Example #1
0
    def get_fixed_var_descr(self, model, X, Y):
        """
        .. todo::

            WRITEME
        """

        assert Y is not None

        batch_size = model.batch_size

        drop_mask_X = sharedX(model.get_input_space().get_origin_batch(batch_size))
        drop_mask_X.name = 'drop_mask'

        X_space = model.get_input_space()

        updates = OrderedDict()
        rval = FixedVarDescr()
        inputs=[X, Y]

        if not self.supervised:
            update_X = self.mask_gen(X, X_space = X_space)
        else:
            drop_mask_Y = sharedX(np.ones(batch_size,))
            drop_mask_Y.name = 'drop_mask_Y'
            update_X, update_Y = self.mask_gen(X, Y, X_space)
            updates[drop_mask_Y] = update_Y
            rval.fixed_vars['drop_mask_Y'] =  drop_mask_Y
        if self.mask_gen.sync_channels:
            n = update_X.ndim
            assert n == drop_mask_X.ndim - 1
            update_X.name = 'raw_update_X'
            zeros_like_X = T.zeros_like(X)
            zeros_like_X.name = 'zeros_like_X'
            update_X = zeros_like_X + update_X.dimshuffle(0,1,2,'x')
            update_X.name = 'update_X'
        updates[drop_mask_X] = update_X

        rval.fixed_vars['drop_mask'] = drop_mask_X

        if hasattr(model.inference_procedure, 'V_dropout'):
            include_prob = model.inference_procedure.include_prob
            include_prob_V = model.inference_procedure.include_prob_V
            include_prob_Y = model.inference_procedure.include_prob_Y

            theano_rng = MRG_RandomStreams(2012+11+20)
            for elem in flatten([model.inference_procedure.V_dropout]):
                updates[elem] = theano_rng.binomial(p=include_prob_V, size=elem.shape, dtype=elem.dtype, n=1) / include_prob_V
            if "Softmax" in str(type(model.hidden_layers[-1])):
                hid = model.inference_procedure.H_dropout[:-1]
                y = model.inference_procedure.H_dropout[-1]
                updates[y] = theano_rng.binomial(p=include_prob_Y, size=y.shape, dtype=y.dtype, n=1) / include_prob_Y
            else:
                hid = model.inference_procedure.H_dropout
            for elem in flatten(hid):
                updates[elem] =  theano_rng.binomial(p=include_prob, size=elem.shape, dtype=elem.dtype, n=1) / include_prob

        rval.on_load_batch = [utils.function(inputs, updates=updates)]

        return rval
Example #2
0
 def get_fixed_var_descr(self, model, X, Y=None):
     rval = FixedVarDescr()
     rval.fixed_vars = {'sup_aux_var': sup_counter}
     rval.on_load_batch = [
         function([X, Y], updates=[(sup_counter, sup_counter + 1)])
     ]
     return rval
Example #3
0
    def get_fixed_var_descr(self, model, X, Y):
        """
        .. todo::

            WRITEME
        """

        assert Y is not None

        batch_size = model.batch_size

        drop_mask_X = sharedX(model.get_input_space().get_origin_batch(batch_size))
        drop_mask_X.name = 'drop_mask'

        X_space = model.get_input_space()

        updates = OrderedDict()
        rval = FixedVarDescr()
        inputs=[X, Y]

        if not self.supervised:
            update_X = self.mask_gen(X, X_space = X_space)
        else:
            drop_mask_Y = sharedX(np.ones(batch_size,))
            drop_mask_Y.name = 'drop_mask_Y'
            update_X, update_Y = self.mask_gen(X, Y, X_space)
            updates[drop_mask_Y] = update_Y
            rval.fixed_vars['drop_mask_Y'] =  drop_mask_Y
        if self.mask_gen.sync_channels:
            n = update_X.ndim
            assert n == drop_mask_X.ndim - 1
            update_X.name = 'raw_update_X'
            zeros_like_X = T.zeros_like(X)
            zeros_like_X.name = 'zeros_like_X'
            update_X = zeros_like_X + update_X.dimshuffle(0,1,2,'x')
            update_X.name = 'update_X'
        updates[drop_mask_X] = update_X

        rval.fixed_vars['drop_mask'] = drop_mask_X

        if hasattr(model.inference_procedure, 'V_dropout'):
            include_prob = model.inference_procedure.include_prob
            include_prob_V = model.inference_procedure.include_prob_V
            include_prob_Y = model.inference_procedure.include_prob_Y

            theano_rng = MRG_RandomStreams(2012+11+20)
            for elem in flatten([model.inference_procedure.V_dropout]):
                updates[elem] = theano_rng.binomial(p=include_prob_V, size=elem.shape, dtype=elem.dtype, n=1) / include_prob_V
            if "Softmax" in str(type(model.hidden_layers[-1])):
                hid = model.inference_procedure.H_dropout[:-1]
                y = model.inference_procedure.H_dropout[-1]
                updates[y] = theano_rng.binomial(p=include_prob_Y, size=y.shape, dtype=y.dtype, n=1) / include_prob_Y
            else:
                hid = model.inference_procedure.H_dropout
            for elem in flatten(hid):
                updates[elem] =  theano_rng.binomial(p=include_prob, size=elem.shape, dtype=elem.dtype, n=1) / include_prob

