Example #1
0
    def test_copy(self):
        eprint(">> ContinuumRule.copy(self)")

        for i in range(self.__nb_unit_test):
            head_var_id = random.randint(0, self.__max_variables)
            head_domain = Continuum.random(self.__min_value, self.__max_value)

            size = random.randint(1, self.__max_variables)
            body = []
            locked = []
            for j in range(size):
                var_id = random.randint(0, self.__max_variables)
                domain = Continuum.random(self.__min_value, self.__max_value)
                if var_id not in locked:
                    body.append((var_id, domain))
                    locked.append(var_id)

            r_ = ContinuumRule(head_var_id, head_domain, body)
            r = r_.copy()

            self.assertEqual(r.get_head_variable(), head_var_id)
            self.assertEqual(r.get_head_value(), head_domain)
            for e in body:
                self.assertTrue(e in r.get_body())
            for e in r.get_body():
                self.assertTrue(e in body)

            self.assertEqual(r.get_head_variable(), r_.get_head_variable())
            self.assertEqual(r.get_head_value(), r_.get_head_value())
            for e in r_.get_body():
                self.assertTrue(e in r.get_body())
            for e in r.get_body():
                self.assertTrue(e in r_.get_body())
Example #2
0
    def test_remove_condition(self):
        print(">> ContinuumRule.remove_condition(self, variable)")

        # Empty rule
        for i in range(self.__nb_unit_test):
            variables, domains = self.random_system()
            var = random.randint(0, len(variables) - 1)
            val = Continuum.random(domains[var].get_min_value(),
                                   domains[var].get_max_value())
            r = ContinuumRule(var, val)

            var = random.randint(0, len(variables) - 1)

            self.assertFalse(r.has_condition(var))
            r.remove_condition(var)
            self.assertFalse(r.has_condition(var))

            while r.size() == 0:
                r = self.random_rule(variables, domains)

            var, val = random.choice(r.get_body())

            self.assertTrue(r.has_condition(var))
            r.remove_condition(var)
            self.assertFalse(r.has_condition(var))
    def random_system(self):
        # generates variables/domains
        nb_variables = random.randint(1, self.__max_variables)
        variables = ["x"+str(var) for var in range(nb_variables)]
        domains = [ Continuum.random(self.__min_value, self.__max_value, self.__min_domain_size) for var in variables ]

        return variables, domains
Example #4
0
    def test_has_condition(self):
        print(">> ContinuumRule.has_condition(self, variable)")

        for i in range(self.__nb_unit_test):
            # Empty rule
            variables, domains = self.random_system()
            var = random.randint(0, len(variables))
            val = Continuum.random(self.__min_value, self.__max_value)
            r = ContinuumRule(var, val)

            for var in range(len(variables)):
                self.assertEqual(r.has_condition(var), False)

            # Regular rule
            variables, domains = self.random_system()
            while r.size() == 0:
                r = self.random_rule(variables, domains)
            body = r.get_body()

            appears = []
            for var, val in body:
                appears.append(var)
                self.assertEqual(r.has_condition(var), True)

            for var in range(len(variables)):
                if var not in appears:
                    self.assertEqual(r.has_condition(var), False)
    def random_rule(self, variables, domains):
        var = random.randint(0,len(variables)-1)
        var_domain = domains[var]
        val = Continuum.random(var_domain.get_min_value(), var_domain.get_max_value(), self.__min_continuum_size)
        min_size = random.randint(0, len(variables))
        max_size = random.randint(min_size, len(variables))

        return ContinuumRule.random(var, val, variables, domains, min_size, max_size)
Example #6
0
    def test_constructor_empty(self):
        eprint(">> ContinuumRule.__init__(self, head_variable, head_value)")

        for i in range(self.__nb_unit_test):
            var_id = random.randint(0, self.__max_variables)
            domain = Continuum.random(self.__min_value, self.__max_value)
            c = ContinuumRule(var_id, domain)

            self.assertEqual(c.get_head_variable(), var_id)
            self.assertEqual(c.get_head_value(), domain)
            self.assertEqual(c.get_body(), [])
Example #7
0
    def test_static_random(self):
        eprint(">> Continuum.random(min_value, max_value)")

        for i in range(self.__nb_unit_test):

            # Valid values
            min = random.uniform(self.__min_value, self.__max_value)
            max = random.uniform(min, self.__max_value)

            c = Continuum.random(min, max)

            self.assertTrue(c.get_min_value() >= min
                            and c.get_min_value() <= max)
            self.assertTrue(isinstance(c.min_included(), bool))
            self.assertFalse(c.is_empty())

            # with min size
            min_size = 0
            while min_size == 0:
                min_size = random.uniform(-100, 0)

            self.assertRaises(ValueError, Continuum.random, min, max, min_size)

            min_size = random.uniform(0, self.__max_value)

            if min_size >= (max - min):
                self.assertRaises(ValueError, Continuum.random, min, max,
                                  min_size)

            c = Continuum.random(min, max)

            self.assertTrue(c.get_min_value() >= min
                            and c.get_min_value() <= max)
            self.assertTrue(isinstance(c.min_included(), bool))
            self.assertFalse(c.is_empty())

            # Invalid values
            min = random.uniform(self.__min_value, self.__max_value)
            max = random.uniform(self.__min_value, min - 0.001)

            self.assertRaises(ValueError, Continuum.random, min, max)
Example #8
0
    def test_copy(self):
        eprint(">> Continuum.copy(self)")

        for i in range(self.__nb_unit_test):

