('Intensity [a.u.]',size=20)
      fig.savefig(name+'_IR_spectrum.pdf')
      
    print '\n Done. '
Example #26
0
 def GetMostAbundantPseudoisomer(self, pH, I, pMg, T):
     v_dG0, v_dG0_tag, v_nH, v_z, v_nMg = self._Transform(pH, pMg, I, T)
     i = pylab.argmin(v_dG0_tag)
     return v_dG0[i], v_dG0_tag[i], v_nH[i], v_z[i], v_nMg[i]
Example #27
0
def plotVirial(posdat, endat, bodycount, dt, eps, tot_time):
    """
    makes the virial comparison plot and everything else
    """

    bodycount, pos_length, postype = posdat.shape
    pos_timelen = pl.linspace(0, tot_time, pos_length)

    # component wise energies
    kin_en_comp = posdat[:, :,
                         4]  # (100 bodies, kin energies at timestep).shape
    pot_en_comp = posdat[:, :, 5]  # pot energies
    kin_en_ejec_comp = pl.zeros((bodycount, pos_length))
    pot_en_ejec_comp = pl.zeros((bodycount, pos_length))
    masses = posdat[:, 0, 3]

    # now to exclude ejected bodies
    ejecta_body_array = pl.zeros(
        bodycount)  # identifies which bodies become ejected at which time
    ejecta_time_array = pl.zeros(
        pos_length)  # measures no. of ejecta at time incr.

    # body summed energies, for use in en. consv. and virial test
    kin_en_sum = pl.zeros(pos_length)
    pot_en_sum = pl.zeros(pos_length)
    kin_en_ejec_sum = pl.zeros(pos_length)
    pot_en_ejec_sum = pl.zeros(pos_length)

    # task f) relevant
    eq_time = pl.array([4.52])
    eq_pos = []
    eq_arg = int(pl.where(pos_timelen >= eq_time[0])[0][0])

    # running through the lists
    for step in pl.arange(0, pos_length):
        for body in pl.arange(0, bodycount):
            if kin_en_comp[body, step] + pot_en_comp[body, step] > 0:
                # move to ejected lists
                kin_en_ejec_comp[body, step] = kin_en_comp[body, step]
                pot_en_ejec_comp[body, step] = pot_en_comp[body, step]

                ejecta_body_array[body] = 1  # identification
                ejecta_time_array[step] = sum(ejecta_body_array)
                # stores no. of ejecta at time incr.
                kin_en_comp[body, step] = 0.  # necessary for elimination
                pot_en_comp[body, step] = 0.

        kin_en_sum[step] = sum(kin_en_comp[:, step])
        pot_en_sum[step] = sum(pot_en_comp[:, step]) / 2.
        # factor of 1/2 because system

        kin_en_ejec_sum[step] = sum(kin_en_ejec_comp[:, step])
        pot_en_ejec_sum[step] = sum(pot_en_ejec_comp[:, step]) / .2
        """print type(pos_timelen[step]), pos_timelen[step]
        print type(eq_time[0]), eq_time[0]
        print """
        if step == eq_arg:
            for i in range(len(ejecta_body_array)):
                if int(ejecta_body_array[i]) == 0:
                    eq_pos.append(posdat[i, eq_arg, :3])
                    # equilibrium positions, (bodies, positions).shape
    eq_pos = pl.array(eq_pos)
    eq_radia = pl.zeros(len(eq_pos))
    for i in range(len(eq_pos)):
        eq_radia[i] = (eq_pos[i, 0]**2 + eq_pos[i, 1]**2 + eq_pos[i, 2]**2)**.5

    consv_bound_ejec_sum = kin_en_sum + pot_en_sum \
                            + kin_en_ejec_sum + pot_en_ejec_sum

    # --- tasks b) through e) --- #

    pl.figure()
    pl.subplot(2, 1, 1)
    pl.plot(pos_timelen, kin_en_sum, label="Kinetic")
    pl.legend(loc='best')
    pl.ylabel("Kinetic energy")
    pl.xlim([0.0, tot_time])
    pl.title(r"Bound energy over time, %dbody %gdt %g$\varepsilon$" %
             (bodycount, dt, eps))
    pl.grid("on")

    pl.subplot(2, 1, 2)
    pl.plot(pos_timelen, pot_en_sum, label="Potential")
    pl.legend(loc='best')
    pl.xlabel(r"Time $\tau_c$")
    pl.ylabel("Potential energy")
    pl.xlim([0.0, tot_time])
    pl.grid("on")
    pl.savefig("../figs/ClusterEnergiesComp_" + str(bodycount) + "body_dt" +
               str(int(dt * 1000)) + "_eps" + str(int(eps * 100)) + "_dur" +
               str(int(tot_time)) + ".png")

