Example #1
0
def run_log(path):
    """Function to pass to the process pool executor to process machine logs."""
    try:
        log = load_log(path)
        if not log.treatment_type == IMAGING:
            log.fluence.gamma.calc_map()
            if log.fluence.gamma.pass_prcnt < 90:
                raise Exception("Gamma pass % < 90")
        ret = "Success"
    except Exception as e:
        ret = 'Failure: {} @ {}'.format(e, path)
    return ret
Example #2
0
 def process(self):
     """Process the file; includes analysis, saving results to file, and sending emails."""
     logger.info(self.local_path + " will be analyzed...")
     self.instance = load_log(self.full_path, **self.constructor_kwargs)
     if self.instance.treatment_type == IMAGING:
         logger.info(self.local_path + " is an imaging log...")
     else:
         self.analyze()
         self.publish_pdf()
         self.save_zip()
         if self.config['email']['enable-all']:
             self.send_email()
         elif self.config['email']['enable-failure'] and self.should_send_failure_email():
             self.send_email()
     logger.info("Finished analysis on " + self.local_path)
     return True
Example #3
0
 def process(self):
     """Process the file; includes analysis, saving results to file, and sending emails."""
     logger.info(self.local_path + " will be analyzed...")
     self.instance = load_log(self.full_path, **self.constructor_kwargs)
     if self.instance.treatment_type == IMAGING:
         logger.info(self.local_path + " is an imaging log...")
         SKIP_LIST.append(self.full_path)
     else:
         self.analyze()
         self.save_zip()
         if self.config['email']['enable-all']:
             self.send_email()
         elif self.config['email'][
                 'enable-failure'] and self.should_send_failure_email():
             self.send_email()
     logger.info("Finished analysis on " + self.local_path)
Example #4
0
    def process(self):
        """Process the file; includes analysis, saving results to file, and sending emails."""
        logger.info(self.local_path + " will be analyzed...")
        self.instance = load_log(self.full_path, **self.constructor_kwargs)
        if self.instance.treatment_type == IMAGING:
            logger.info(self.local_path + " is an imaging log...")
        else:
            self.analyze()
            s=self.base_name
            file = open(self.local_path+".txt", "w")
            file.write(str("name: ") + str(self.base_name.split('_')[2]+"\n"))
            file.write(str("gama: ")+str(self.instance.fluence.gamma.pass_prcnt))

            file.close()
            self.publish_pdf()
            self.save_zip()
            if self.config['email']['enable-all']:
                self.send_email()
            elif self.config['email']['enable-failure'] and self.should_send_failure_email():
                self.send_email()
        logger.info("Finished analysis on " + self.local_path)
        return True
Example #5
0
from pylinac import load_log, MachineLogs

#import matplotlib
import matplotlib.pyplot as plt
#import numpy as np

path_to_folder = "/tmp/tlogs/"

#logs = MachineLogs(path_to_folder)
logs = load_log(path_to_folder)

i = 0
for log in logs:
    #log.axis_data.mu.plot_actual()
    plotbase = '/tmp/tlogs/plot_' + str(i)
    i = i + 1
    print("Making plot now...")

    # Produce a quick, generic summary (note: doesn't seem to work well, but might as well produce it anyway).
    log.publish_pdf(filename=(plotbase + '_report.pdf'), metadata={'Number of beam holds': log.num_beamholds})

    # Produce specific plots.
    log.axis_data.beam_hold.save_plot_actual(filename=(plotbase + '_beam_holds.pdf'))
    log.axis_data.mu.save_plot_actual(filename=(plotbase + '_MU.pdf'))
    log.axis_data.gantry.save_plot_actual(filename=(plotbase + '_gantry.pdf'))
    #log.axis_data.gantry.save_plot_difference(filename=(plotbase + '_gantry.pdf'))

    # Produce a custom plot.
    plt.close('all') # Reset
Example #6
0
from pylinac import load_log
from pylinac import log_analyzer

#logs_path = "/tmp/A20191202084129_1937015.dlg"
dlogs_path = "/tmp/"

dlogs = load_log(dlogs_path)

#dlogs.report_basic_parameters()

for dlog in dlogs:
    #dlog.report_basic_parameters()
    #dlog.plot_summary()
    #log_analyzer.Axis( dlog.axis_data.gantry.actual, dlog.axis_data.beam_hold.actual).save_plot_difference(filename='diff.png')
    plotname = dlog.a_logfile + '.png'
    log_analyzer.Axis(
        dlog.axis_data.beam_hold.actual).save_plot_actual(filename=plotname)
    #dlog.axis_data.gantry.actual
    #dlog.axis_data.beam_hold.actual
    #dlog.axis_data.gantry.actual
    #dlog.publish_pdf("/tmp/LogAnalysisReport.pdf")
    #dlog.axis_data.mu.plot_actual()

#dlogs.axis_data.gantry.plot_actual()  # plot the gantry position throughout treatment
#dlogs.fluence.gamma.calc_map(doseTA=1, distTA=1, threshold=10, resolution=0.1)
#dlogs.fluence.gamma.plot_map()  # show the gamma map as a matplotlib figure
#dlogs.publish_pdf()  # publish a PDF report
from PyQt5 import QtCore
from pylinac import TrajectoryLog
from pylinac import load_log
from pylinac import log_analyzer
from pylinac import MachineLogs
import csv
from pylinac import process

file = open("configQAwatchdir.txt", "r")
a = file.readline()
file = open("configPathSRS.txt", "r")
yamlanalise = file.readline()
win_directory = QtCore.QDir.toNativeSeparators(a)
yamlanalisePath = QtCore.QDir.toNativeSeparators(yamlanalise)

asr = load_log(win_directory)

log = TrajectoryLog("Arck_PFRAHDD1_T1.1_PF_RA_20181228080911.bin")

# a = log.axis_data.mlc.create_RMS_array(log.axis_data.mlc.get_leaves())
# print(a)
#b = log_analyzer.JawStruct(log.axis_data.jaws.x1, log.axis_data.jaws.y1, log.axis_data.jaws.x2, log.axis_data.jaws.y2)
# print(b.y1.plot_actual())

a1 = log.subbeams
s = log.axis_data.mlc.leaf_axes[30]
print(s.difference[1])
with open('filename.txt', 'w') as f:
    for i in range(71):
        f.write('%.6f' % s.difference[i] + '\n')