Example #1
0
def mix_poscars(s1,s2, roll=True):
  """ Crossover operations where atoms are from one and cell from other.

      Mating operation on two parent structures s1 and s2.
      Done on scaled atomic positions (cubic systems) by
      interchanging their cells and scaled positions.
      Returns two offspring structures each with the same 
      number of atoms as the parent from which the atoms 
      are inhereted.
  """
  from random import choice
  from numpy import dot
  from numpy.linalg import det
  from ..crystal import Structure

  # swap structures randomly.
  if choice([True, False]): s1, s2 = s2, s1

  # chem. symbols and scaled positions of the two parents
  sc_pos2 = zip([atom.type for atom in s2],fractional_pos(s2, roll))

  # cell from s1
  result = Structure(s1.cell, scal=s1.scale)

  # atoms from s2
  for type, pos in sc_pos2:
    result.add_atom(*dot(result.cell, pos), type=type)

  result.scale =  s1.scale * (float(len(result)) / float(len(s1)))**(1./3.)
  return result
Example #2
0
def str_template(name, scale, cell):
  from pylada.crystal import Structure
  structure = Structure()
  structure.name   = name
  structure.scale  = scale
  structure.cell = cell
  return structure
Example #3
0
def mix_atoms(s1, s2, roll=True):
  """ Randomly mix cell and atoms from parents.

      Mating operation on two parent structures s1 and s2.
      Done by mixing randomly atoms from s1 and s2 into the 
      cell coming from one of them. Returns two offspring 
      structures.
  """
  from random import choice
  from itertools import chain
  from numpy.linalg import det
  from numpy import dot, abs
  from ..crystal import Structure

  # swap structures randomly.
  if choice([True, False]): s1, s2 = s2, s1

  # chem. symbols and scaled positions of the two parents
  sc_pos1 = zip([atom.type for atom in s1], fractional_pos(s1, roll))
  sc_pos2 = zip([atom.type for atom in s2], fractional_pos(s2, roll))

  result = Structure(s1.cell)

  for pos, type in chain(sc_pos1, sc_pos2):
    if choice([True, False]):
      result.add_atom(*dot(result.cell, pot), type=type)

  result.scale =  s1.scale * (float(len(result)) / float(len(s1)))**(1./3.)

  return result
def get_madelungenergy(latt_vec_array, charge, epsilon, cutoff):
    """ Function returns leading first order correction term, i.e.,
        screened Madelung-like lattice energy of point charge
    Reference: M. Leslie and M. J. Gillan, J. Phys. C: Solid State Phys. 18 (1985) 973

    Parameters
        defect = pylada.vasp.Extract object
        charge = charge of point defect. Default 1e0 elementary charge
        epsilon = dimensionless relative permittivity, SKW: isotropic average of dielectric constant
        cutoff = Ewald cutoff parameter

    Returns
        Madelung (electrostatic) energy in eV                                                                                                                

    Note:
        1. Units in this function are either handled by the module Quantities, or\
        defaults to Angstrom and elementary charges
        2. Function is adopted from Haowei Peng's version in pylada.defects modules
    """

    ewald_cutoff = cutoff * Ry

    cell_scale = 1.0  # SKW: In notebook workflow cell parameters are converted to Cartesians and units of Angstroms
    # SKW: Create point charge in pylada.crystal.structure class (used for charge model)
    # http://pylada.github.io/pylada/userguide/crystal.html
    struc = Structure()
    struc.cell = latt_vec_array
    struc.scale = cell_scale
    struc.add_atom(0., 0., 0., "P", charge=charge)

    #Anuj_05/22/18: added "cutoff" in ewald syntax
    result = ewald(struc, cutoff=ewald_cutoff).energy / epsilon
    return -1 * result.rescale(eV)
Example #5
0
def from_spglib(strc):
    """
    converting the pylada structure object
    from the spglib format to pylada
    """

    import numpy as np
    from pylada import periodic_table
    from pylada.crystal import Structure

    out_s = Structure()
    out_s.scale = 1.

    cell      = strc[0]
    positions = strc[1]
    symbols   = strc[2]

    out_s.cell = np.transpose(cell)

    for ii in range(len(positions)):
        pp=np.dot(np.transpose(cell),positions[ii])
        ss=periodic_table.symbols[symbols[ii]-1]
        out_s.add_atom(pp[0],pp[1],pp[2],ss)

    return out_s
Example #6
0
def first_order_charge_correction(structure,
                                  charge=None,
                                  epsilon=1e0,
                                  cutoff=20.0,
                                  **kwargs):
    """ First order charge correction of +1 charge in given supercell. 