            # Emptyset
            c_ = Continuum()
            c = c_.copy()

            self.assertTrue(c.is_empty())
            self.assertEqual(c.get_min_value(), None)
            self.assertEqual(c.get_max_value(), None)
            self.assertEqual(c.min_included(), None)
            self.assertEqual(c.max_included(), None)

            # Non empty
            min = random.uniform(self.__min_value, self.__max_value)
            max = random.uniform(min, self.__max_value)
            min_included = random.choice([True, False])
            max_included = random.choice([True, False])

            c_ = Continuum(min, max, min_included, max_included)
            c = c_.copy()

            self.assertFalse(c.is_empty())
            self.assertEqual(c.get_min_value(), min)
            self.assertEqual(c.get_max_value(), max)
            self.assertEqual(c.min_included(), min_included)
            self.assertEqual(c.max_included(), max_included)
Example #9
0
    def test_constructor_empty(self):
        eprint(">> Continuum.__init__(self)")

        for i in range(self.__nb_unit_test):
            c = Continuum()

            self.assertTrue(c.is_empty())
            self.assertEqual(c.get_min_value(), None)
            self.assertEqual(c.get_max_value(), None)
            self.assertEqual(c.min_included(), None)
            self.assertEqual(c.max_included(), None)
Example #10
0
    def test_size(self):
        eprint(">> Continuum.size(self)")

        for i in range(self.__nb_unit_test):

            # empty set
            c = Continuum()
            self.assertEqual(c.size(), 0.0)

            # regular
            c = Continuum.random(self.__min_value, self.__max_value)

            if not c.is_empty():
                self.assertEqual(c.size(),
                                 c.get_max_value() - c.get_min_value())
Example #11
0
    def test_static_random(self):
        eprint(">> ContinuumRule.random(min_value, max_value)")

        for i in range(self.__nb_unit_test):

            variables, domains = self.random_system()

            # rule characteristics
            var = random.randint(0, len(variables) - 1)
            var_domain = domains[var]
            val = Continuum.random(var_domain.get_min_value(),
                                   var_domain.get_max_value())
            min_size = random.randint(0, len(variables))
            max_size = random.randint(min_size, len(variables))
            r = ContinuumRule.random(var, val, variables, domains, min_size,
                                     max_size)

            # Check head
            self.assertEqual(r.get_head_variable(), var)
            self.assertEqual(r.get_head_value(), val)

            # Check body
            self.assertTrue(r.size() >= min_size)
            self.assertTrue(r.size() <= max_size)

            appears = []
            for var, val in r.get_body():
                self.assertTrue(var >= 0 and var < len(variables))
                self.assertTrue(domains[var].includes(val))

                self.assertFalse(var in appears)
                appears.append(var)

            # min > max
            min_size = random.randint(0, len(variables))
            max_size = random.randint(-100, min_size - 1)
            self.assertRaises(ValueError, ContinuumRule.random, var, val,
                              variables, domains, min_size, max_size)

            # min > nb variables
            min_size = random.randint(len(variables) + 1, len(variables) + 100)
            max_size = random.randint(min_size, len(variables) + 100)
            self.assertRaises(ValueError, ContinuumRule.random, var, val,
                              variables, domains, min_size, max_size)

            # max > nb variables
            min_size = random.randint(0, len(variables))
            max_size = random.randint(len(variables) + 1, len(variables) + 100)
            self.assertRaises(ValueError, ContinuumRule.random, var, val,
                              variables, domains, min_size, max_size)
Example #12
0
    def test___eq__(self):
        print(">> ContinuumRule.__eq__(self, other)")

        for i in range(self.__nb_unit_test):
            variables, domains = self.random_system()
            r = self.random_rule(variables, domains)

            self.assertTrue(r == r)
            self.assertFalse(r != r)

            r_ = self.random_rule(variables, domains)

            if r.get_head_variable() != r_.get_head_variable():
                self.assertFalse(r == r_)

            if r.get_head_value() != r_.get_head_value():
                self.assertFalse(r == r_)

            if r.get_body() != r_.get_body():
                self.assertFalse(r == r_)

            # different type
            self.assertFalse(r == "")
            self.assertFalse(r == 0)
            self.assertFalse(r == [])
            self.assertFalse(r == [1, 2, 3])

            # different size
            r_ = self.random_rule(variables, domains)
            while r_.size() == r.size():
                r_ = self.random_rule(variables, domains)

            r_.set_head_variable(r.get_head_variable())
            r_.set_head_value(r.get_head_value())
            self.assertFalse(r == r_)

            # Same size, same head
            while r.size() == 0:
                r = self.random_rule(variables, domains)
            r_ = r.copy()
            var, val = random.choice(r.get_body())

            new_val = val
            while new_val == val:
                new_val = Continuum.random(domains[var].get_min_value(),
                                           domains[var].get_max_value())
                r_.set_condition(var, new_val)

            self.assertFalse(r == r_)
    def test_precision(self):
        print(">> ContinuumLogicProgram.precision(expected, predicted)")

        self.assertEqual(ContinuumLogicProgram.precision([],[]), 1.0)

        # Equal programs
        for i in range(self.__nb_unit_test):
            variables, domains = self.random_system()
            nb_states = random.randint(1,100)

            expected = []
            predicted = []

            for j in range(nb_states):
                s1 = [ random.uniform(d.get_min_value(),d.get_max_value()) for d in domains ]
                s2 = [ random.uniform(d.get_min_value(),d.get_max_value()) for d in domains  ]
                s2_ = [ Continuum.random(d.get_min_value(), d.get_max_value()) for d in domains ]

                expected.append( (s1,s2) )
                predicted.append( (s1,s2_) )

            precision = ContinuumLogicProgram.precision(expected, predicted)

            error = 0
            for j in range(len(expected)):
                s1, s2 = expected[j]
                s1_, s2_ = predicted[j]

                for k in range(len(s2)):
                    if not s2_[k].includes(s2[k]):
                        error += 1

            total = nb_states * len(variables)

            self.assertEqual( precision, 1.0 - (error / total) )

