Example #1
0
def test_vaccines_sequential(do_plot=False):
    sc.heading('Testing sequential vaccine...')

    n_days = 60
    p1 = cv.variant('beta', days=20, n_imports=20)
    num_doses = {i:(i**2)*(i%2==0) for i in np.arange(n_days)} # Test subtarget and fluctuating doses

    n_doses = []
    subtarget = dict(inds=np.arange(int(base_pars.pop_size//2)), vals=0.1)
    pfizer = cv.vaccinate_num(vaccine='pfizer', sequence='age', num_doses=num_doses, subtarget=subtarget)
    sim  = cv.Sim(base_pars, n_days=n_days, rescale=False, use_waning=True, variants=p1, interventions=pfizer, analyzers=lambda sim: n_doses.append(sim.people.doses.copy()))
    sim.run()

    n_doses = np.array(n_doses)

    if do_plot:
        fully_vaccinated = (n_doses == 2).sum(axis=1)
        first_dose = (n_doses == 1).sum(axis=1)
        pl.stackplot(sim.tvec, first_dose, fully_vaccinated)

        # Stacked bars by 10 year age

        # At the end of the simulation
        df = pd.DataFrame(n_doses.T)
        df['age_bin'] = np.digitize(sim.people.age,np.arange(0,100,10))
        df['fully_vaccinated'] = df[60]==2
        df['first_dose'] = df[60]==1
        df['unvaccinated'] = df[60]==0
        out = df.groupby('age_bin').sum()
        out[["unvaccinated", "first_dose","fully_vaccinated"]].plot(kind="bar", stacked=True)

        # Part-way through the simulation
        df = pd.DataFrame(n_doses.T)
        df['age_bin'] = np.digitize(sim.people.age,np.arange(0,100,10))
        df['fully_vaccinated'] = df[40]==2
        df['first_dose'] = df[40]==1
        df['unvaccinated'] = df[40]==0
        out = df.groupby('age_bin').sum()
        out[["unvaccinated", "first_dose","fully_vaccinated"]].plot(kind="bar", stacked=True)

    return sim
Example #2
0
def test_vaccines_sequential(do_plot=False):
    sc.heading('Testing sequential vaccine...')

    p1 = cv.variant('sa variant',   days=20, n_imports=20)
    def age_sequence(people): return np.argsort(-people.age)

    n_doses = []
    pfizer = cv.vaccinate_num(vaccine='pfizer', sequence=age_sequence, num_doses=lambda sim: sim.t)
    sim  = cv.Sim(base_pars, rescale=False, use_waning=True, variants=p1, interventions=pfizer, analyzers=lambda sim: n_doses.append(sim.people.vaccinations.copy()))
    sim.run()

    n_doses = np.array(n_doses)

    if do_plot:
        fully_vaccinated = (n_doses == 2).sum(axis=1)
        first_dose = (n_doses == 1).sum(axis=1)
        pl.stackplot(sim.tvec, first_dose, fully_vaccinated)

        # Stacked bars by 10 year age

        # At the end of the simulation
        df = pd.DataFrame(n_doses.T)
        df['age_bin'] = np.digitize(sim.people.age,np.arange(0,100,10))
        df['fully_vaccinated'] = df[60]==2
        df['first_dose'] = df[60]==1
        df['unvaccinated'] = df[60]==0
        out = df.groupby('age_bin').sum()
        out[["unvaccinated", "first_dose","fully_vaccinated"]].plot(kind="bar", stacked=True)

        # Part-way through the simulation
        df = pd.DataFrame(n_doses.T)
        df['age_bin'] = np.digitize(sim.people.age,np.arange(0,100,10))
        df['fully_vaccinated'] = df[40]==2
        df['first_dose'] = df[40]==1
        df['unvaccinated'] = df[40]==0
        out = df.groupby('age_bin').sum()
        out[["unvaccinated", "first_dose","fully_vaccinated"]].plot(kind="bar", stacked=True)

    return sim
Example #3
0
def plot_tickets(tracker_name, db_name, image_name):
    conn = sqlite3.connect(db_name)
    cur = conn.cursor()

