Example #1
0
def test_sgd_no_mon():

    # tests that we can run the sgd algorithm
    # wihout a monitoring dataset
    # does not test for correctness at all, just
    # that the algorithm runs without dying

    dim = 3
    m = 10

    rng = np.random.RandomState([25, 9, 2012])

    X = rng.randn(m, dim)

    idx = rng.randint(0, dim, (m, ))
    Y = np.zeros((m, dim))
    for i in xrange(m):
        Y[i, idx[i]] = 1

    dataset = DenseDesignMatrix(X=X, y=Y)

    m = 15
    X = rng.randn(m, dim)

    idx = rng.randint(0, dim, (m, ))
    Y = np.zeros((m, dim))
    for i in xrange(m):
        Y[i, idx[i]] = 1

    model = SoftmaxModel(dim)

    learning_rate = 1e-3
    batch_size = 5

    cost = CrossEntropy()

    # We need to include this so the test actually stops running at some point
    termination_criterion = EpochCounter(5)

    algorithm = SGD(learning_rate,
                    cost,
                    batch_size=5,
                    monitoring_dataset=None,
                    termination_criterion=termination_criterion,
                    update_callbacks=None,
                    init_momentum=None,
                    set_batch_size=False)

    train = Train(dataset,
                  model,
                  algorithm,
                  save_path=None,
                  save_freq=0,
                  callbacks=None)

    train.main_loop()
Example #2
0
def test_sgd_unsup():

    # tests that we can run the sgd algorithm
    # on an supervised cost.
    # does not test for correctness at all, just
    # that the algorithm runs without dying

    dim = 3
    m = 10

    rng = np.random.RandomState([25, 9, 2012])

    X = rng.randn(m, dim)

    dataset = DenseDesignMatrix(X=X)

    m = 15
    X = rng.randn(m, dim)

    # including a monitoring datasets lets us test that
    # the monitor works with supervised data
    monitoring_dataset = DenseDesignMatrix(X=X)

    model = SoftmaxModel(dim)

    learning_rate = 1e-3
    batch_size = 5

    cost = DummyCost()

    # We need to include this so the test actually stops running at some point
    termination_criterion = EpochCounter(5)

    algorithm = SGD(learning_rate,
                    cost,
                    batch_size=5,
                    monitoring_batches=3,
                    monitoring_dataset=monitoring_dataset,
                    termination_criterion=termination_criterion,
                    update_callbacks=None,
                    init_momentum=None,
                    set_batch_size=False)

    train = Train(dataset,
                  model,
                  algorithm,
                  save_path=None,
                  save_freq=0,
                  callbacks=None)

    train.main_loop()
def get_layer_trainer(layer):
    # configs on sgd
    config = {'learning_rate': 0.1, 
              'cost' : MeanSquaredReconstructionError(), 
              'batch_size': 10,
              'monitoring_batches': 10,
              'monitoring_dataset': ToyDataset(), 
              'termination_criterion': EpochCounter(max_epochs=100),
              'update_callbacks': None
              }
    
    train_algo = UnsupervisedExhaustiveSGD(**config)
    model = layer
    callbacks = None
    return LayerTrainer(model, train_algo, callbacks)
Example #4
0
def test_sgd_sequential():

    # tests that requesting train_iteration_mode = 'sequential'
    # works

    dim = 1
    batch_size = 3
    m = 5 * batch_size

    dataset = ArangeDataset(m)

    model = SoftmaxModel(dim)

    learning_rate = 1e-3
    batch_size = 5

    visited = [False] * m

    def visit(X):
        assert X.shape[1] == 1
        assert np.all(X[1:] == X[0:-1] + 1)
        start = int(X[0, 0])
        if start > 0:
            assert visited[start - 1]
        for i in xrange(batch_size):
            assert not visited[start + i]
            visited[start + i] = 1

    cost = CallbackCost(visit)