            #eprint("precision: ", precision)

            # error of size
            state_id = random.randint(0, len(expected)-1)
            modif = random.randint(1,len(expected[state_id]))
            expected[state_id] = ( expected[state_id][0][:-modif], expected[state_id][1] )

            self.assertRaises(ValueError, ContinuumLogicProgram.precision, expected, predicted)
    def test___init__(self):
        print(">> ContinuumLogicProgram.__init__(self, variables, domains, rules)")

        for i in range(self.__nb_unit_test):
            variables, domains = self.random_system()
            rules = []

            for j in range(random.randint(0,self.__nb_rules)):
                r = self.random_rule(variables, domains)
                rules.append(r)

            p = ContinuumLogicProgram(variables, domains, rules)

            self.assertEqual(p.get_variables(), variables)
            self.assertEqual(p.get_domains(), domains)
            self.assertEqual(p.get_rules(), rules)

            modif = random.randint(1,len(variables))
            self.assertRaises(ValueError, ContinuumLogicProgram, variables, domains[:-modif], rules)
            for var in range(0, modif):
                domains.append(Continuum.random(self.__min_value, self.__max_value, self.__min_domain_size))
            self.assertRaises(ValueError, ContinuumLogicProgram, variables, domains, rules)
Example #15
0
    def test_includes(self):
        eprint(">> Continuum.includes(self, element)")

        for i in range(self.__nb_unit_test):

            # bad argument type
            c = Continuum.random(self.__min_value, self.__max_value)

            self.assertRaises(TypeError, c.includes, "test")

            # float argument
            #----------------

            # empty set includes nothing
            c = Continuum()
            value = random.uniform(self.__min_value, self.__max_value)
            self.assertFalse(c.includes(value))

            c = Continuum.random(self.__min_value, self.__max_value)

            # Before min
            value = c.get_min_value()
            while value == c.get_min_value():
                value = random.uniform(c.get_min_value() - 100.0,
                                       c.get_min_value())

            self.assertFalse(c.includes(value))

            # on min bound
            self.assertEqual(c.includes(c.get_min_value()), c.min_included())

            # Inside
            value = c.get_min_value()
            while value == c.get_min_value() or value == c.get_max_value():
                value = random.uniform(c.get_min_value(), c.get_max_value())

            self.assertTrue(c.includes(value))

            # on max bound
            self.assertEqual(c.includes(c.get_max_value()), c.max_included())

            # after max bound
            value = c.get_max_value()
            while value == c.get_max_value():
                value = random.uniform(c.get_max_value(),
                                       c.get_max_value() + 100.0)

            self.assertFalse(c.includes(value))

            # int argument
            #--------------

            # empty set includes nothing
            c = Continuum()
            value = random.randint(int(self.__min_value),
                                   int(self.__max_value))
            self.assertFalse(c.includes(value))

            c = Continuum.random(self.__min_value, self.__max_value)

            while int(c.get_max_value()) - int(c.get_min_value()) <= 1:
                min = random.uniform(self.__min_value, self.__max_value)
                max = random.uniform(min, self.__max_value)

                c = Continuum.random(min, max)

            #eprint(c.to_string())

            # Before min
            value = random.randint(int(c.get_min_value() - 100),
                                   int(c.get_min_value()) - 1)

            self.assertFalse(c.includes(value))

            # on min bound
            self.assertEqual(c.includes(c.get_min_value()), c.min_included())

            # Inside
            value = random.randint(
                int(c.get_min_value()) + 1,
                int(c.get_max_value()) - 1)

            #eprint(value)

            self.assertTrue(c.includes(value))

            # on max bound
            self.assertEqual(c.includes(c.get_max_value()), c.max_included())

            # after max bound
            value = random.randint(
                int(c.get_max_value()) + 1, int(c.get_max_value() + 100))

            self.assertFalse(c.includes(value))

            # continuum argument
            #--------------------

            # 0) c is empty set
            c = Continuum()
            c_ = Continuum()
            self.assertTrue(c.includes(c_))  # empty set VS empty set

            c_ = Continuum.random(self.__min_value, self.__max_value)
            while c_.is_empty():
                c_ = Continuum.random(self.__min_value, self.__max_value)
            self.assertFalse(c.includes(c_))  # empty set VS non empty

            # 1) c is non empty
            c = Continuum.random(self.__min_value, self.__max_value)

            self.assertTrue(c.includes(Continuum()))  # non empty VS empty set
            self.assertTrue(c.includes(c))  # includes itself

            # 1.1) Lower bound over
            c_ = Continuum.random(c.get_min_value(), self.__max_value)
            while c_.is_empty():
                c_ = Continuum.random(c.get_min_value(), self.__max_value)

            value = c.get_min_value()
            while value == c.get_min_value():
                value = random.uniform(c.get_min_value() - 100,
                                       c.get_min_value())

            c_.set_lower_bound(value, random.choice([True, False]))
            self.assertFalse(c.includes(c_))

            # 1.2) on min bound
            c_ = Continuum.random(c.get_min_value(), self.__max_value)
            while c_.is_empty():
                c_ = Continuum.random(c.get_min_value(), self.__max_value)
            c_.set_lower_bound(c.get_min_value(), random.choice([True, False]))

            if not c.min_included() and c_.min_included():  # one value over
                self.assertFalse(c.includes(c_))