    rows = cur.execute("select json from tickets")
    all_issues = (json.loads(r[0]) for r in rows)
    issues = [i for i in all_issues if i["tracker"]["name"] == tracker_name]
    cur.close()
    conn.close()

    data = [reduce_journal(analyse_journal(i)) for i in issues]
    data = itertools.chain.from_iterable(data)
    data = sorted(data, key=lambda x: x[0])
    data = [split_sum(d) for d in sum_journal(data)]

    pylab.figure(figsize=(9, 10))
    pylab.subplot(2, 1, 1)
    pylab.title(tracker_name)
    x1, y1 = zip(*data)
    y1 = zip(*y1)
    pylab.grid()
    pylab.stackplot(x1, y1, colors=COLORS)
    high = pylab.Rectangle((0, 0), 1, 1, fc=COLORS[0])
    normal = pylab.Rectangle((0, 0), 1, 1, fc=COLORS[1])
    low = pylab.Rectangle((0, 0), 1, 1, fc=COLORS[2])
    pylab.legend([low, normal, high], ["Low", "Normal", "High"], loc=2)

    pylab.subplot(2, 1, 2)
    pylab.title(tracker_name + " (Die letzen 5 Wochen)")
    current_data = filter_by_time(data, datetime.timedelta(days=45))
    x2, y2 = zip(*current_data)
    y2 = zip(*y2)
    pylab.grid()
    pylab.stackplot(x2, y2, colors=COLORS)

    pylab.savefig(image_name)
Example #4
0
  # Handle MOOSE developers option
  if options.moose_dev and options.authors:
    raise Exception("Can not specify both --authors and --moose-dev");
  elif options.moose_dev:
    options.authors = 'moose'

  # Extract the data
  dates, data, contrib, contributors = getData(options)

  # Create the figure
  fig, ax1 = pylab.subplots()

  # Plot the data
  if options.stack: # stack plot
    handles = pylab.stackplot(dates, data)
    for i in range(len(handles)):
      handles[i].set_label(contributors[i])

  else: # line plot
    handles = []
    for i in range(len(contributors)):
      x = numpy.array(dates)
      y = data[i,:]
      idx = y>0
      h = ax1.plot(x[idx], y[idx], label=contributors[i], linewidth=2, markevery=60, marker=marker.next(), color=color.next())
      handles.append(h[0])
    lgnd = pylab.legend(handles, contributors, loc='upper left')
    lgnd.draw_frame(False)

  # Add labels
Example #5
0
def MakePlot(infile, plotfile, aa_order):
    """Makes plots from input file *infile*.
    
    *infile* contains the amino-acid frequencies over time.
    
    *plotfile* is the name of the created PDF.
    
    *aa_order* is a list giving the order of amino acids from top to bottom.
    """
    labelfrac = 0.01  # only label residues that rise above this level in legend

    # read input file
    aminoacids = mapmuts.sequtils.AminoAcids()
    colors = ['b', 'r', 'g', 'c', 'm', 'y'
              ] + ['k'] * len(aminoacids)  # order corresponds to aa_order
    colors = colors[:len(aminoacids)]
    colors.reverse()
    aa_order.reverse()
    aa_indices = dict([(aa_order[i], i) for i in range(len(aa_order))])
    lines = [
        line for line in open(infile).readlines()
        if not (line.isspace() or line[0] == '#')
    ]
    dates = []
    counts = []
    aafracs = [[] for aa in aminoacids]
    for line in lines:
        entries = line.split('\t')
        dates.append(float(entries[0]))
        counts.append(int(entries[3]))
        i = 0
        for aa in aminoacids:
            frac = float(entries[4 + i]) / counts[-1]
            aafracs[aa_indices[aa]].append(frac)
            i += 1
    labeled_aas = []
    for i in range(len(aa_order)):
        aa = aa_order[i]
        maxfrac = max(aafracs[i])
        if maxfrac >= labelfrac:
            labeled_aas.append(aa)