    # We need to include this so the test actually stops running at some point
    termination_criterion = EpochCounter(5)

    algorithm = SGD(learning_rate,
                    cost,
                    batch_size=5,
                    train_iteration_mode='sequential',
                    monitoring_dataset=None,
                    termination_criterion=termination_criterion,
                    update_callbacks=None,
                    init_momentum=None,
                    set_batch_size=False)

    algorithm.setup(dataset=dataset, model=model)

    algorithm.train(dataset)

    assert all(visited)
def get_layer_trainer_sgd_rbm(layer, trainset):
    train_algo = SGD(
        learning_rate = 1e-1,
        batch_size =  5,
        #"batches_per_iter" : 2000,
        monitoring_batches =  20,
        monitoring_dataset =  trainset,
        cost = SMD(corruptor=GaussianCorruptor(stdev=0.4)),
        termination_criterion =  EpochCounter(max_epochs=MAX_EPOCHS),
        # another option:
        # MonitorBasedTermCrit(prop_decrease=0.01, N=10),
        )
    model = layer
    callbacks = [MonitorBasedLRAdjuster(), ModelSaver()]
    return Train(model = model, algorithm = train_algo,
            callbacks = callbacks, dataset = trainset)
Example #6
0
def get_layer_trainer_sgd_autoencoder(layer, trainset):
    # configs on sgd
    train_algo = SGD(
        learning_rate=0.1,
        cost=MeanSquaredReconstructionError(),
        batch_size=10,
        monitoring_batches=10,
        monitoring_dataset=trainset,
        termination_criterion=EpochCounter(max_epochs=MAX_EPOCHS_UNSUPERVISED),
        update_callbacks=None)

    model = layer
    extensions = None
    return Train(model=model,
                 algorithm=train_algo,
                 extensions=extensions,
                 dataset=trainset)
def get_layer_trainer_sparse_denoising_autoencoder(layer, trainset):
    train_algo = SGD(
              learning_rate = 0.1,
              cost =  SampledMeanSquaredReconstructionError(),
              batch_size =  10,
              monitoring_batches = 10,
              monitoring_dataset = trainset,
              termination_criterion = EpochCounter(max_epochs=MAX_EPOCHS),
              update_callbacks = None
              )

    model = layer
    callbacks = [ModelSaver()]
    return Train(model = model,
            algorithm = train_algo,
            callbacks = callbacks,
            dataset = trainset)
Example #8
0
def get_layer_trainer_sgd_rbm(layer, trainset):
    train_algo = SGD(
        learning_rate=1e-1,
        batch_size=5,
        #"batches_per_iter" : 2000,
        monitoring_batches=20,
        monitoring_dataset=trainset,
        cost=SMD(corruptor=GaussianCorruptor(stdev=0.4)),
        termination_criterion=EpochCounter(max_epochs=MAX_EPOCHS_UNSUPERVISED),
    )
    model = layer
    extensions = [MonitorBasedLRAdjuster()]
    return Train(model=model,
                 algorithm=train_algo,
                 save_path='grbm.pkl',
                 save_freq=1,
                 extensions=extensions,
                 dataset=trainset)
Example #9
0
def get_layer_trainer_logistic(layer, trainset):
    # configs on sgd
    config = {
        'learning_rate': 0.1,
        'cost': CrossEntropy(),
        'batch_size': 10,
        'monitoring_batches': 10,
        'monitoring_dataset': None,
        'termination_criterion': EpochCounter(max_epochs=10),
        'update_callbacks': None
    }

    train_algo = ExhaustiveSGD(**config)
    model = layer
    callbacks = None
    return Train(model=model,
                 dataset=trainset,
                 algorithm=train_algo,
                 callbacks=callbacks)
Example #10
0
def get_layer_trainer_logistic(layer, trainset):
    # configs on sgd

    config = {
        'learning_rate': 0.1,
        'cost': Default(),
        'batch_size': 10,
        'monitoring_batches': 10,
        'monitoring_dataset': trainset,
        'termination_criterion':
        EpochCounter(max_epochs=MAX_EPOCHS_SUPERVISED),
        'update_callbacks': None
    }

    train_algo = SGD(**config)
    model = layer
    return Train(model=model,
                 dataset=trainset,
                 algorithm=train_algo,
                 extensions=None)
Example #11
0
def test_determinism():

    # Verifies that running SGD twice results in the same examples getting visited
    # in the same order

    for mode in _iteration_schemes:
        dim = 1
        batch_size = 3
        num_batches = 5
        m = num_batches * batch_size

        dataset = ArangeDataset(m)

        model = SoftmaxModel(dim)

        learning_rate = 1e-3
        batch_size = 5

        visited = [[-1] * m]

        def visit(X):
            mx = max(visited[0])
            counter = mx + 1
            for i in X[:, 0]:
                i = int(i)
                assert visited[0][i] == -1
                visited[0][i] = counter
                counter += 1

        cost = CallbackCost(visit)