        rval.on_load_batch = [utils.function(inputs, updates=updates)]

        return rval
Example #4
0
        def get_fixed_var_descr(self, model, X, Y, **kwargs):
            rval = FixedVarDescr()
            rval.fixed_vars = {'unsup_aux_var': unsup_counter}
            Y=T.matrix()
            theano_func = function([X, Y], updates=[(unsup_counter, unsup_counter + 1)])
            rval.on_load_batch = [theano_func]

            return rval
Example #5
0
        def get_fixed_var_descr(self, model, X, Y, **kwargs):
            rval = FixedVarDescr()
            rval.fixed_vars = {'unsup_aux_var': unsup_counter}
            Y = T.matrix()
            theano_func = function([X, Y],
                                   updates=[(unsup_counter, unsup_counter + 1)
                                            ])
            rval.on_load_batch = [theano_func]

            return rval
Example #6
0
        def get_fixed_var_descr(self, model, data):
            data_specs = self.get_data_specs(model)
            data_specs[0].validate(data)
            rval = FixedVarDescr()
            rval.fixed_vars = {'sup_aux_var': sup_counter}

            theano_func = function([], updates=[(sup_counter,
                sup_counter + 1)])
            def on_load(data):
                theano_func()
            rval.on_load_batch = [on_load]
            return rval
Example #7
0
        def get_fixed_var_descr(self, model, data):
            data_specs = self.get_data_specs(model)
            data_specs[0].validate(data)
            rval = FixedVarDescr()
            rval.fixed_vars = {'sup_aux_var': sup_counter}

            theano_func = function([],
                                   updates=[(sup_counter, sup_counter + 1)])

            def on_load(data):
                theano_func()

            rval.on_load_batch = [on_load]
            return rval
Example #8
0
        def get_fixed_var_descr(self, model, data, **kwargs):
            data_specs = self.get_data_specs(model)
            data_specs[0].validate(data)
            rval = FixedVarDescr()
            rval.fixed_vars = {'unsup_aux_var': unsup_counter}

            # The input to function should be a flat, non-redundent tuple
            mapping = DataSpecsMapping(data_specs)
            data_tuple = mapping.flatten(data, return_tuple=True)
            theano_func = function([],
                    updates=[(unsup_counter, unsup_counter + 1)])
            def on_load(batch, mapping=mapping, theano_func=theano_func):
                return theano_func()
            rval.on_load_batch = [on_load]

            return rval
Example #9
0
        def get_fixed_var_descr(self, model, data, **kwargs):
            data_specs = self.get_data_specs(model)
            data_specs[0].validate(data)
            rval = FixedVarDescr()
            rval.fixed_vars = {'unsup_aux_var': unsup_counter}

            # The input to function should be a flat, non-redundent tuple
            mapping = DataSpecsMapping(data_specs)
            data_tuple = mapping.flatten(data, return_tuple=True)
            theano_func = function([],
                                   updates=[(unsup_counter, unsup_counter + 1)
                                            ])

            def on_load(batch, mapping=mapping, theano_func=theano_func):
                return theano_func()

            rval.on_load_batch = [on_load]

            return rval
Example #10
0
        def get_fixed_var_descr(self, model, data):
            data_specs = self.get_data_specs(model)
            data_specs[0].validate(data)
            rval = FixedVarDescr()
            rval.fixed_vars = {'sup_aux_var': sup_counter}
            rval.data_specs = data_specs

            # data has to be flattened into a tuple before being passed
            # to `function`.
            mapping = DataSpecsMapping(data_specs)
            flat_data = mapping.flatten(data, return_tuple=True)
            theano_func = function(flat_data,
                                   updates=[(sup_counter, sup_counter + 1)])
            # the on_load_batch function will take numerical data formatted
            # as rval.data_specs, so we have to flatten it inside the
            # returned function too.
            # Using default argument binds the variables used in the lambda
            # function to the value they have when the lambda is defined.
            on_load = (lambda batch, mapping=mapping, theano_func=theano_func:
                       theano_func(*mapping.flatten(batch, return_tuple=True)))
            rval.on_load_batch = [on_load]
            return rval
Example #11
0
        def get_fixed_var_descr(self, model, data):
            data_specs = self.get_data_specs(model)
            data_specs[0].validate(data)
            rval = FixedVarDescr()
            rval.fixed_vars = {'sup_aux_var': sup_counter}
            rval.data_specs = data_specs

            # data has to be flattened into a tuple before being passed
            # to `function`.
            mapping = DataSpecsMapping(data_specs)
            flat_data = mapping.flatten(data, return_tuple=True)
            theano_func = function(flat_data,
                                 updates=[(sup_counter, sup_counter + 1)])
            # the on_load_batch function will take numerical data formatted
            # as rval.data_specs, so we have to flatten it inside the
            # returned function too.
            # Using default argument binds the variables used in the lambda
            # function to the value they have when the lambda is defined.
            on_load = (lambda batch, mapping=mapping, theano_func=theano_func:
                    theano_func(*mapping.flatten(batch, return_tuple=True)))
            rval.on_load_batch = [on_load]
            return rval
Example #12
0
        def get_fixed_var_descr(self, model, data, **kwargs):
            data_specs = self.get_data_specs(model)
            data_specs[0].validate(data)
            rval = FixedVarDescr()
            rval.fixed_vars = {'unsup_aux_var': unsup_counter}
            rval.data_specs = data_specs