    # make plot
    matplotlib.rc('font', size=9)
    fig = pylab.figure(figsize=(3, 1.9))
    (lmargin, bmargin, rmargin, tmargin) = (0.15, 0.22, 0.01, 0.18)
    axis = pylab.axes(
        [lmargin, bmargin, 1.0 - lmargin - rmargin, 1.0 - tmargin - bmargin])
    plotareas = pylab.stackplot(dates, aafracs, colors=colors)
    pylab.ylabel('fraction', size=10)
    pylab.xlabel('date', size=10)
    axis.set_ylim([0, 1.0])
    yticker = matplotlib.ticker.FixedLocator([0.0, 0.5, 1.0])
    axis.yaxis.set_major_locator(yticker)
    axis.set_xlim([min(dates), max(dates)])
    dateticks = [
        year for year in range(int(math.ceil(min(dates))),
                               int(max(dates)) + 1)
    ]
    xticker = matplotlib.ticker.FixedLocator(dateticks)
    axis.xaxis.set_major_locator(xticker)
    yformatter = matplotlib.ticker.FixedFormatter(
        ['%d' % year for year in dateticks])
    axis.xaxis.set_major_formatter(yformatter)
    patches = []
    i = 0
    assert len(aa_order) == len(plotareas) == len(colors)
    for (aa, color) in zip(aa_order, colors):
        if aa in labeled_aas:
            patch = pylab.Rectangle((0, 0), 1, 1, color=color)
            patches.append(patch)
        i += 1
    assert len(labeled_aas) == len(patches)
    patches.reverse()
    labeled_aas.reverse()
    pylab.legend(patches,
                 labeled_aas,
                 ncol=len(labeled_aas),
                 handlelength=0.8,
                 fontsize=10,
                 handletextpad=0.4,
                 columnspacing=1,
                 bbox_to_anchor=(0.5, 0.98),
                 loc='lower center')

    print "Creating the plot file %s" % plotfile
    pylab.savefig(plotfile)

    print "Now making JPG version."
    jpgfile = "%s.jpg" % os.path.splitext(plotfile)[0]
    os.system('convert -density 500 %s %s' % (plotfile, jpgfile))
Example #6
0
             b=cnm.estimates.b,
             f=cnm.estimates.f,
             dims=cnm.estimates.dims,
             tottime='SEE VARIABLES t_XX',
             noisyC=cnm.estimates.noisyC,
             shifts=cnm.estimates.shifts,
             num_comps=cnm.estimates.A.shape[-1],
             t_online=cnm.t_online,
             t_detect=cnm.t_detect,
             t_shapes=cnm.t_shapes)
    cnm.save(
        os.path.join(
            base_folder,
            'Zebrafish/results_analysis_online_1EPOCH_gSig6_equalized_Plane_NEW_'
            + str(ID) + '.hdf5'))
#%%
pl.figure()
pl.stackplot(
    np.arange(len(cnm.t_detect)), 1e3 * np.array(cnm.t_motion),
    1e3 * (np.array(cnm.t_online) - np.array(cnm.t_detect) -
           np.array(cnm.t_shapes) - np.array(cnm.t_motion)),
    1e3 * np.array(cnm.t_detect), 1e3 * np.array(cnm.t_shapes))
pl.title('Processing time per frame')
pl.xlabel('Frame #')
pl.ylabel('Processing time [ms]')
pl.ylim([0, 1000])
pl.legend(labels=['motion', 'process', 'detect', 'shapes'])

#%%
cnm.estimates.plot_contours()
Example #7
0
utils = pad(utils)

labels = ['ADAM',
          'Avocado',
          'Cannoli',
          'BDG-Formats',
          'Utils']
        
figure()
title('Lines of code across the BDG projects over time')
xlabel('Time')
ylabel('Lines of source code')
stackplot(dates,
          adam_core, adam_apis, adam_cli, adam_python, adam_r,
          avocado_core, avocado_cli, cannoli, formats, utils,
          colors = ["#FF0000", "#EE0000", "#DD0000", "#CC0000", "#BB0000",
                    "#00FF00", "#00DD00",
                    "#0000FF",
                    "#FF00FF",
                    "#808080"], edgecolor='none')
legend([Patch(color="#FF0000"),
        Patch(color="#00FF00"),
        Patch(color="#0000FF"),
        Patch(color="#FF00FF"),
        Patch(color="#808080")],
       labels,
       loc=2)
xlim(0, (last_date - start_date).days)
xticks([0,
        (date(2014, 1, 1) - start_date).days,
        (date(2015, 1, 1) - start_date).days,
        (date(2016, 1, 1) - start_date).days,
def MakePlot(infile, plotfile, aa_order):
    """Makes plots from input file *infile*.
    