    ### --- ###

    pl.figure()
    pl.subplot(2, 1, 1)
    pl.title(r"No. of ejecta, %dbody %gdt %g$\varepsilon$" %
             (bodycount, dt, eps))
    pl.ylabel(r"Ejection fraction")
    pl.xlim([0.0, tot_time])
    pl.plot(pos_timelen, ejecta_time_array / bodycount, label="Ejecta/Tot")
    pl.legend(loc='best')
    pl.grid("on")

    pl.subplot(2, 1, 2)

    pl.plot(pos_timelen,
            kin_en_ejec_sum - pot_en_ejec_sum,
            label=r"$K_e - V_e$")
    pl.legend(loc='best')
    pl.xlabel(r"Time $\tau_c$")
    pl.ylabel("Energy")
    pl.xlim([0., tot_time])
    pl.title(r"Ejected bodies' energy, %dbody %gdt %g$\varepsilon$" %
             (bodycount, dt, eps))
    pl.grid("on")
    pl.savefig("../figs/ClusterEnergiesEjecEn_" + str(bodycount) + "body_dt" +
               str(int(dt * 1000)) + "_eps" + str(int(eps * 100)) + "_dur" +
               str(int(tot_time)) + ".png")

    ### --- ###

    pl.figure()
    pl.subplot(2, 1, 1)
    pl.plot(pos_timelen,
            consv_bound_ejec_sum,
            label=r"$K_b + V_b + K_e + V_e$")
    pl.plot(pos_timelen,
            pl.ones(pos_length) * pot_en_sum[0],
            linestyle="dashed",
            color="black",
            label="Conserved ideal")
    pl.legend(loc='best')
    pl.ylabel("Energy sum")
    pl.xlim([0., tot_time])
    # pl.ylim([pot_en_sum[0] - 0.1*max(consv_bound_ejec_sum), max(consv_bound_ejec_sum) + 0.1*max(consv_bound_ejec_sum)])
    pl.title(r"Energy conservation test, %dbody %gdt %g$\varepsilon$" %
             (bodycount, dt, eps))
    pl.grid("on")

    pl.subplot(2, 1, 2)
    pl.plot(pos_timelen,
            2 * kin_en_sum / (bodycount - ejecta_time_array) + pot_en_sum /
            (bodycount - ejecta_time_array),
            label=r"$2K_b + V_b$")
    pl.plot(pos_timelen,
            pl.zeros(pos_length),
            linestyle="dashed",
            color="black",
            label="Virial ideal")
    pl.legend(loc='best')
    pl.xlabel(r"Time $\tau_c$")
    pl.ylabel("Virial energy comparison")
    pl.xlim([0.0, tot_time])
    pl.title(r"Virial comparison fit, %dbody %gdt %g$\varepsilon$" %
             (bodycount, dt, eps))
    pl.grid("on")
    pl.savefig("../figs/ClusterEnConsvVirial_" + str(bodycount) + "body_dt" +
               str(int(dt * 1000)) + "_eps" + str(int(eps * 100)) + "_dur" +
               str(int(tot_time)) + ".png")

    ################################
    # --- beginning of task f) --- #
    ################################

    #

    colorlist = []
    for i in range(bodycount):
        colorlist.append(random.rand(3, 1))

    fig3D = pl.figure()
    ax3D = fig3D.add_subplot(111, projection='3d')

    for body in range(len(eq_pos)):
        ax3D.plot([eq_pos[body, 0]], [eq_pos[body, 1]], [eq_pos[body, 2]],
                  marker="o",
                  color=colorlist[body])

    ax3D.set_title(
        r"Star cluster 3D %dbody %gdt %g$\varepsilon$, t=%g$\tau_c$" %
        (bodycount, dt, eps, eq_time))
    ax3D.set_xlabel("X-axis [ly]")
    ax3D.set_ylabel("Y-axis [ly]")
    ax3D.set_zlabel("Z-axis [ly]")
    ax3D.set_xlim([-25, 25])
    ax3D.set_ylim([-25, 25])
    ax3D.set_zlim([-25, 25])
    fig3D.savefig("../moviefigs/eps" + str(int(eps * 100)) + "/ClusterPos_" +
                  str(bodycount) + "body_dt" + str(int(dt * 1000)) + "_eps" +
                  str(int(eps * 100)) + "_dur" + str(int(tot_time)) + ".png")

    print "mean eq. radius:", pl.mean(eq_radia)
    print "std dev. radius:", pl.std(eq_radia)

    bincount = 60
    weights, edges = pl.histogram(eq_radia, bins=bincount, normed=False)
    radia = edges + 0.5 * (edges[1] - edges[0])