            # 1.3) upper bound over
            c_ = Continuum.random(self.__min_value, c.get_max_value())
            while c_.is_empty():
                c_ = Continuum.random(self.__min_value, c.get_max_value())

            value = c.get_max_value()
            while value == c.get_max_value():
                value = random.uniform(c.get_max_value(),
                                       c.get_max_value() + 100)

            c_.set_upper_bound(value, random.choice([True, False]))

            self.assertFalse(c.includes(c_))

            # 1.4) on upper bound
            c_ = Continuum.random(self.__min_value, c.get_max_value())
            while c_.is_empty():
                c_ = Continuum.random(self.__min_value, c.get_max_value())
            c_.set_upper_bound(c.get_max_value(), random.choice([True, False]))

            if not c.max_included() and c_.max_included():  # one value over
                self.assertFalse(c.includes(c_))

            # 1.5) inside
            min = c.get_min_value()
            while min == c.get_min_value():
                min = random.uniform(c.get_min_value(), c.get_max_value())
            max = c.get_max_value()
            while max == c.get_max_value():
                max = random.uniform(min, c.get_max_value())
            c_ = Continuum(min, max, random.choice([True, False]),
                           random.choice([True, False]))

            self.assertTrue(c.includes(c_))
            self.assertFalse(c_.includes(c))
Example #16
0
    def test_intersects(self):
        eprint(">> Continuum.intersects(self, continuum)")

        for i in range(self.__nb_unit_test):
            c = Continuum.random(self.__min_value, self.__max_value)
            c_ = Continuum()

            # emptyset
            self.assertFalse(c.intersects(c_))
            self.assertFalse(c_.intersects(c))
            self.assertFalse(c_.intersects(c_))

            # stricly before
            c = Continuum.random(self.__min_value, self.__max_value)
            c_ = Continuum.random(c.get_min_value() - 100, c.get_min_value())
            self.assertFalse(c.intersects(c_))
            self.assertFalse(c_.intersects(c))

            # touching on lower bound
            c = Continuum.random(self.__min_value, self.__max_value)
            c_ = Continuum.random(c.get_min_value() - 100, c.get_min_value())
            c_.set_upper_bound(c.get_min_value(), True)

            self.assertEqual(c.intersects(c_), c.min_included())
            self.assertEqual(c_.intersects(c), c.min_included())

            c_.set_upper_bound(c.get_min_value(), False)

            self.assertFalse(c.intersects(c_))
            self.assertFalse(c_.intersects(c))

            # strictly after
            c = Continuum.random(self.__min_value, self.__max_value)
            c_ = Continuum.random(c.get_max_value(), c.get_max_value() + 100)
            self.assertFalse(c.intersects(c_))
            self.assertFalse(c_.intersects(c))

            # touching on lower bound
            c = Continuum.random(self.__min_value, self.__max_value)
            c_ = Continuum.random(c.get_max_value(), c.get_max_value() + 100)
            c_.set_lower_bound(c.get_max_value(), True)

            self.assertEqual(c.intersects(c_), c.max_included())
            self.assertEqual(c_.intersects(c), c.max_included())

            c_.set_lower_bound(c.get_max_value(), False)

            self.assertFalse(c.intersects(c_))
            self.assertFalse(c_.intersects(c))

            # same (not empty)
            c = Continuum.random(self.__min_value, self.__max_value)
            while c.is_empty():
                c = Continuum.random(self.__min_value, self.__max_value)
            self.assertTrue(c.includes(c))

            # smaller
            c_ = Continuum.random(c.get_min_value(), c.get_max_value())
            while c_.get_min_value() == c.get_min_value() and c_.get_max_value(
            ) == c.get_max_value():
                c_ = Continuum.random(c.get_min_value(), c.get_max_value())

            self.assertTrue(c.intersects(c_))
            self.assertTrue(c_.intersects(c))

            # bigger
            c_ = Continuum.random(c.get_min_value() - 100,
                                  c.get_max_value() + 100)
            while c_.get_min_value() >= c.get_min_value() or c_.get_max_value(
            ) <= c.get_max_value():
                c_ = Continuum.random(c.get_min_value() - 100,
                                      c.get_max_value() + 100)

            #eprint(c.to_string())
            #eprint(c_.to_string())
            self.assertTrue(c.intersects(c_))
            self.assertTrue(c_.intersects(c))
Example #17
0
    def test__eq__(self):
        eprint(">> Continuum.__eq__(self, continuum)")

        for i in range(self.__nb_unit_test):

            # emptyset
            c = Continuum()

            self.assertTrue(Continuum() == Continuum())
            self.assertTrue(c == Continuum())
            self.assertTrue(c == c)

            self.assertFalse(Continuum() != Continuum())
            self.assertFalse(c != Continuum())
            self.assertFalse(c != c)

            c = Continuum.random(self.__min_value, self.__max_value)

            self.assertTrue(c == c)
            self.assertFalse(c != c)
            self.assertEqual(c == Continuum(), c.is_empty())

            c_ = Continuum.random(self.__min_value, self.__max_value)

            if c.is_empty() and c_.is_empty():
                self.assertTrue(c == c_)
                self.assertTrue(c != c_)

            if c.is_empty() != c_.is_empty():
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)

            if c.get_min_value() != c_.get_min_value():
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)

            if c.get_max_value() != c_.get_max_value():
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)

            if c.min_included() != c_.min_included():
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)

            if c.max_included() != c_.max_included():
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)