    *infile* contains the amino-acid frequencies over time.
    
    *plotfile* is the name of the created PDF.
    
    *aa_order* is a list giving the order of amino acids from top to bottom.
    """
    labelfrac = 0.01 # only label residues that rise above this level in legend

    # read input file
    aminoacids = mapmuts.sequtils.AminoAcids()
    colors = ['b', 'r', 'g', 'c', 'm', 'y'] + ['k'] * len(aminoacids) # order corresponds to aa_order
    colors = colors[ : len(aminoacids)]
    colors.reverse()
    aa_order.reverse()
    aa_indices = dict([(aa_order[i], i) for i in range(len(aa_order))])
    lines = [line for line in open(infile).readlines() if not (line.isspace() or line[0] == '#')]
    dates = []
    counts = []
    aafracs = [[] for aa in aminoacids]
    for line in lines:
        entries = line.split('\t')
        dates.append(float(entries[0]))
        counts.append(int(entries[3]))
        i = 0
        for aa in aminoacids:
            frac = float(entries[4 + i]) / counts[-1]
            aafracs[aa_indices[aa]].append(frac)
            i += 1
    labeled_aas = []
    for i in range(len(aa_order)):
        aa = aa_order[i]
        maxfrac = max(aafracs[i])
        if maxfrac >= labelfrac:
            labeled_aas.append(aa)

    # make plot
    matplotlib.rc('font', size=9)
    fig = pylab.figure(figsize=(3, 1.9))
    (lmargin, bmargin, rmargin, tmargin) = (0.15, 0.22, 0.01, 0.18)
    axis = pylab.axes([lmargin, bmargin, 1.0 - lmargin - rmargin, 1.0 - tmargin - bmargin])
    plotareas = pylab.stackplot(dates, aafracs, colors=colors)
    pylab.ylabel('fraction', size=10)
    pylab.xlabel('date', size=10)
    axis.set_ylim([0, 1.0])
    yticker = matplotlib.ticker.FixedLocator([0.0, 0.5, 1.0])
    axis.yaxis.set_major_locator(yticker)
    axis.set_xlim([min(dates), max(dates)])
    dateticks = [year for year in range(int(math.ceil(min(dates))), int(max(dates)) + 1)]
    xticker = matplotlib.ticker.FixedLocator(dateticks)
    axis.xaxis.set_major_locator(xticker)
    yformatter = matplotlib.ticker.FixedFormatter(['%d' % year for year in dateticks])
    axis.xaxis.set_major_formatter(yformatter)
    patches = []
    i = 0
    assert len(aa_order) == len(plotareas) == len(colors)
    for (aa, color) in zip(aa_order, colors):
        if aa in labeled_aas:
            patch = pylab.Rectangle((0, 0), 1, 1, color=color)
            patches.append(patch)
        i += 1
    assert len(labeled_aas) == len(patches)
    patches.reverse()
    labeled_aas.reverse()
    pylab.legend(patches, labeled_aas, ncol=len(labeled_aas), handlelength=0.8, fontsize=10, handletextpad=0.4, columnspacing=1, bbox_to_anchor=(0.5, 0.98), loc='lower center')

    print "Creating the plot file %s" % plotfile
    pylab.savefig(plotfile)

    print "Now making JPG version."
    jpgfile = "%s.jpg" % os.path.splitext(plotfile)[0]
    os.system('convert -density 500 %s %s' % (plotfile, jpgfile))
Example #9
0
    beta=0.015,
    n_days=90,
)


# Define the prioritization function
def prioritize_by_age(people):
    return np.argsort(-people.age)


# Record the number of doses each person has received each day so
# that we can plot the rollout in this example. Without a custom
# analyzer, only the total number of doses will be recorded
n_doses = []