        Units in this function are either handled by the module Quantities, or
        defaults to Angstroems and elementary charges.

        :Parameters:
          structure : `pylada.crystal.Structure`
            Defect supercell, with cartesian positions in angstrom.
          charge 
            Charge of the point-defect. Defaults to 1e0 elementary charge. If no
            units are attached, expects units of elementary charges.
          epsilon 
            dimensionless relative permittivity.
          cutoff 
            Ewald cutoff parameter.

        :return: Electrostatic energy in eV.
    """
    from quantities import elementary_charge, eV
    from pylada.crystal import Structure
    from pylada.physics import Ry
    from pylada.ewald import ewald

    if charge is None:
        charge = 1
    elif charge == 0:
        return 0e0 * eV
    if hasattr(charge, "units"):
        charge = float(charge.rescale(elementary_charge))

    ewald_cutoff = cutoff * Ry

    struc = Structure()
    struc.cell = structure.cell
    struc.scale = structure.scale
    struc.add_atom(0e0, 0, 0, "A", charge=charge)

    result = ewald(struc, ewald_cutoff).energy / epsilon
    return -result.rescale(eV)
def get_madelungenergy(defect, charge=None, epsilon=1e0, cutoff=100.0):
    """ Function returns leading first order correction term, i.e.,
        screened Madelung-like lattice energy of point charge
    Reference: M. Leslie and M. J. Gillan, J. Phys. C: Solid State Phys. 18 (1985) 973

    Parameters
        defect = pylada.vasp.Extract object
        charge = charge of point defect. Default 1e0 elementary charge
        epsilon = dimensionless relative permittivity
        cutoff = Ewald cutoff parameter

    Returns
        Madelung (electrostatic) energy in eV                                                                                                                

    Note:
        1. Units in this function are either handled by the module Quantities, or\
        defaults to Angstrom and elementary charges
        2. Function is adopted from Haowei Peng's version in pylada.defects modules
    """

    from quantities import elementary_charge, eV
    from pylada.crystal import Structure
    from pylada.physics import Ry
    from pylada.ewald import ewald

    if charge is None: charge = 1
    elif charge == 0: return 0e0 * eV
    if hasattr(charge, "units"):
        charge = float(charge.rescale(elementary_charge))

    ewald_cutoff = cutoff * Ry

    structure = defect.structure

    struc = Structure()
    struc.cell = structure.cell
    struc.scale = structure.scale
    struc.add_atom(0., 0., 0., "P", charge=charge)

    #Anuj_05/22/18: added "cutoff" in ewald syntax
    result = ewald(struc, cutoff=ewald_cutoff).energy / epsilon
    return -1 * result.rescale(eV)
Example #8
0
def first_order_charge_correction(structure, charge=None, epsilon=1e0, cutoff=20.0, **kwargs):
    """ First order charge correction of +1 charge in given supercell. 

        Units in this function are either handled by the module Quantities, or
        defaults to Angstroems and elementary charges.

        :Parameters:
          structure : `pylada.crystal.Structure`
            Defect supercell, with cartesian positions in angstrom.
          charge 
            Charge of the point-defect. Defaults to 1e0 elementary charge. If no
            units are attached, expects units of elementary charges.
          epsilon 
            dimensionless relative permittivity.
          cutoff 
            Ewald cutoff parameter.