    # lsm finds correct r0
    lengthnumber = 1000
    alphalower = 0.01
    alphaupper = 2.
    alpha = pl.linspace(alphalower, alphaupper, lengthnumber)
    r0lower = 0.0001
    r0upper = 10.
    r0 = pl.linspace(r0lower, r0upper, lengthnumber)

    n0 = max(weights)
    n0arg = pl.argmax(weights)
    r0final = bodycount**(
        1. / 3)  # assuming it depends somehow on total body number in volume
    nsums = pl.zeros(lengthnumber)

    for alphacount in range(lengthnumber):
        nset = n(edges[:-1] - edges[n0arg], alpha[alphacount] * r0final, n0)
        nsums[alphacount] = sum((nset - weights)**2)

    minarg = pl.argmin(nsums)
    r0final *= alpha[minarg]
    print "n0", n0
    print "r0", r0final
    """
    pl.figure()
    pl.subplot(2,1,1)
    pl.hist(eq_radia, label="Histogram of bodies", bins=bincount)
    pl.legend(loc='best')
    pl.ylabel(r"Bodies in the data")
    pl.title(r"Radial density of bound bodies, %dbody %gdt %g$\varepsilon$" % (bodycount, dt, eps) )
    pl.grid('on')
    
    pl.subplot(2,1,2)
    pl.plot(edges + edges[pl.argmax(weights)], n(edges, r0final, n0), label=r"$n(r)$", color='blue', linewidth=2)
    pl.xlabel(r"Radius $R_0$")
    pl.ylabel(r"Radial distribution model")
    pl.legend(loc='best')
    pl.grid('on')
    pl.savefig("../figs/ClusterRadDens_"+str(bodycount)+"body_dt"+str(int(dt*1000))+"_eps"+str(int(eps*100))+"_dur"+str(int(tot_time))+".png")
    """

    pl.figure()
    pl.hist(eq_radia, label="Histogram of bodies", color='cyan', bins=bincount)
    pl.title(r"Radial density of bound bodies, %dbody %gdt %g$\varepsilon$" %
             (bodycount, dt, eps))

    pl.plot(edges + edges[pl.argmax(weights)],
            n(edges, r0final, n0),
            label=r"$n(r)$",
            color='magenta',
            linewidth=2)
    pl.xlabel(r"Radius $R_0$")
    pl.ylabel(r"Radial distribution")
    pl.legend(loc='best')
    pl.grid('on')
    pl.savefig("../figs/ClusterRadDens_" + str(bodycount) + "body_dt" +
               str(int(dt * 1000)) + "_eps" + str(int(eps * 100)) + "_dur" +
               str(int(tot_time)) + ".png")
Example #28
0
    for e in fl[1:]:

        data_add = pd.read_table(e, sep = ",")
        data_add.columns = ["Time", e[3:8]]
        means[k] = pd.merge(means[k], data_add, on = "Time")

    means[k]["0.435"] -= 273.15
    means[k]["0.455"] -= 273.15

    heights = pl.array(means[k].keys())[1:].astype(float)

    pl.figure()

    for level in filling_levels:

        index = pl.argmin(abs(means[k]["Time"] - (level / massflows[k])))

        pl.plot(means[k].loc[index][1:][0:].values, heights, \
            label = "filling level = " + str(level) + " kg" )

    pl.xlim([58.0, 86.0])
    pl.ylim([0.2, 2.4])
    pl.grid(True)

    pl.ylabel("Height (m)")
    pl.xlabel("Temperature ($^{\circ}$C)")

    pl.legend(loc="lower right")
    pl.title("Mean temperature per stratum in " + sim)

    pl.savefig(basedir + "fig_mean_per_sim_upper_inlet/" + sim + ".png", bbox_inches='tight')
Example #29
0
def argmindist_py(a, v):
    from pylab import randn, newaxis, sum, argmin
    return argmin(sum((a - v[newaxis, :])**2, axis=1))