            # exaustive modifications
            if not c.is_empty():
                c_ = c.copy()
                value = random.uniform(1, 100)
                c_.set_lower_bound(c.get_min_value() - value, True)
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)
                c_.set_lower_bound(c.get_min_value() - value, False)
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)

                c_ = c.copy()
                c_.set_lower_bound(c.get_min_value(), not c.min_included())
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)

                c_ = c.copy()
                value = random.uniform(1, 100)
                c_.set_upper_bound(c.get_min_value() + value, True)
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)
                c_.set_upper_bound(c.get_min_value() + value, False)
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)

                c_ = c.copy()
                c_.set_upper_bound(c.get_max_value(), not c.max_included())
                self.assertFalse(c == c_)
                self.assertTrue(c != c_)

            # different type
            self.assertFalse(c == "test")
            self.assertFalse(c == 0)
            self.assertFalse(c == True)
            self.assertFalse(c == [])
Example #18
0
    def test_set_condition(self):
        print(">> ContinuumRule.set_condition(self, variable, value)")

        for i in range(self.__nb_unit_test):
            variables, domains = self.random_system()
            var = random.randint(0, len(variables) - 1)

            # empty rule
            r = self.random_rule(variables, domains)
            r = ContinuumRule(r.get_head_variable(), r.get_head_value(), [])

            for j in range(len(variables)):

                var = random.randint(0, len(variables) - 1)
                val = Continuum.random(domains[var].get_min_value(),
                                       domains[var].get_max_value())
                size = r.size()
                exist = r.has_condition(var)
                r.set_condition(var, val)

                # condition updated
                self.assertEqual(r.get_condition(var), val)

                # change rather than add when variable exist in a condition
                if exist:
                    self.assertEqual(r.size(), size)
                else:
                    self.assertEqual(r.size(), size + 1)

                # Ordering ensured
                prev = -1
                for v, val in r.get_body():
                    v > prev
                    prev = v

            # regular rule
            r = self.random_rule(variables, domains)

            for j in range(len(variables)):
                var = random.randint(0, len(variables) - 1)
                val = Continuum.random(domains[var].get_min_value(),
                                       domains[var].get_max_value())
                size = r.size()
                exist = r.has_condition(var)

                #eprint("r: ", r)
                #eprint("var: ", var)
                #eprint("val: ", val)

                r.set_condition(var, val)

                # condition updated
                self.assertEqual(r.get_condition(var), val)

                # change rather than add when variable exist in a condition
                if exist:
                    self.assertEqual(r.size(), size)
                else:
                    self.assertEqual(r.size(), size + 1)

                # Ordering ensured
                prev = -1
                for v, val in r.get_body():
                    v > prev
                    prev = v
Example #19
0
    def test_constructor_full(self):
        eprint(
            ">> Continuum.__init__(self, min_value=None, max_value=None, min_included=None, max_included=None)"
        )

        for i in range(self.__nb_unit_test):

            # Valid continuum
            #-----------------
            min = random.uniform(self.__min_value, self.__max_value)
            max = random.uniform(min, self.__max_value)
            min_included = random.choice([True, False])
            max_included = random.choice([True, False])

            c = Continuum(min, max, min_included, max_included)

            self.assertFalse(c.is_empty())
            self.assertEqual(c.get_min_value(), min)
            self.assertEqual(c.get_max_value(), max)
            self.assertEqual(c.min_included(), min_included)
            self.assertEqual(c.max_included(), max_included)

            # Implicit emptyset
            #-------------------
            min = random.uniform(self.__min_value, self.__max_value)

            c = Continuum(min, min, False, False)

            self.assertTrue(c.is_empty())
            self.assertEqual(c.get_min_value(), None)
            self.assertEqual(c.get_max_value(), None)
            self.assertEqual(c.min_included(), None)
            self.assertEqual(c.max_included(), None)

            # Invalid Continuum
            #--------------------
            max = random.uniform(self.__min_value, min - 0.001)

            self.assertRaises(ValueError, Continuum, min, max, min_included,
                              max_included)

            # Invalid number of arguments
            #-------------------------------

            self.assertRaises(ValueError, Continuum, min)
            self.assertRaises(ValueError, Continuum, min, max)
            self.assertRaises(ValueError, Continuum, min, max, min_included)
            self.assertRaises(ValueError, Continuum, min, max, min_included,
                              max_included)
Example #20
0
    def test_least_revision(self):
        eprint(">> ACEDIA.least_revision(rule, state_1, state_2)")

        for i in range(self.__nb_unit_test):
            variables, domains = self.random_system()

            state_1 = self.random_state(variables, domains)
            state_2 = self.random_state(variables, domains)

            # not matching
            #--------------
            rule = self.random_rule(variables, domains)
            while rule.matches(state_1):
                rule = self.random_rule(variables, domains)

            self.assertRaises(ValueError, ACEDIA.least_revision, rule, state_1,
                              state_2)

            # matching
            #--------------

            rule = self.random_rule(variables, domains)
            while not rule.matches(state_1):
                rule = self.random_rule(variables, domains)

            head_var = rule.get_head_variable()
            target_val = state_2[rule.get_head_variable()]

            # Consistent
            head_value = Continuum()
            while not head_value.includes(target_val):
                head_value = Continuum.random(
                    domains[head_var].get_min_value(),
                    domains[head_var].get_max_value())
            rule.set_head_value(head_value)
            self.assertRaises(ValueError, ACEDIA.least_revision, rule, state_1,
                              state_2)

            # Empty set head
            rule.set_head_value(Continuum())

            LR = ACEDIA.least_revision(rule, state_1, state_2)
            lg = rule.copy()
            lg.set_head_value(Continuum(target_val, target_val, True, True))
            self.assertTrue(lg in LR)

            nb_valid_revision = 1

            for var, val in rule.get_body():
                state_value = state_1[var]