        :return: Electrostatic energy in eV.
    """
    from quantities import elementary_charge, eV
    from pylada.crystal import Structure
    from pylada.physics import Ry
    from pylada.ewald import ewald

    if charge is None:
        charge = 1
    elif charge == 0:
        return 0e0 * eV
    if hasattr(charge, "units"):
        charge = float(charge.rescale(elementary_charge))

    ewald_cutoff = cutoff * Ry

    struc = Structure()
    struc.cell = structure.cell
    struc.scale = structure.scale
    struc.add_atom(0e0, 0, 0, "A", charge=charge)

    result = ewald(struc, ewald_cutoff).energy / epsilon
    return -result.rescale(eV)
Example #9
0
def cut_and_splice(s1, s2, roll=True):
  """ Cut-n-splice GSGO crossover operation

      Mating operation on two parent structures s1 and s2.
      Done on scaled atomic positions (cubic systems) by
      cutting them in half and mixing their upper and 
      lower parts.
  """
  from random import choice, random
  from numpy import dot, abs
  from numpy.linalg import det
  from pylada.crystal import Structure

  # swap structures randomly.
  if choice([True, False]): s1, s2 = s2, s1

  # chem. symbols and scaled positions of the two parents
  sc_pos1 = zip([atom.type for atom in s1],fractional_pos(s1, roll=True))
  sc_pos2 = zip([atom.type for atom in s2],fractional_pos(s2, roll=True))

  result = Structure(s1.cell, scale=s1.scale)

  # choose random positions of split-plane
  xsep = 0.5 - (random() * 0.45 + 0.15)
  # choose direction of split-plane randomly from cell-vectors.
  direction = choice(range(3))

  for type, pos in sc_pos1:
    if pos[direction] >= xsep: result.add_atom(*dot(result.cell, pos), type=type)

  for type, pos in sc_pos2:
    if pos[direction] < xsep: result.add_atom(*dot(result.cell, pos), type=type)

  result.scale =  s1.scale * (float(len(result)) / float(len(s1)))**(1./3.)

  return result
Example #10
0
from pylada.crystal import Structure, Lattice, fill_structure
from pylada.escan import read_input

input = read_input("input.py")

structure = Structure()
structure.set_cell = (4, 0, 0.5),\
                     (0, 1,   0),\
                     (0, 0, 0.5)
structure = fill_structure(structure.cell)
for i, atom in enumerate(structure.atoms):
  atom.type = "Si" if i < len(structure.atoms)/2 else "Ge"


result_str = Structure()
result_str.scale = 5.450000e+00
result_str.set_cell = (4.068890e+00, -4.235770e-18, 5.083297e-01),\
                     (-1.694308e-17, 1.016103e+00, 2.238072e-18),\
                     (-2.252168e-03, 8.711913e-18, 5.083297e-01)
result_str.weight = 1.000000e+00
result_str.name = ""
result_str.energy = 0.0938967086716
result_str.add_atom = (0.000000e+00, 0.000000e+00, 0.000000e+00), "Si", 0,  0
result_str.add_atom = (2.541649e-01, 2.473273e-01, 2.541649e-01), "Si", 1,  0
result_str.add_atom = (3.567265e+00, 5.062000e-01, -8.956567e-03), "Si", 0,  0
result_str.add_atom = (3.821430e+00, 7.572301e-01, 2.452083e-01), "Si", 1,  0
result_str.add_atom = (3.065136e+00, -1.851371e-03, -1.515736e-02), "Si", 0,  0
result_str.add_atom = (3.319301e+00, 2.491787e-01, 2.390075e-01), "Si", 1,  0
result_str.add_atom = (2.563510e+00, 5.080514e-01, -2.186176e-02), "Si", 0,  0
result_str.add_atom = (2.817675e+00, 7.553787e-01, 2.323031e-01), "Si", 1,  0
result_str.add_atom = (2.055673e+00, -6.642716e-03, -2.235452e-02), "Ge", 0,  0
Example #11
0
def make_surface(structure=None, miller=None, nlayers=5, vacuum=15, acc=5):
    """Returns a slab from the 3D structure 

       Takes a structure and makes a slab defined by the miller indices 
       with nlayers number of layers and vacuum defining the size 
       of the vacuum thickness. Variable acc determines the number of 
       loops used to get the direct lattice vectors perpendicular 
       and parallel to miller. For high index surfaces use larger acc value 
       .. warning: (1) cell is always set such that miller is alogn z-axes
                   (2) nlayers and vacuum are always along z-axes.

