Example #1
0
# train
try:
    # data for sampling
    xa_sample_ipt, a_sample_ipt = val_data.get_next()
    b_sample_ipt_list = [a_sample_ipt]  # the first is for reconstruction
    for i in range(len(atts)):
        tmp = np.array(a_sample_ipt, copy=True)
        tmp[:, i] = 1 - tmp[:, i]   # inverse attribute
        tmp = data.Celeba.check_attribute_conflict(tmp, atts[i], atts)
        b_sample_ipt_list.append(tmp)

    it_per_epoch = len(tr_data) // (batch_size * (n_d + 1))
    max_it = epoch * it_per_epoch
    for it in range(sess.run(it_cnt), max_it):
        with pylib.Timer(is_output=False) as t:
            sess.run(update_cnt)

            # which epoch
            epoch = it // it_per_epoch
            it_in_epoch = it % it_per_epoch + 1

            # learning rate
            lr_ipt = lr_base / (10 ** (epoch // 100))

            # train D
            for i in range(n_d):
                d_summary_opt, _ = sess.run([d_summary, d_step], feed_dict={lr: lr_ipt})
            summary_writer.add_summary(d_summary_opt, it)

            # train G
Example #2
0
    def train(self):

        it_cnt, update_cnt = tl.counter()

        # saver
        saver = tf.train.Saver(max_to_keep=10)

        # summary writer
        summary_writer = tf.summary.FileWriter(self.config["projectSummary"],
                                               self.sess.graph)

        # initialization
        ckpt_dir = self.config["projectCheckpoints"]
        epoch = self.config["totalEpoch"]
        n_d = self.config["dStep"]
        atts = self.config["selectedAttrs"]
        thres_int = self.config["thresInt"]
        test_int = self.config["sampleThresInt"]
        n_sample = self.config["sampleNum"]
        img_size = self.config["imsize"]
        sample_freq = self.config["sampleEpoch"]
        save_freq = self.config["modelSaveEpoch"]
        lr_base = self.config["gLr"]
        lrDecayEpoch = self.config["lrDecayEpoch"]
        try:
            assert clear == False
            tl.load_checkpoint(ckpt_dir, self.sess)
        except:
            print('NOTE: Initializing all parameters...')
            self.sess.run(tf.global_variables_initializer())

        # train
        try:
            # data for sampling
            xa_sample_ipt, a_sample_ipt = self.val_loader.get_next()
            b_sample_ipt_list = [a_sample_ipt
                                 ]  # the first is for reconstruction
            for i in range(len(atts)):
                tmp = np.array(a_sample_ipt, copy=True)
                tmp[:, i] = 1 - tmp[:, i]  # inverse attribute
                tmp = Celeba.check_attribute_conflict(tmp, atts[i], atts)
                b_sample_ipt_list.append(tmp)

            it_per_epoch = len(self.data_loader) // (self.config["batchSize"] *
                                                     (n_d + 1))
            max_it = epoch * it_per_epoch

            for it in range(self.sess.run(it_cnt), max_it):
                with pylib.Timer(is_output=False) as t:
                    self.sess.run(update_cnt)

                    # which epoch
                    epoch = it // it_per_epoch
                    it_in_epoch = it % it_per_epoch + 1
                    # learning rate
                    lr_ipt = lr_base / (10**(epoch // lrDecayEpoch))

                    # train D
                    for i in range(n_d):
                        d_summary_opt, _ = self.sess.run(
                            [self.d_summary, self.d_step],
                            feed_dict={self.lr: lr_ipt})
                    summary_writer.add_summary(d_summary_opt, it)

                    # train G
                    g_summary_opt, _ = self.sess.run(
                        [self.g_summary, self.g_step],
                        feed_dict={self.lr: lr_ipt})
                    summary_writer.add_summary(g_summary_opt, it)

                    # display
                    if (it + 1) % 100 == 0:
                        print("Epoch: (%3d) (%5d/%5d) Time: %s!" %
                              (epoch, it_in_epoch, it_per_epoch, t))

                    # save
                    if (it + 1) % (save_freq
                                   if save_freq else it_per_epoch) == 0:
                        save_path = saver.save(
                            self.sess, '%s/Epoch_(%d)_(%dof%d).ckpt' %
                            (ckpt_dir, epoch, it_in_epoch, it_per_epoch))
                        print('Model is saved at %s!' % save_path)

                    # sample
                    if (it + 1) % (sample_freq
                                   if sample_freq else it_per_epoch) == 0:

                        x_sample_opt_list = [
                            xa_sample_ipt,
                            np.full((n_sample, img_size, img_size // 10, 3),
                                    -1.0)
                        ]
                        raw_b_sample_ipt = (b_sample_ipt_list[0].copy() * 2 -
                                            1) * thres_int

                        for i, b_sample_ipt in enumerate(b_sample_ipt_list):
                            _b_sample_ipt = (b_sample_ipt * 2 - 1) * thres_int
                            if i > 0:  # i == 0 is for reconstruction
                                _b_sample_ipt[..., i - 1] = _b_sample_ipt[
                                    ..., i - 1] * test_int / thres_int
                            x_sample_opt_list.append(
                                self.sess.run(self.x_sample,
                                              feed_dict={
                                                  self.xa_sample:
                                                  xa_sample_ipt,
                                                  self._b_sample:
                                                  _b_sample_ipt,
                                                  self.raw_b_sample:
                                                  raw_b_sample_ipt
                                              }))
                            last_images = x_sample_opt_list[-1]
                            if i > 0:  # add a mark (+/-) in the upper-left corner to identify add/remove an attribute
                                for nnn in range(last_images.shape[0]):
                                    last_images[nnn, 2:5, 0:7, :] = 1.
                                    if _b_sample_ipt[nnn, i - 1] > 0:
                                        last_images[nnn, 0:7, 2:5, :] = 1.
                                        last_images[nnn, 1:6, 3:4, :] = -1.
                                    last_images[nnn, 3:4, 1:6, :] = -1.
                        sample = np.concatenate(x_sample_opt_list, 2)

                        im.imwrite(im.immerge(sample, n_sample, 1), '%s/Epoch_(%d)_(%dof%d).jpg' % \
                                    (self.config["projectSamples"], epoch, it_in_epoch, it_per_epoch))
        except:
            traceback.print_exc()
        finally:
            save_path = saver.save(
                self.sess, '%s/Epoch_(%d)_(%dof%d).ckpt' %
                (ckpt_dir, epoch, it_in_epoch, it_per_epoch))
            print('Model is saved at %s!' % save_path)
            self.sess.close()
Example #3
0
    def train(self):

        ckpt_dir = self.config["projectCheckpoints"]
        epoch = self.config["totalEpoch"]
        n_d = self.config["dStep"]
        atts = self.config["selectedAttrs"]
        thres_int = self.config["thresInt"]
        test_int = self.config["sampleThresInt"]
        n_sample = self.config["sampleNum"]
        img_size = self.config["imsize"]
        sample_freq = self.config["sampleEpoch"]
        save_freq = self.config["modelSaveEpoch"]
        lr_base = self.config["gLr"]
        lrDecayEpoch = self.config["lrDecayEpoch"]
        n_att = len(self.config["selectedAttrs"])

        if self.config["threads"] >= 0:
            cpu_config = tf.ConfigProto(
                intra_op_parallelism_threads=self.config["threads"] // 2,
                inter_op_parallelism_threads=self.config["threads"] // 2,
                device_count={'CPU': self.config["threads"]})
            cpu_config.gpu_options.allow_growth = True
            sess = tf.Session(config=cpu_config)
        else:
            sess = tl.session()

        data_loader = Celeba(self.config["dataset_path"],
                             self.config["selectedAttrs"],
                             self.config["imsize"],
                             self.config["batchSize"],
                             part='train',
                             sess=sess,
                             crop=(self.config["imCropSize"] > 0))

        val_loader = Celeba(self.config["dataset_path"],
                            self.config["selectedAttrs"],
                            self.config["imsize"],
                            self.config["sampleNum"],
                            part='val',
                            shuffle=False,
                            sess=sess,
                            crop=(self.config["imCropSize"] > 0))

        package = __import__("components." + self.config["modelScriptName"],
                             fromlist=True)
        GencClass = getattr(package, 'Genc')
        GdecClass = getattr(package, 'Gdec')
        DClass = getattr(package, 'D')
        GP = getattr(package, "gradient_penalty")

        package = __import__("components.STU." + self.config["stuScriptName"],
                             fromlist=True)
        GstuClass = getattr(package, 'Gstu')

        Genc = partial(GencClass,
                       dim=self.config["GConvDim"],
                       n_layers=self.config["GLayerNum"],
                       multi_inputs=1)

        Gdec = partial(GdecClass,
                       dim=self.config["GConvDim"],
                       n_layers=self.config["GLayerNum"],
                       shortcut_layers=self.config["skipNum"],
                       inject_layers=self.config["injectLayers"],
                       one_more_conv=self.config["oneMoreConv"])

