Example #1
0
def before_trading_start(context, data):
    log.info("RUNNING before_trading_start")
    # Prevent running more than once a day:
    # https://docs.alpaca.markets/platform-migration/zipline-to-pylivetrader/#deal-with-restart
    today = get_datetime().floor('1D')
    last_date = getattr(context, 'last_date', None)
    if today == last_date:
        log.info(
            "Skipping before_trading_start because it's already ran today")
        return

    context.output = pipeline_output('my_pipeline')

    context.stocks_worst = context.output[
        context.output['stocks_worst']].index.tolist()
    context.MyCandidate = cycle(context.stocks_worst)

    # Update ages
    for stock in context.portfolio.positions:
        if stock in context.age:
            context.age[stock] += 1
        else:
            log.info("Could not find %s in context.age" % stock.symbol)
            context.age[stock] = 1

    # Remove stale ages
    context.age = {
        stock: age
        for stock, age in context.age.items()
        if stock not in context.portfolio.positions
    }

    # Track the last run
    context.last_date = today
def before_trading_start(context, data):
    # over simplistic tracking of position age
    if not hasattr(context, 'age') or not context.age:
        context.age = {}

    today = get_datetime().floor('1D')
    last_date = getattr(context, 'last_date', None)
    if today != last_date:
        # Gets our pipeline output every day.
        context.output = pipeline_output('my_pipeline')

        context.stocks_worst = context.output[
            context.output['stocks_worst']].index.tolist()

        context.stocks_worst_weight = my_compute_weights(context)

        context.MyCandidate = cycle(context.stocks_worst)

        context.LowestPrice = context.MyLeastPrice  # reset beginning of day
        print(len(context.portfolio.positions))
        for stock in context.portfolio.positions:
            CurrPrice = float(data.current([stock], 'price'))
            if CurrPrice < context.LowestPrice:
                context.LowestPrice = CurrPrice
            if stock in context.age:
                context.age[stock] += 1
            else:
                context.age[stock] = 1
        for stock in context.age:
            if stock not in context.portfolio.positions:
                context.age[stock] = 0
            message = 'stock.symbol: {symbol}  :  age: {age}'
            log.info(
                message.format(symbol=stock.symbol, age=context.age[stock]))
        context.last_date = today
def handle_data(context, data):
    t = get_datetime()
    print('current time', t)
    assets = symbols('AAPL', 'GOOG', 'MSFT', 'AMZN')
    safe = symbol('TLT')

    assets_hist = data.history(assets, 'price', 5, '1m')
    print(assets_hist)
    '''
Example #4
0
def handle_data(context, data):
    today = get_datetime().floor('1D')
    last_date = getattr(context, 'last_ran_buy', None)
    if today != last_date:
        my_rebalance(context, data)
        context.last_ran_buy = today
    else:
        for stock, position in context.portfolio.positions.items():
            if get_open_orders(stock):
                continue

            current_price = data.current(stock, 'price')
            cost_basis = position.cost_basis
            stop_loss = -0.05
            current_loss = (current_price - cost_basis) / cost_basis

            if current_loss < stop_loss:
                log.info('selling early %s (%.2f)' % (stock.symbol, current_loss))
                order_target_percent(stock, 0)
Example #5
0
def before_trading_start(context, data):
    log.info("RUNNING before_trading_start")
    # Prevent running more than once a day:
    # https://docs.alpaca.markets/platform-migration/zipline-to-pylivetrader/#deal-with-restart
    today = get_datetime().floor('1D')
    last_date = getattr(context, 'last_date', None)
    if today == last_date:
        log.info("Skipping before_trading_start because it's already ran today")
        return

    pipe_results = pipeline_output('my_pipeline')
    log.info(pipe_results)

    context.longs = []
    for sec in pipe_results[pipe_results['longs']].index.tolist():
        context.longs.append(sec)

    context.shorts = []
    for sec in pipe_results[pipe_results['shorts']].index.tolist():
        context.shorts.append(sec)