       :param structure: LaDa structure
       :param miller: 3x1 float64 array
           Miller indices defining the slab    
       :param nlayers: integer
           Number of layers in the slab
       :param vacuum: real
           Vacuum thicness in angstroms
       :param acc: integer
           number of loops for finding the cell vectors of the slab structure
    """
    direct_cell = transpose(structure.cell)
    reciprocal_cell = 2 * pi * transpose(inv(direct_cell))

    orthogonal = []  # lattice vectors orthogonal to miller

    for n1 in arange(-acc, acc + 1):
        for n2 in arange(-acc, acc + 1):
            for n3 in arange(-acc, acc + 1):

                pom = array([n1, n2, n3])
                if dot(pom, miller) == 0 and dot(pom, pom) != 0:
                    orthogonal.append(array([n1, n2, n3]))

    # chose the shortest parallel and set it to be a3 lattice vector
    norm_orthogonal = [sqrt(dot(dot(x, direct_cell), dot(x, direct_cell))) for x in orthogonal]
    a1 = orthogonal[norm_orthogonal.index(min(norm_orthogonal))]

    # chose the shortest orthogonal to miller and not colinear with a1 and set it as a2
    in_plane = []

    for x in orthogonal:
        if dot(x, x) > 1e-3:
            v = cross(dot(x, direct_cell), dot(a1, direct_cell))
            v = sqrt(dot(v, v))
            if v > 1e-3:
                in_plane.append(x)

    norm_in_plane = [sqrt(dot(dot(x, direct_cell), dot(x, direct_cell))) for x in in_plane]
    a2 = in_plane[norm_in_plane.index(min(norm_in_plane))]

    a1 = dot(a1, direct_cell)
    a2 = dot(a2, direct_cell)

    # new cartesian axes z-along miller, x-along a1, and y-to define the right-hand orientation
    e1 = a1 / sqrt(dot(a1, a1))
    e2 = a2 - dot(e1, a2) * e1
    e2 = e2 / sqrt(dot(e2, e2))
    e3 = cross(e1, e2)

    # find vectors parallel to miller and set the shortest to be a3
    parallel = []

    for n1 in arange(-acc, acc + 1):
        for n2 in arange(-acc, acc + 1):
            for n3 in arange(-acc, acc + 1):
                pom = dot(array([n1, n2, n3]), direct_cell)
                if sqrt(dot(pom, pom)) - dot(e3, pom) < 1e-8 and sqrt(dot(pom, pom)) > 1e-3:
                    parallel.append(pom)

    # if there are no lattice vectors parallel to miller
    if len(parallel) == 0:
        for n1 in arange(-acc, acc + 1):
            for n2 in arange(-acc, acc + 1):
                for n3 in arange(-acc, acc + 1):
                    pom = dot(array([n1, n2, n3]), direct_cell)
                    if dot(e3, pom) > 1e-3:
                        parallel.append(pom)

    parallel = [x for x in parallel if sqrt(
        dot(x - dot(e1, x) * e1 - dot(e2, x) * e2, x - dot(e1, x) * e1 - dot(e2, x) * e2)) > 1e-3]
    norm_parallel = [sqrt(dot(x, x)) for x in parallel]

    assert len(norm_parallel) != 0, "Increase acc, found no lattice vectors parallel to (hkl)"

    a3 = parallel[norm_parallel.index(min(norm_parallel))]

    # making a structure in the new unit cell - defined by the a1,a2,a3
    new_direct_cell = array([a1, a2, a3])

    assert abs(det(new_direct_cell)) > 1e-5, "Something is wrong your volume is equal to zero"

    # make sure determinant is positive
    if det(new_direct_cell) < 0.:
        new_direct_cell = array([-a1, a2, a3])

    #structure = fill_structure(transpose(new_direct_cell),structure.to_lattice())
    structure = supercell(lattice=structure, supercell=transpose(new_direct_cell))

    # transformation matrix to new coordinates x' = dot(m,x)
    m = array([e1, e2, e3])

    # seting output structure
    out_structure = Structure()
    out_structure.scale = structure.scale
    out_structure.cell = transpose(dot(new_direct_cell, transpose(m)))

    for atom in structure:
        p = dot(m, atom.pos)
        out_structure.add_atom(p[0], p[1], p[2], atom.type)

    # repaeting to get nlayers and vacuum
    repeat_cell = dot(out_structure.cell, array([[1., 0., 0.], [0., 1., 0.], [0., 0., nlayers]]))
    out_structure = supercell(lattice=out_structure, supercell=repeat_cell)