                # min rev
                ls = rule.copy()
                new_val = val.copy()
                new_val.set_lower_bound(state_value, False)
                if not new_val.is_empty():
                    ls.set_condition(var, new_val)
                    self.assertTrue(ls in LR)
                    nb_valid_revision += 1

                # max rev
                ls = rule.copy()
                new_val = val.copy()
                new_val.set_upper_bound(state_value, False)
                if not new_val.is_empty():
                    ls.set_condition(var, new_val)
                    self.assertTrue(ls in LR)
                    nb_valid_revision += 1

            self.assertEqual(len(LR), nb_valid_revision)

            #eprint(nb_valid_revision)

            # usual head
            head_value = Continuum.random(domains[head_var].get_min_value(),
                                          domains[head_var].get_max_value())
            while head_value.includes(target_val):
                head_value = Continuum.random(
                    domains[head_var].get_min_value(),
                    domains[head_var].get_max_value())
            rule.set_head_value(head_value)

            LR = ACEDIA.least_revision(rule, state_1, state_2)

            lg = rule.copy()
            head_value = lg.get_head_value()
            if target_val <= head_value.get_min_value():
                head_value.set_lower_bound(target_val, True)
            else:
                head_value.set_upper_bound(target_val, True)
            lg.set_head_value(head_value)
            self.assertTrue(lg in LR)

            nb_valid_revision = 1

            for var, val in rule.get_body():
                state_value = state_1[var]

                # min rev
                ls = rule.copy()
                new_val = val.copy()
                new_val.set_lower_bound(state_value, False)
                if not new_val.is_empty():
                    ls.set_condition(var, new_val)
                    self.assertTrue(ls in LR)
                    nb_valid_revision += 1

                # max rev
                ls = rule.copy()
                new_val = val.copy()
                new_val.set_upper_bound(state_value, False)
                if not new_val.is_empty():
                    ls.set_condition(var, new_val)
                    self.assertTrue(ls in LR)
                    nb_valid_revision += 1

            self.assertEqual(len(LR), nb_valid_revision)
Example #21
0
    def test_set_upper_bound(self):
        eprint(">> Continuum.set_upper_bound(self, value, included)")

        for i in range(self.__nb_unit_test):
            # Empty set
            c = Continuum()

            self.assertRaises(TypeError, c.set_upper_bound, "string", True)
            self.assertRaises(TypeError, c.set_upper_bound, "string", False)
            self.assertRaises(TypeError, c.set_upper_bound, 0.5, 10)

            value = random.uniform(self.__min_value, self.__max_value)

            # extend with exclusion gives empty set, mistake expected from user
            # or both min and max will be changed and constructor must be used
            self.assertRaises(ValueError, c.set_upper_bound, value, False)

            c.set_upper_bound(value, True)

            # Empty set to one value interval
            self.assertEqual(c, Continuum(value, value, True, True))

            # Regular continuum

            # over min value
            c = Continuum.random(self.__min_value, self.__max_value)
            value = random.uniform(self.__min_value, c.get_min_value())
            while value == c.get_min_value():
                value = random.uniform(self.__min_value, c.get_min_value())

            self.assertRaises(ValueError, c.set_upper_bound, value, True)
            self.assertRaises(ValueError, c.set_upper_bound, value, False)

            # on min value
            c = Continuum.random(self.__min_value, self.__max_value)
            c_old = c.copy()
            value = c.get_min_value()
            if not c.max_included() or not c.min_included():
                c.set_upper_bound(value, False)
                self.assertEqual(c,
                                 Continuum())  # continuum reduced to empty set
            else:
                c.set_upper_bound(value, True)
                self.assertEqual(c.get_max_value(), value)
                self.assertEqual(c.max_included(), True)
                self.assertEqual(c.get_max_value(), c.get_min_value())

                self.assertEqual(c.get_min_value(), c_old.get_min_value())
                self.assertEqual(c.min_included(), c_old.min_included())

            # other valid value
            c = Continuum.random(self.__min_value, self.__max_value)
            c_old = c.copy()
            value = random.uniform(c.get_min_value(), self.__max_value)
            while value == c.get_min_value():
                value = random.uniform(c.get_min_value(), self.__max_value)

            c.set_upper_bound(value, True)

            self.assertEqual(c.get_max_value(), value)
            self.assertEqual(c.max_included(), True)

            c = Continuum.random(self.__min_value, self.__max_value)
            c_old = c.copy()
            value = random.uniform(c.get_min_value(), self.__max_value)
            while value == c.get_min_value():
                value = random.uniform(c.get_min_value(), self.__max_value)

            c.set_upper_bound(value, False)

            self.assertEqual(c.get_max_value(), value)
            self.assertEqual(c.max_included(), False)
Example #22
0
    def test_to_string(self):
        eprint(">> Continuum.to_string(self)")

        for i in range(self.__nb_unit_test):
            c = Continuum()

            self.assertEqual(c.to_string(), u"\u2205")

            c = Continuum.random(self.__min_value, self.__max_value)

            if c.is_empty():
                self.assertEqual(c.to_string(), u"\u2205")

            out = ""

            if c.min_included():
                out += "["
            else:
                out += "]"

            out += str(c.get_min_value()) + "," + str(c.get_max_value())

            if c.max_included():
                out += "]"
            else:
                out += "["

            self.assertEqual(c.to_string(), out)
            self.assertEqual(c.__str__(), out)
            self.assertEqual(c.__repr__(), out)
Example #23
0
    def test_fit(self):
        eprint(">> ACEDIA.fit(variables, values, transitions)")

        for i in range(self.__nb_unit_test):

            eprint("\rTest ", i + 1, "/", self.__nb_unit_test, end='')