            # The input to function should be a flat, non-redundent tuple
            mapping = DataSpecsMapping(data_specs)
            data_tuple = mapping.flatten(data, return_tuple=True)
            theano_func = function(data_tuple,
                    updates=[(unsup_counter, unsup_counter + 1)])
            # the on_load_batch function will take numerical data formatted
            # as rval.data_specs, so we have to flatten it inside the
            # returned function too.
            # Using default argument binds the variables used in the lambda
            # function to the value they have when the lambda is defined.
            on_load = (lambda batch, mapping=mapping, theano_func=theano_func:
                    theano_func(*mapping.flatten(batch, return_tuple=True)))
            rval.on_load_batch = [on_load]

            return rval
Example #13
0
        def get_fixed_var_descr(self, model, data, **kwargs):
            data_specs = self.get_data_specs(model)
            data_specs[0].validate(data)
            rval = FixedVarDescr()
            rval.fixed_vars = {'unsup_aux_var': unsup_counter}
            rval.data_specs = data_specs

            # The input to function should be a flat, non-redundent tuple
            mapping = DataSpecsMapping(data_specs)
            data_tuple = mapping.flatten(data, return_tuple=True)
            theano_func = function(data_tuple,
                                   updates=[(unsup_counter, unsup_counter + 1)
                                            ])
            # the on_load_batch function will take numerical data formatted
            # as rval.data_specs, so we have to flatten it inside the
            # returned function too.
            # Using default argument binds the variables used in the lambda
            # function to the value they have when the lambda is defined.
            on_load = (lambda batch, mapping=mapping, theano_func=theano_func:
                       theano_func(*mapping.flatten(batch, return_tuple=True)))
            rval.on_load_batch = [on_load]

            return rval
Example #14
0
 def get_fixed_var_descr(self, model, X, Y=None):
     rval = FixedVarDescr()
     rval.fixed_vars = {'sup_aux_var': sup_counter}
     rval.on_load_batch = [ function([X, Y], updates=[(sup_counter, sup_counter+1)])]
     return rval
Example #15
0
    def get_fixed_var_descr(self, model, data):
        """
        .. todo::

            WRITEME
        """

        X, Y = data

        assert Y is not None

        batch_size = model.batch_size

        drop_mask_X = sharedX(model.get_input_space().get_origin_batch(batch_size))
        drop_mask_X.name = "drop_mask"

        X_space = model.get_input_space()

        updates = OrderedDict()
        rval = FixedVarDescr()
        inputs = [X, Y]

        if not self.supervised:
            update_X = self.mask_gen(X, X_space=X_space)
        else:
            drop_mask_Y = sharedX(np.ones(batch_size))
            drop_mask_Y.name = "drop_mask_Y"
            update_X, update_Y = self.mask_gen(X, Y, X_space)
            updates[drop_mask_Y] = update_Y
            rval.fixed_vars["drop_mask_Y"] = drop_mask_Y
        if self.mask_gen.sync_channels:
            n = update_X.ndim
            assert n == drop_mask_X.ndim - 1
            update_X.name = "raw_update_X"
            zeros_like_X = T.zeros_like(X)
            zeros_like_X.name = "zeros_like_X"
            update_X = zeros_like_X + update_X.dimshuffle(0, 1, 2, "x")
            update_X.name = "update_X"
        updates[drop_mask_X] = update_X

        rval.fixed_vars["drop_mask"] = drop_mask_X

        if hasattr(model.inference_procedure, "V_dropout"):
            include_prob = model.inference_procedure.include_prob
            include_prob_V = model.inference_procedure.include_prob_V
            include_prob_Y = model.inference_procedure.include_prob_Y

            theano_rng = make_theano_rng(None, 2012 + 10 + 20, which_method="binomial")
            for elem in flatten([model.inference_procedure.V_dropout]):
                updates[elem] = (
                    theano_rng.binomial(p=include_prob_V, size=elem.shape, dtype=elem.dtype, n=1) / include_prob_V
                )
            if "Softmax" in str(type(model.hidden_layers[-1])):
                hid = model.inference_procedure.H_dropout[:-1]
                y = model.inference_procedure.H_dropout[-1]
                updates[y] = theano_rng.binomial(p=include_prob_Y, size=y.shape, dtype=y.dtype, n=1) / include_prob_Y
            else:
                hid = model.inference_procedure.H_dropout
            for elem in flatten(hid):
                updates[elem] = (
                    theano_rng.binomial(p=include_prob, size=elem.shape, dtype=elem.dtype, n=1) / include_prob
                )

        rval.on_load_batch = [utils.function(inputs, updates=updates)]

        return rval