        # We need to include this so the test actually stops running at some point
        termination_criterion = EpochCounter(5)

        def run_algorithm():
            unsupported_modes = ['random_slice', 'random_uniform']
            algorithm = SGD(learning_rate,
                            cost,
                            batch_size=5,
                            train_iteration_mode=mode,
                            monitoring_dataset=None,
                            termination_criterion=termination_criterion,
                            update_callbacks=None,
                            init_momentum=None,
                            set_batch_size=False)

            algorithm.setup(dataset=dataset, model=model)

            raised = False
            try:
                algorithm.train(dataset)
            except ValueError:
                print mode
                assert mode in unsupported_modes
                raised = True
            if mode in unsupported_modes:
                assert raised
                return True
            return False

        if run_algorithm():
            continue

        visited.insert(0, [-1] * m)

        del model.monitor

        run_algorithm()

        for v in visited:
            assert len(v) == m
            for elem in range(m):
                assert elem in v

        assert len(visited) == 2

        print visited[0]
        print visited[1]
        assert np.all(np.asarray(visited[0]) == np.asarray(visited[1]))
Example #12
0
def test_sgd_topo():

    # tests that we can run the sgd algorithm
    # on data with topology
    # does not test for correctness at all, just
    # that the algorithm runs without dying

    rows = 3
    cols = 4
    channels = 2
    dim = rows * cols * channels
    m = 10

    rng = np.random.RandomState([25, 9, 2012])

    X = rng.randn(m, rows, cols, channels)

    idx = rng.randint(0, dim, (m, ))
    Y = np.zeros((m, dim))
    for i in xrange(m):
        Y[i, idx[i]] = 1

    dataset = DenseDesignMatrix(topo_view=X, y=Y)

    m = 15
    X = rng.randn(m, rows, cols, channels)

    idx = rng.randint(0, dim, (m, ))
    Y = np.zeros((m, dim))
    for i in xrange(m):
        Y[i, idx[i]] = 1

    # including a monitoring datasets lets us test that
    # the monitor works with supervised data
    monitoring_dataset = DenseDesignMatrix(topo_view=X, y=Y)

    model = TopoSoftmaxModel(rows, cols, channels)

    learning_rate = 1e-3
    batch_size = 5

    cost = CrossEntropy()

    # We need to include this so the test actually stops running at some point
    termination_criterion = EpochCounter(5)

    algorithm = SGD(learning_rate,
                    cost,
                    batch_size=5,
                    monitoring_batches=3,
                    monitoring_dataset=monitoring_dataset,
                    termination_criterion=termination_criterion,
                    update_callbacks=None,
                    init_momentum=None,
                    set_batch_size=False)

    train = Train(dataset,
                  model,
                  algorithm,
                  save_path=None,
                  save_freq=0,
                  callbacks=None)

    train.main_loop()
Example #13
0
def main_train(work_dir="../results/avicenna/",
               corruption_level=0.3,
               nvis=75,
               nhid=600,
               tied_weights=True,
               act_enc="sigmoid",
               act_dec=None,
               max_epochs=2,
               learning_rate=0.001,
               batch_size=20,
               monitoring_batches=5,
               save_freq=1,
               n_components_trans_pca=7):

    conf = {
        'corruption_level': corruption_level,
        'nvis': nvis,
        'nhid': nhid,
        'tied_weights': tied_weights,
        'act_enc': act_enc,
        'act_dec': act_dec,
        'max_epochs': max_epochs,
        'learning_rate': learning_rate,
        'batch_size': batch_size,
        'monitoring_batches': monitoring_batches,
        'save_freq': save_freq,
        'n_components_trans_pca': n_components_trans_pca
    }

    start = time.clock()