            # Generate transitions
            epsilon = random.choice([0.1, 0.25, 0.3, 0.5])
            variables, domains = self.random_system()
            p = ContinuumLogicProgram.random(variables, domains, 1,
                                             len(variables), epsilon)

            #eprint("Progam: ", p)

            # Valid and realistic epsilon
            #epsilon = round(random.uniform(0.1,1.0), 2)
            #while epsilon == 1.0:
            #    epsilon = round(random.uniform(0.1,1.0), 2)

            t = p.generate_all_transitions(epsilon)

            #sys.exit()

            #eprint("Transitions: ")
            #for s1, s2 in t:
            #    eprint(s1, s2)
            #eprint("Transitions: ", t)

            p_ = ACEDIA.fit(p.get_variables(), p.get_domains(), t)
            rules = p_.get_rules()

            #eprint("learned: ", p_)

            # All transitions are realized
            #------------------------------

            for head_var in range(len(p.get_variables())):
                for s1, s2 in t:
                    for idx, val in enumerate(s2):
                        realized = 0
                        for r in rules:
                            if r.get_head_variable(
                            ) == idx and r.get_head_value().includes(
                                    val) and r.matches(s1):
                                realized += 1
                                break
                        if realized <= 0:
                            eprint("head_var: ", head_var)
                            eprint("s1: ", s1)
                            eprint("s2: ", s2)
                            eprint("learned: ", p_)
                        self.assertTrue(
                            realized >= 1)  # One rule realize the example

            # All rules are minimals
            #------------------------
            for r in rules:

                #eprint("r: ", r)

                # Try reducing head min
                #-----------------------
                r_ = r.copy()
                h = r_.get_head_value()
                if h.get_min_value() + epsilon <= h.get_max_value():
                    r_.set_head_value(
                        Continuum(h.get_min_value() + epsilon,
                                  h.get_max_value(), h.min_included(),
                                  h.max_included()))

                    #eprint("spec: ", r_)

                    conflict = False
                    for s1, s2 in t:
                        if not r_.get_head_value().includes(
                                s2[r_.get_head_variable()]) and r_.matches(
                                    s1):  # Cover a negative example
                            conflict = True
                            #eprint("conflict")
                            break

                    if not conflict:
                        eprint("Non minimal rule: ", r)
                        eprint("head can be specialized into: ",
                               r_.get_head_variable(), "=",
                               r_.get_head_value())

                    self.assertTrue(conflict)

                # Try reducing head max
                #-----------------------
                r_ = r.copy()
                h = r_.get_head_value()
                if h.get_max_value() - epsilon >= h.get_min_value():
                    r_.set_head_value(
                        Continuum(h.get_min_value(),
                                  h.get_max_value() - epsilon,
                                  h.min_included(), h.max_included()))

                    #eprint("spec: ", r_)

                    conflict = False
                    for s1, s2 in t:
                        if not r_.get_head_value().includes(
                                s2[r_.get_head_variable()]) and r_.matches(
                                    s1):  # Cover a negative example
                            conflict = True
                            #eprint("conflict")
                            break

                    if not conflict:
                        eprint("Non minimal rule: ", r)
                        eprint("head can be generalized to: ",
                               r_.get_head_variable(), "=",
                               r_.get_head_value())

                    self.assertTrue(conflict)

                # Try extending condition
                #-------------------------
                for (var, val) in r.get_body():

                    # Try extend min
                    r_ = r.copy()
                    if val.get_min_value(
                    ) - epsilon >= domains[var].get_min_value():
                        val_ = val.copy()
                        if not val_.min_included():
                            val_.set_lower_bound(val_.get_min_value(), True)
                        else:
                            val_.set_lower_bound(
                                val_.get_min_value() - epsilon, False)
                        r_.set_condition(var, val_)

                        #eprint("gen: ", r_)

                        conflict = False
                        for s1, s2 in t:
                            if not r_.get_head_value().includes(
                                    s2[r_.get_head_variable()]) and r_.matches(
                                        s1):  # Cover a negative example
                                conflict = True
                                #eprint("conflict")
                                break

                        if not conflict:
                            eprint("Non minimal rule: ", r)
                            eprint("condition can be generalized: ", var, "=",
                                   val_)

                        self.assertTrue(conflict)

                    # Try extend max
                    r_ = r.copy()
                    if val.get_max_value(
                    ) + epsilon <= domains[var].get_max_value():
                        val_ = val.copy()
                        if not val_.max_included():
                            val_.set_upper_bound(val_.get_max_value(), True)
                        else:
                            val_.set_upper_bound(
                                val_.get_max_value() + epsilon, False)
                        r_.set_condition(var, val_)

                        #eprint("gen: ", r_)

                        conflict = False
                        for s1, s2 in t:
                            if not r_.get_head_value().includes(
                                    s2[r_.get_head_variable()]) and r_.matches(
                                        s1):  # Cover a negative example
                                conflict = True
                                #eprint("conflict")
                                break

                        if not conflict:
                            eprint("Non minimal rule: ", r)
                            eprint("condition can be generalized: ", var, "=",
                                   val_)

                        self.assertTrue(conflict)
        eprint()
Example #24
0
    def test_dominates(self):
        print(">> ContinuumRule.dominates(self, rule)")

        for i in range(self.__nb_unit_test):
            variables, domains = self.random_system()
            var = random.randint(0, len(variables) - 1)
            r = self.random_rule(variables, domains)