    # checking whether there are atoms close to the cell faces and putting them back to zero
    for i in range(len(out_structure)):
        scaled_pos = dot(out_structure[i].pos, inv(transpose(out_structure.cell)))
        for j in range(3):
            if abs(scaled_pos[j] - 1.) < 1e-5:
                scaled_pos[j] = 0.
        out_structure[i].pos = dot(scaled_pos, transpose(out_structure.cell))

    # adding vaccum to the cell
    out_structure.cell = out_structure.cell + \
        array([[0., 0., 0.], [0., 0., 0.], [0., 0., float(vacuum) / float(out_structure.scale)]])

    # translating atoms so that center of the slab and the center of the cell along z-axes coincide
    max_z = max([x.pos[2] for x in out_structure])
    min_z = min([x.pos[2] for x in out_structure])
    center_atoms = 0.5 * (max_z + min_z)
    center_cell = 0.5 * out_structure.cell[2][2]

    for i in range(len(out_structure)):
        out_structure[i].pos = out_structure[i].pos + array([0., 0., center_cell - center_atoms])

    # exporting the final structure
    return out_structure
Example #12
0
from pylada.pcm import Clj, bond_name
from pylada.physics import a0, Ry
from quantities import angstrom, eV, hartree

clj  = Clj()
""" Point charge + r^12 + r^6 model. """
clj.ewald_cutoff = 80 * Ry

clj.charges["A"] = -1.0
clj.charges["B"] =  1.0

structure = Structure()
structure.set_cell = (1,0,0),\
                     (0,1,0),\
                     (0,0,1)
structure.scale = 50
structure.add_atom = (0,0,0), "A"
structure.add_atom = (a0.rescale(angstrom)/structure.scale,0,0), "B"

print clj.ewald(structure).energy, hartree.rescale(eV)


from pylada.crystal.A2BX4 import b5
from pylada.crystal import fill_structure
from numpy import array
clj.ewald_cutoff = 20 * Ry
lattice = b5()
lattice.sites[4].type='A'
structure = fill_structure(lattice.cell, lattice)
structure.scale = 8.0
Example #13
0
def poscar(path="POSCAR", types=None):
    """ Tries to read a VASP POSCAR file.

         :param path: Path to the POSCAR file. Can also be an object with
           file-like behavior.
         :type path: str or file object
         :param types: Species in the POSCAR.
         :type types: None or sequence of str

        :return: `pylada.crystal.Structure` instance.
    """
    import re
    from os.path import join, exists, isdir
    from copy import deepcopy
    from numpy import array, dot, transpose
    from numpy.linalg import det
    from quantities import angstrom
    from . import Structure
    from .. import error

    # if types is not none, converts to a list of strings.
    if types is not None:
        if isinstance(types, str):
            types = [types]  # can't see another way of doing this...
        elif not hasattr(types, "__iter__"):
            types = [str(types)]  # single lone vasp.specie.Specie
        else:
            types = [str(s) for s in types]

    if path is None:
        path = "POSCAR"
    if not hasattr(path, 'read'):
        assert exists(path), IOError("Could not find path %s." % (path))
        if isdir(path):
            assert exists(join(path, "POSCAR")), IOError("Could not find POSCAR in %s." % (path))
            path = join(path, "POSCAR")
    result = Structure()
    poscar = path if hasattr(path, "read") else open(path, 'r')