    # Track the last run
    context.last_date = today
Example #6
0
def clear(context, data):
    log.info(get_datetime())
    log.info("clearing")
    for s in context.currently_holding:
        order_target_percent(s, 0)
    context.currently_holding = set()
Example #7
0
def handle_data(context, data):
    # Morning Margin Check (UTC timezone) - LONG ONLY
    if get_datetime().hour == 14 and get_datetime().minute == 35:
        context.requiredMargin = marginRequirements(context.portfolio) * 3.0
        if context.portfolio.cash < 0.:
            context.usedMargin = abs(context.portfolio.cash)
        else:
            context.usedMargin = 0.
        if context.requiredMargin < context.usedMargin:
            log.warn('MARGIN REQUIREMENTS EXCEEDED. ' +\
                     'Used Margin = ' + str(context.usedMargin) +\
                     ' Allowable Margin = ' + str(context.requiredMargin))
        # Liquidate if total value falls 10% or more (disable margin use after 5% loss)
        if 0.9 * (context.portfolio.positions_value +
                  context.portfolio.cash) > context.trailingStopPortfolioValue:
            context.trailingStopPortfolioValue = 0.90 * (
                context.portfolio.positions_value + context.portfolio.cash)
            context.disableMarginPortfolioValue = 0.95 * (
                context.portfolio.positions_value + context.portfolio.cash)
        if (context.portfolio.positions_value +
                context.portfolio.cash) < context.trailingStopPortfolioValue:
            log.warn('*** L I Q U I D A T E ***')
            liquidate(context.portfolio)
            context.trailingStopPortfolioValue = 0.90 * (
                context.portfolio.positions_value + context.portfolio.cash)
        if (context.portfolio.positions_value +
                context.portfolio.cash) < context.disableMarginPortfolioValue:
            log.info('*** MARGIN USE DISABLED ***')
            context.allowableMargin = 1.
            context.enableMarginPortfolioValue = 1.10 * (
                context.portfolio.positions_value + context.portfolio.cash)
        elif (context.portfolio.positions_value +
              context.portfolio.cash) > context.enableMarginPortfolioValue:
            log.info('*** MARGIN USE ENABLED ***')
            context.allowableMargin = 2.

    # End of Day
    if get_datetime().hour == 20 and get_datetime().minute == 55:
        for stock in list(data.keys()):
            closeAnyOpenOrders(stock)

    #if loc_dt.month != context.previous_month:
###    if (get_datetime() - context.lastPortfolioUpdate) >= timedelta(weeks=context.rebalanceFrequency):
###        context.lastPortfolioUpdate = get_datetime()
###        log.debug('Number of secruities to be considered: ' + str(len(data.keys())))
    if get_datetime().hour == 14 and get_datetime().minute == 35:
        all_prices = history(250, '1d', 'price')
        daily_returns = all_prices.pct_change().dropna()

        dr = np.array(daily_returns)
        (rr, cc) = dr.shape

        expreturns, covars = assets_meanvar(dr, list(data.keys()))
        R = expreturns
        C = covars
        rf = 0.015
        expreturns = np.array(expreturns)

        frontier_mean, frontier_var, frontier_weights = solve_frontier(
            R, C, rf, context)

        f_w = array(frontier_weights)
        (row_1, col_1) = f_w.shape

        # Choose an allocation along the efficient frontier
        wts = frontier_weights[context.risk_tolerance]
        new_weights = wts

        # Set leverage to 1
        leverage = sum(abs(new_weights))
        portfolio_value = (context.portfolio.positions_value +
                           context.portfolio.cash) / leverage
        record(PV=portfolio_value)
        record(Cash=context.portfolio.cash)

        # Reweight portfolio
        i = 0
        for sec in list(data.keys()):
            if wts[i] < 0.01:
                wts[i] = 0.0
            if wts[i] < 0.01 and context.portfolio.positions[sec].amount == 0:
                i = i + 1
                continue
            order_target_percent(sec, wts[i], None, None)
            log.info('Adjusting ' + str(sec) + ' to ' + str(wts[i] * 100.0) +
                     '%')
            i = i + 1