# Define sequence based vaccination
pfizer = cv.vaccinate_num(vaccine='pfizer',
                          sequence=prioritize_by_age,
                          num_doses=100)
sim = cv.Sim(pars=pars,
             interventions=pfizer,
             analyzers=lambda sim: n_doses.append(sim.people.doses.copy()))
sim.run()

pl.figure()
n_doses = np.array(n_doses)
fully_vaccinated = (n_doses == 2).sum(axis=1)
first_dose = (n_doses == 1).sum(axis=1)
pl.stackplot(sim.tvec, first_dose, fully_vaccinated)
pl.legend(['First dose', 'Fully vaccinated'])
pl.show()
Example #10
0
    if code=='2':
        quotas[1].append(cuml)
    if code=='3':
        quotas[2].append(cuml)
    if code=='4':
        quotas[3].append(cuml)
    if code=='6':
        quotas[4].append(cuml)
    if code=='7':
        quotas[5].append(cuml)


years = range(1989,2013)
print quotas

plot = plt.stackplot(years,quotas[0],quotas[1],quotas[2],quotas[3],quotas[4],quotas[5],
                     colors=['#377EB8','#7E1137','y','r','m','#55BA87'])
plt.legend(["East Asia & Pacific","Europe & Central Asia","Latin America","Middle East & N Africa","South Asia","Sub-Saharan Africa"], loc='upper left')
plt.xlim(1989,2012)
plt.ylabel('Total Number of Countries with a Gender Quota')
plt.xlabel('Year')

    
plt.savefig('quotas/quotasStacked.png')
plt.savefig('quotas/quotasStacked.eps',bbox_inches='tight')

plt.gcf().clear()


#Reserved Only
data = open('quotaTimesRes.csv','r')
quotas = [[],[],[],[],[],[]]
Example #11
0
formats.append(formats[-1])
utils.append(utils[-1])
        
labels = ['ADAM',
          'Avocado',
          'Cannoli',
          'BDG-Formats',
          'Utils']
        
figure()
title('Unique contributors across the BDG projects over time')
xlabel('Time')
ylabel('Unique contributors')
stackplot(dates, adam, avocado, cannoli, formats, utils,
          colors = ["#FF0000",
                    "#00FF00",
                    "#0000FF",
                    "#FF00FF",
                    "#808080"])
legend([Patch(color="#FF0000"),
        Patch(color="#00FF00"),
        Patch(color="#0000FF"),
        Patch(color="#FF00FF"),
        Patch(color="#808080")],
       ['ADAM', 'Avocado', 'Cannoli', 'bdg-formats', 'bdg-utils'],
       loc=2)
xlim(0, (last_date - start_date).days)
xticks([0,
        (date(2014, 1, 1) - start_date).days,
        (date(2015, 1, 1) - start_date).days,
        (date(2016, 1, 1) - start_date).days,
        (date(2017, 1, 1) - start_date).days,
Example #12
0
    try:
        with h5py.File(fname, "r") as h5:
            Hp = h5[table][:]

    except KeyError, e:
        logger.info("Failed to read data from %s: %s" % (fname, e))
        exit(1)

    except IOError, e:
        logger.info("Failed to open %s fname: %s" % (fname, e))
        exit(1)

    epochs = Hp.shape[0]
    n_layers = Hp.shape[1]

    if args.stacked:
        ylim = 2 * Hp[-1].sum()
        pylab.ylim([ylim, 0])
        pylab.stackplot(np.arange(epochs), Hp[:, ::-1].T)
    else:
        ylim = 2 * Hp[-1].min()
        pylab.ylim([ylim, 0])
        pylab.plot(Hp)

    #pylab.figsize(12, 8)
    pylab.xlabel("Epochs")
    #pylab.ylabel("avg_{x~testdata} log( E_{h~q}[p(x,h)/q(h|x)]")
    pylab.legend(["layer %d" % i for i in xrange(n_layers)], loc="lower right")
    pylab.show(block=True)
Example #13
0
import numpy as np
import pylab as plt

Y = [[3,4,5,6],[2,2,2,2],[1,2,3,1]]

X = range(4)

plt.stackplot(X, Y, baseline="zero")
plt.show()