    try:
        # gets name of structure
        result.name = poscar.readline().strip()
        if len(result.name) > 0 and result.name[0] == "#":
            result.name = result.name[1:].strip()
        # reads scale
        scale = float(poscar.readline().split()[0])
        # gets cell vectors.
        cell = []
        for i in range(3):
            line = poscar.readline()
            assert len(line.split()) >= 3,\
                RuntimeError("Could not read column vector from poscar: %s." % (line))
            cell.append([float(f) for f in line.split()[:3]])
        result.cell = transpose(array(cell))
        vol = det(cell)
        if scale < 1.E-8:
            scale = abs(scale / vol) ** (1.0 / 3)
        print(result)
        print(scale)
        result.scale = scale * angstrom
        # checks for vasp 5 input.
        is_vasp_5 = True
        line = poscar.readline().split()
        for i in line:
            if not re.match(r"[A-Z][a-z]?", i):
                is_vasp_5 = False
                break
        if is_vasp_5:
            text_types = deepcopy(line)
            if types is not None and not set(text_types).issubset(set(types)):
                raise error.ValueError("Unknown species in poscar: {0} not in {1}."
                                       .format(text_types, types))
            types = text_types
            line = poscar.readline().split()
        if types is None:
            raise RuntimeError("No atomic species given in POSCAR or input.")
        #  checks/reads for number of each specie
        if len(types) < len(line):
            raise RuntimeError("Too many atomic species in POSCAR.")
        nb_atoms = [int(u) for u in line]
        # Check whether selective dynamics, cartesian, or direct.
        first_char = poscar.readline().strip().lower()[0]
        selective_dynamics = False
        if first_char == 's':
            selective_dynamics = True
            first_char = poscar.readline().strip().lower()[0]
        # Checks whether cartesian or direct.
        is_direct = first_char not in ['c', 'k']
        # reads atoms.
        for n, specie in zip(nb_atoms, types):
            for i in range(n):
                line = poscar.readline().split()
                pos = array([float(u) for u in line[:3]], dtype="float64")
                if is_direct:
                    pos = dot(result.cell, pos)
                result.add_atom(pos=pos, type=specie)
                if selective_dynamics:
                    for which, freeze in zip(line[3:], ['x', 'y', 'z']):
                        if which.lower()[0] == 't':
                            result[-1].freeze = getattr(result[-1], 'freeze', '') + freeze
    finally:
        poscar.close()

    return result
Example #14
0
def poscar(path="POSCAR", types=None):
  """ Tries to read a VASP POSCAR file.

       :param path: Path to the POSCAR file. Can also be an object with
         file-like behavior.
       :type path: str or file object
       :param types: Species in the POSCAR.
       :type types: None or sequence of str

      :return: `pylada.crystal.Structure` instance.
  """
  import re
  from os.path import join, exists, isdir
  from copy import deepcopy
  from numpy import array, dot, transpose
  from numpy.linalg import det
  from quantities import angstrom
  from . import Structure

  # if types is not none, converts to a list of strings.
  if types is not None:
    if isinstance(types, str): types = [types] # can't see another way of doing this...
    elif not hasattr(types, "__iter__"): types = [str(types)] # single lone vasp.specie.Specie
    else: types = [str(s) for s in types]

  if path is None: path = "POSCAR"
  if not hasattr(path, 'read'):
    assert exists(path), IOError("Could not find path %s." % (path))
    if isdir(path):
      assert exists(join(path, "POSCAR")), IOError("Could not find POSCAR in %s." % (path))
      path = join(path, "POSCAR")
  result = Structure()
  poscar = path if hasattr(path, "read") else open(path, 'r')

  try:
    # gets name of structure
    result.name = poscar.readline().strip()
    if len(result.name) > 0:
      if result.name[0] == "#": result.name = result.name[1:].strip()
    # reads scale
    scale = float(poscar.readline().split()[0])
    # gets cell vectors.
    cell = []
    for i in range(3):
      line = poscar.readline()
      assert len(line.split()) >= 3,\
             RuntimeError("Could not read column vector from poscar: %s." % (line))
      cell.append( [float(f) for f in line.split()[:3]] )
    result.cell = transpose(array(cell))
    vol = det(cell)
    if scale < 1.E-8 : scale = abs(scale/vol) **(1.0/3)
    result.scale = scale * angstrom
    # checks for vasp 5 input.
    is_vasp_5 = True
    line = poscar.readline().split()
    for i in line:
      if not re.match(r"[A-Z][a-z]?", i):
        is_vasp_5 = False
        break
    if is_vasp_5:
      text_types = deepcopy(line)
      if types is not None and not set(text_types).issubset(set(types)):
        raise RuntimeError( "Unknown species in poscar: {0} not in {1}."\
                            .format(text_types, types) )
      types = text_types
      line = poscar.readline().split()
    assert types is not None, RuntimeError("No atomic species given in POSCAR or input.")
    #  checks/reads for number of each specie
    assert len(types) >= len(line), RuntimeError("Too many atomic species in POSCAR.")
    nb_atoms = [int(u) for u in line]
    # Check whether selective dynamics, cartesian, or direct.
    first_char = poscar.readline().strip().lower()[0]
    selective_dynamics = False
    if first_char == 's':
      selective_dynamics = True
      first_char = poscar.readline().strip().lower()[0]
    # Checks whether cartesian or direct.
    is_direct = first_char not in ['c', 'k']
    # reads atoms.
    for n, specie in zip(nb_atoms, types):
      for i in range(n):
        line = poscar.readline().split()
        pos = array([float(u) for u in line[:3]], dtype="float64")
        if is_direct: pos = dot(result.cell, pos)
        result.add_atom(pos=pos, type=specie)
        if selective_dynamics:
          for which, freeze in zip(line[3:], ['x', 'y', 'z']):
            if which.lower()[0] == 't':
              result[-1].freeze = getattr(result[-1], 'freeze', '') + freeze
  finally: poscar.close()