    ###############   TRAIN THE DAE
    train_file = work_dir + "train_pca" + str(conf['nvis']) + ".npy"
    save_path = work_dir + "train_pca" + str(conf['nvis']) + "_dae" + str(
        conf['nhid']) + "_model.pkl"

    trainset = NpyDataset(file=train_file)
    trainset.yaml_src = 'script'
    corruptor = BinomialCorruptor(corruption_level=conf['corruption_level'])
    dae = DenoisingAutoencoder(nvis=conf['nvis'],
                               nhid=conf['nhid'],
                               tied_weights=conf['tied_weights'],
                               corruptor=corruptor,
                               act_enc=conf['act_enc'],
                               act_dec=conf['act_dec'])
    cost = MeanSquaredReconstructionError()
    termination_criterion = EpochCounter(max_epochs=conf['max_epochs'])
    algorithm = UnsupervisedExhaustiveSGD(
        learning_rate=conf['learning_rate'],
        batch_size=conf['batch_size'],
        monitoring_batches=conf['monitoring_batches'],
        monitoring_dataset=trainset,
        cost=cost,
        termination_criterion=termination_criterion)

    train_obj = Train(dataset=trainset,
                      model=dae,
                      algorithm=algorithm,
                      save_freq=conf['save_freq'],
                      save_path=save_path)
    train_obj.main_loop()

    ###############   APPLY THE MODEL ON THE TRAIN DATASET
    print("Applying the model on the train dataset...")
    model = load(save_path)
    save_train_path = work_dir + "train_pca" + str(
        conf['nvis']) + "_dae" + str(conf['nhid']) + ".npy"
    dump_obj = FeatureDump(encoder=model,
                           dataset=trainset,
                           path=save_train_path)
    dump_obj.main_loop()

    ###############   APPLY THE MODEL ON THE VALID DATASET
    print("Applying the model on the valid dataset...")
    valid_file = work_dir + "valid_pca" + str(conf['nvis']) + ".npy"

    validset = NpyDataset(file=valid_file)
    validset.yaml_src = 'script'
    save_valid_path = work_dir + "valid_pca" + str(
        conf['nvis']) + "_dae" + str(conf['nhid']) + ".npy"
    dump_obj = FeatureDump(encoder=model,
                           dataset=validset,
                           path=save_valid_path)
    dump_obj.main_loop()

    ###############   APPLY THE MODEL ON THE TEST DATASET
    print("Applying the model on the test dataset...")
    test_file = work_dir + "test_pca" + str(conf['nvis']) + ".npy"

    testset = NpyDataset(file=test_file)
    testset.yaml_src = 'script'
    save_test_path = work_dir + "test_pca" + str(conf['nvis']) + "_dae" + str(
        conf['nhid']) + ".npy"
    dump_obj = FeatureDump(encoder=model, dataset=testset, path=save_test_path)
    dump_obj.main_loop()

    ###############   COMPUTE THE ALC SCORE ON VALIDATION SET
    valid_data = ift6266h12.load_npy(save_valid_path)
    label_data = ift6266h12.load_npy(
        '/data/lisa/data/UTLC/numpy_data/avicenna_valid_y.npy')
    alc_1 = score(valid_data, label_data)

    ###############   APPLY THE TRANSDUCTIVE PCA
    test_data = ift6266h12.load_npy(save_test_path)
    trans_pca = PCA(n_components=conf['n_components_trans_pca'])
    final_valid = trans_pca.fit_transform(valid_data)
    final_test = trans_pca.fit_transform(test_data)

    save_valid_path = work_dir + "valid_pca" + str(
        conf['nvis']) + "_dae" + str(conf['nhid']) + "_tpca" + str(
            conf['n_components_trans_pca']) + ".npy"
    save_test_path = work_dir + "test_pca" + str(conf['nvis']) + "_dae" + str(
        conf['nhid']) + "_tpca" + str(conf['n_components_trans_pca']) + ".npy"

    np.save(save_valid_path, final_valid)
    np.save(save_test_path, final_test)

    ###############   COMPUTE THE NEW ALC SCORE ON VALIDATION SET
    alc_2 = score(final_valid, label_data)

    ###############   OUTPUT AND RETURN THE RESULTS
    timeSpent = ((time.clock() - start) / 60.)
    print 'FINAL RESULTS (PCA-' + str(conf['nvis']) + ' DAE-' + str(conf['nhid']) + ' TransPCA-' + str(conf['n_components_trans_pca']) + ') ALC after DAE: ', alc_1, ' FINAL ALC: ', alc_2, \
            ' Computed in %5.2f min' % (timeSpent)

    return timeSpent, alc_1, alc_2