        Gstu = partial(GstuClass,
                       dim=self.config["stuDim"],
                       n_layers=self.config["skipNum"],
                       inject_layers=self.config["skipNum"],
                       kernel_size=self.config["stuKS"],
                       norm=None,
                       pass_state='stu')

        D = partial(DClass,
                    n_att=n_att,
                    dim=self.config["DConvDim"],
                    fc_dim=self.config["DFcDim"],
                    n_layers=self.config["DLayerNum"])

        # inputs

        xa = data_loader.batch_op[0]
        a = data_loader.batch_op[1]
        b = tf.random_shuffle(a)
        _a = (tf.to_float(a) * 2 - 1) * self.config["thresInt"]
        _b = (tf.to_float(b) * 2 - 1) * self.config["thresInt"]

        xa_sample = tf.placeholder(
            tf.float32,
            shape=[None, self.config["imsize"], self.config["imsize"], 3])
        _b_sample = tf.placeholder(tf.float32, shape=[None, n_att])
        raw_b_sample = tf.placeholder(tf.float32, shape=[None, n_att])
        lr = tf.placeholder(tf.float32, shape=[])

        # generate
        z = Genc(xa)
        zb = Gstu(z, _b - _a)
        xb_ = Gdec(zb, _b - _a)
        with tf.control_dependencies([xb_]):
            za = Gstu(z, _a - _a)
            xa_ = Gdec(za, _a - _a)

        # discriminate
        xa_logit_gan, xa_logit_att = D(xa)
        xb__logit_gan, xb__logit_att = D(xb_)

        wd = tf.reduce_mean(xa_logit_gan) - tf.reduce_mean(xb__logit_gan)
        d_loss_gan = -wd
        gp = GP(D, xa, xb_)
        xa_loss_att = tf.losses.sigmoid_cross_entropy(a, xa_logit_att)
        d_loss = d_loss_gan + gp * 10.0 + xa_loss_att

        xb__loss_gan = -tf.reduce_mean(xb__logit_gan)
        xb__loss_att = tf.losses.sigmoid_cross_entropy(b, xb__logit_att)
        xa__loss_rec = tf.losses.absolute_difference(xa, xa_)
        g_loss = xb__loss_gan + xb__loss_att * 10.0 + xa__loss_rec * self.config[
            "recWeight"]

        d_var = tl.trainable_variables('D')
        d_step = tf.train.AdamOptimizer(
            lr, beta1=self.config["beta1"]).minimize(d_loss, var_list=d_var)
        g_var = tl.trainable_variables('G')
        g_step = tf.train.AdamOptimizer(
            lr, beta1=self.config["beta1"]).minimize(g_loss, var_list=g_var)

        d_summary = tl.summary(
            {
                d_loss_gan: 'd_loss_gan',
                gp: 'gp',
                xa_loss_att: 'xa_loss_att',
            },
            scope='D')

        lr_summary = tl.summary({lr: 'lr'}, scope='Learning_Rate')

        g_summary = tl.summary(
            {
                xb__loss_gan: 'xb__loss_gan',
                xb__loss_att: 'xb__loss_att',
                xa__loss_rec: 'xa__loss_rec',
            },
            scope='G')

        d_summary = tf.summary.merge([d_summary, lr_summary])

        # sample
        test_label = _b_sample - raw_b_sample
        x_sample = Gdec(Gstu(Genc(xa_sample, is_training=False),
                             test_label,
                             is_training=False),
                        test_label,
                        is_training=False)

        it_cnt, update_cnt = tl.counter()

        # saver
        saver = tf.train.Saver(max_to_keep=self.config["max2Keep"])

        # summary writer
        summary_writer = tf.summary.FileWriter(self.config["projectSummary"],
                                               sess.graph)

        # initialization
        if self.config["mode"] == "finetune":
            print("Continute train the model")
            tl.load_checkpoint(ckpt_dir, sess)
            print("Load previous model successfully!")
        else:
            print('Initializing all parameters...')
            sess.run(tf.global_variables_initializer())

        # train
        try:
            # data for sampling
            xa_sample_ipt, a_sample_ipt = val_loader.get_next()
            b_sample_ipt_list = [a_sample_ipt
                                 ]  # the first is for reconstruction
            for i in range(len(atts)):
                tmp = np.array(a_sample_ipt, copy=True)
                tmp[:, i] = 1 - tmp[:, i]  # inverse attribute
                tmp = Celeba.check_attribute_conflict(tmp, atts[i], atts)
                b_sample_ipt_list.append(tmp)

            it_per_epoch = len(data_loader) // (self.config["batchSize"] *
                                                (n_d + 1))
            max_it = epoch * it_per_epoch

            print("Start to train the graph!")
            for it in range(sess.run(it_cnt), max_it):
                with pylib.Timer(is_output=False) as t:
                    sess.run(update_cnt)