  return result
Example #15
0
# Structure definition.
from pylada.crystal import Structure
from pylada.crystal.defects import third_order_charge_correction
from quantities import eV

structure = Structure()
structure.name   = 'Ga2CdO4: b5'
structure.scale  = 1.0
structure.energy = -75.497933000000003
structure.weight = 1.0
structure.set_cell = (-0.0001445, 4.3538020, 4.3537935),\
                     (4.3538700, -0.0001445, 4.3538615),\
                     (4.3538020, 4.3537935, -0.0001445)
structure.add_atoms = [(7.61911540668, 7.61923876219, 7.61912846850), 'Cd'],\
                      [(1.08833559332, 1.08834823781, 1.08832253150), 'Cd'],\
                      [(4.35372550000, 4.35379350000, 4.35372550000), 'Ga'],\
                      [(4.35379775000, 2.17685850000, 2.17682450000), 'Ga'],\
                      [(2.17682450000, 4.35386575000, 2.17682875000), 'Ga'],\
                      [(2.17682875000, 2.17686275000, 4.35379775000), 'Ga'],\
                      [(2.32881212361, 2.32884849688, 2.32881647755),  'O'],\
                      [(2.32887187256, 4.20174404476, 4.20169148188),  'O'],\
                      [(4.20168277385, 2.32891695560, 4.20168347161),  'O'],\
                      [(4.20168782554, 4.20174474241, 2.32887622633),  'O'],\
                      [(6.37863887654, 6.37873414925, 6.37863016865),  'O'],\
                      [(6.37857477364, 4.50584295539, 4.50575516433),  'O'],\
                      [(4.50576822615, 6.37867004441, 4.50576752839),  'O'],\
                      [(4.50576317445, 4.50584225759, 6.37857477367),  'O']

# this is converged to less than 1meV
third = third_order_charge_correction(structure, epsilon=10.0, n=20)
assert abs(third - 0.11708438633232088*eV) < 1e-12
Example #16
0
                      ((2.25, 0.25, 0.25), "As"),\
                      ((3.00, 0.00, 0.00), "In"),\
                      ((3.25, 0.25, 0.25), "As"),\
                      ((4.00, 0.00, 0.00), "Ga"),\
                      ((4.25, 0.25, 0.25), "As"),\
                      ((5.00, 0.00, 0.00), "In"),\
                      ((5.25, 0.25, 0.25), "As"),\
                      ((6.00, 0.00, 0.00), "In"),\
                      ((6.25, 0.25, 0.25), "As"),\
                      ((7.00, 0.00, 0.00), "Ga"),\
                      ((7.25, 0.25, 0.25), "As"),\
                      ((8.00, 0.00, 0.00), "Ga"),\
                      ((8.25, 0.25, 0.25), "As"),\
                      ((9.00, 0.00, 0.00), "Ga"),\
                      ((9.25, 0.25, 0.25), "As"), 
structure.scale = vff.lattice.scale # + 0.1

# vff.direction = FreezeCell.a0 | FreezeCell.a1

# print vff
# print structure

epsilon = array([[1e0, 0.1, 0], [0.1, 1e0, 0], [0, 0, 1e0]])
structure.cell = dot(epsilon, structure.cell)
for atom in structure.atoms: atom.pos = dot(epsilon, atom.pos)

out = vff(structure, outdir = "work", comm = world, relax=False, overwrite=True)
print out.energy
print out.structure
print repr(out.stress)