            # Undominated rule: var = emptyset if anything
            r0 = ContinuumRule(r.get_head_variable(), Continuum())

            self.assertTrue(r0.dominates(r0))

            # r1 is a regular rule
            r1 = self.random_rule(variables, domains)
            while r1.size() == 0:
                r1 = self.random_rule(variables, domains)
            var = r.get_head_variable()
            val = Continuum.random(domains[var].get_min_value(),
                                   domains[var].get_max_value())
            r1 = ContinuumRule(var, val, r1.get_body())  # set head

            self.assertTrue(r0.dominates(r1))
            self.assertFalse(r1.dominates(r0))

            # r2 is precision of r1 (head specification)
            r2 = r1.copy()
            var = r2.get_head_variable()
            val = r2.get_head_value()
            while r2.get_head_value(
            ) == val or not r2.get_head_value().includes(val):
                val = Continuum.random(val.get_min_value(),
                                       val.get_max_value())
            r2.set_head_value(val)

            self.assertEqual(r0.dominates(r2), True)
            self.assertEqual(r2.dominates(r0), False)
            self.assertEqual(r2.dominates(r1), True)
            self.assertEqual(r1.dominates(r2), False)

            # r3 is a generalization of r1 (body generalization)
            r3 = r1.copy()
            var, val = random.choice(r3.get_body())
            val_ = val
            modif_min = random.uniform(0, self.__max_value)
            modif_max = random.uniform(0, self.__max_value)
            while val_ == val or not val_.includes(val):
                val_ = Continuum.random(val.get_min_value() - modif_min,
                                        val.get_max_value() + modif_max)
            r3.set_condition(var, val_)

            self.assertEqual(r0.dominates(r3), True)
            self.assertEqual(r3.dominates(r0), False)
            self.assertEqual(r3.dominates(r1), True)
            self.assertEqual(r1.dominates(r3), False)

            # r4 is unprecision of r1 (head generalization)
            r4 = r1.copy()
            var = r4.get_head_variable()
            val = r4.get_head_value()
            modif_min = random.uniform(0, self.__max_value)
            modif_max = random.uniform(0, self.__max_value)
            while r4.get_head_value() == val or not val.includes(
                    r4.get_head_value()):
                val = Continuum(val.get_min_value() - modif_min,
                                val.get_max_value() + modif_max,
                                random.choice([True, False]),
                                random.choice([True, False]))
            r4.set_head_value(val)

            self.assertEqual(r0.dominates(r4), True)
            self.assertEqual(r4.dominates(r0), False)
            self.assertEqual(r4.dominates(r1), False)
            self.assertEqual(r1.dominates(r4), True)

            # r5 is specialization of r1 (body specialization)
            r5 = r1.copy()
            var, val = random.choice(r5.get_body())
            val_ = val
            while val_ == val or not val.includes(val_):
                val_ = Continuum.random(val.get_min_value(),
                                        val.get_max_value())
            r5.set_condition(var, val_)

            self.assertEqual(r0.dominates(r5), True)
            self.assertEqual(r5.dominates(r0), False)
            self.assertEqual(r5.dominates(r1), False)
            self.assertEqual(r1.dominates(r5), True)

            # r6 is a random rule
            r6 = self.random_rule(variables, domains)

            # head var difference
            if r6.get_head_variable() != r1.get_head_variable():
                self.assertFalse(r6.dominates(r1))
                self.assertFalse(r1.dominates(r6))

            r6 = ContinuumRule(r1.get_head_variable(), r6.get_head_value(),
                               r6.get_body())  # same head var
            #eprint("r1: ", r1)
            #eprint("r6: ", r6)

            # head val inclusion
            if not r1.get_head_value().includes(r6.get_head_value()):
                self.assertFalse(r6.dominates(r1))

            r6 = ContinuumRule(r1.get_head_variable(), r1.get_head_value(),
                               r6.get_body())  # same head var, same head val

            # body subsumption
            if r1.dominates(r6):
                for var, val in r1.get_body():
                    self.assertTrue(val.includes(r6.get_condition(var)))

            # body subsumption
            if r6.dominates(r1):
                for var, val in r6.get_body():
                    self.assertTrue(val.includes(r1.get_condition(var)))

            # incomparable
            if not r1.dominates(r6) and not r6.dominates(r1):
                #eprint("r1: ", r1)
                #eprint("r6: ", r6)

                conflicts = False
                dominant_r1 = False
                dominant_r6 = False
                for var, val in r1.get_body():
                    # condition not appearing
                    if not r6.has_condition(var):
                        conflicts = True
                        break

                    # value not included
                    if not r6.get_condition(var).includes(
                            val) and not val.includes(r6.get_condition(var)):
                        conflicts = True
                        break

                    # local dominates
                    if val.includes(r6.get_condition(var)):
                        dominant_r1 = True

                    # local dominated
                    if r6.get_condition(var).includes(val):
                        if dominant_r1:
                            conflicts = True
                            break

                for var, val in r6.get_body():
                    # condition not appearing
                    if not r1.has_condition(var):
                        conflicts = True
                        break

                    # value not included
                    if not r1.get_condition(var).includes(
                            val) and not val.includes(r1.get_condition(var)):
                        conflicts = True
                        break

                    # local dominates
                    if val.includes(r1.get_condition(var)):
                        dominant_r6 = True
                        if dominant_r1:
                            conflicts = True
                            break

                    # local dominated
                    if r1.get_condition(var).includes(val):
                        if dominant_r6:
                            conflicts = True
                            break

                self.assertTrue(conflicts)