                    # which epoch
                    epoch = it // it_per_epoch
                    it_in_epoch = it % it_per_epoch + 1
                    # learning rate
                    lr_ipt = lr_base / (10**(epoch // lrDecayEpoch))

                    # train D
                    for i in range(n_d):
                        d_summary_opt, _ = sess.run([d_summary, d_step],
                                                    feed_dict={lr: lr_ipt})
                    summary_writer.add_summary(d_summary_opt, it)

                    # train G
                    g_summary_opt, _ = sess.run([g_summary, g_step],
                                                feed_dict={lr: lr_ipt})
                    summary_writer.add_summary(g_summary_opt, it)

                    # display
                    if (it + 1) % 100 == 0:
                        print("Epoch: (%3d) (%5d/%5d) Time: %s!" %
                              (epoch, it_in_epoch, it_per_epoch, t))

                    # save
                    if (it + 1) % (save_freq
                                   if save_freq else it_per_epoch) == 0:
                        save_path = saver.save(
                            sess, '%s/Epoch_(%d).ckpt' % (ckpt_dir, epoch))
                        print('Model is saved at %s!' % save_path)

                    # sample
                    if (it + 1) % (sample_freq
                                   if sample_freq else it_per_epoch) == 0:

                        x_sample_opt_list = [
                            xa_sample_ipt,
                            np.full((n_sample, img_size, img_size // 10, 3),
                                    -1.0)
                        ]
                        raw_b_sample_ipt = (b_sample_ipt_list[0].copy() * 2 -
                                            1) * thres_int

                        for i, b_sample_ipt in enumerate(b_sample_ipt_list):
                            _b_sample_ipt = (b_sample_ipt * 2 - 1) * thres_int
                            if i > 0:  # i == 0 is for reconstruction
                                _b_sample_ipt[..., i - 1] = _b_sample_ipt[
                                    ..., i - 1] * test_int / thres_int
                            x_sample_opt_list.append(
                                sess.run(x_sample,
                                         feed_dict={
                                             xa_sample: xa_sample_ipt,
                                             _b_sample: _b_sample_ipt,
                                             raw_b_sample: raw_b_sample_ipt
                                         }))
                            last_images = x_sample_opt_list[-1]
                            if i > 0:  # add a mark (+/-) in the upper-left corner to identify add/remove an attribute
                                for nnn in range(last_images.shape[0]):
                                    last_images[nnn, 2:5, 0:7, :] = 1.
                                    if _b_sample_ipt[nnn, i - 1] > 0:
                                        last_images[nnn, 0:7, 2:5, :] = 1.
                                        last_images[nnn, 1:6, 3:4, :] = -1.
                                    last_images[nnn, 3:4, 1:6, :] = -1.
                        sample = np.concatenate(x_sample_opt_list, 2)

                        im.imwrite(im.immerge(sample, n_sample, 1), '%s/Epoch_(%d)_(%dof%d).jpg' % \
                                    (self.config["projectSamples"], epoch, it_in_epoch, it_per_epoch))
        except:
            traceback.print_exc()
        finally:
            save_path = saver.save(
                sess, '%s/Epoch_(%d)_(%dof%d).ckpt' %
                (ckpt_dir, epoch, it_in_epoch, it_per_epoch))
            print('Model is saved at %s!' % save_path)
            sess.close()
    def filter(x, y, *args):
        return tf.cond(y > 1, lambda: tf.constant(True),
                       lambda: tf.constant(False))

    def map_func(x, *args):
        x = tf.image.resize_images(x, [256, 256])
        x = tf.to_float((x - tf.reduce_min(x)) /
                        (tf.reduce_max(x) - tf.reduce_min(x)) * 2 - 1)
        return (x, ) + args

    # tf.enable_eager_execution()

    s = tf.Session()

    data = DiskImageData(paths,
                         32, (labels, labels),
                         filter=None,
                         map_func=map_func,
                         shuffle=True,
                         sess=s)

    for _ in range(1000):
        with pylib.Timer():
            for i in range(100):
                b = data.get_next()
                print(b[1][0])
                print(b[2][0])
                im.imshow(np.array(b[0][0]))
                im.show()
                # data.reset()