Example #1
0
    def work(self, **kwargs):
        self.__dict__.update(kwargs)
        bandit = opt_q_uniform(self.target)
        prior_weight = 2.5
        gamma = 0.20
        algo = TreeParzenEstimator(bandit,
                                   prior_weight=prior_weight,
                                   n_startup_jobs=2,
                                   n_EI_candidates=128,
                                   gamma=gamma)
        print algo.opt_idxs['x']
        print algo.opt_vals['x']

        trials = Trials()
        experiment = Experiment(trials, algo)
        experiment.run(self.LEN)
        if self.show_vars:
            import hyperopt.plotting
            hyperopt.plotting.main_plot_vars(trials, bandit, do_show=1)

        idxs, vals = miscs_to_idxs_vals(trials.miscs)
        idxs = idxs['x']
        vals = vals['x']
        print "VALS", vals

        losses = trials.losses()

        from hyperopt.tpe import ap_filter_trials
        from hyperopt.tpe import adaptive_parzen_samplers

        qu = scope.quniform(1.01, 10, 1)
        fn = adaptive_parzen_samplers['quniform']
        fn_kwargs = dict(size=(4, ), rng=np.random)
        s_below = pyll.Literal()
        s_above = pyll.Literal()
        b_args = [s_below, prior_weight] + qu.pos_args
        b_post = fn(*b_args, **fn_kwargs)
        a_args = [s_above, prior_weight] + qu.pos_args
        a_post = fn(*a_args, **fn_kwargs)

        #print b_post
        #print a_post
        fn_lpdf = getattr(scope, a_post.name + '_lpdf')
        print fn_lpdf
        # calculate the llik of b_post under both distributions
        a_kwargs = dict([(n, a) for n, a in a_post.named_args
                         if n not in ('rng', 'size')])
        b_kwargs = dict([(n, a) for n, a in b_post.named_args
                         if n not in ('rng', 'size')])
        below_llik = fn_lpdf(*([b_post] + b_post.pos_args), **b_kwargs)
        above_llik = fn_lpdf(*([b_post] + a_post.pos_args), **a_kwargs)
        new_node = scope.broadcast_best(b_post, below_llik, above_llik)

        print '=' * 80

        do_show = self.show_steps

        import matplotlib.pyplot as plt
        for ii in range(2, 9):
            if ii > len(idxs):
                break
            print '-' * 80
            print 'ROUND', ii
            print '-' * 80
            all_vals = [2, 3, 4, 5, 6, 7, 8, 9, 10]
            below, above = ap_filter_trials(idxs[:ii], vals[:ii], idxs[:ii],
                                            losses[:ii], gamma)
            below = below.astype('int')
            above = above.astype('int')
            print 'BB0', below
            print 'BB1', above
            #print 'BELOW',  zip(range(100), np.bincount(below, minlength=11))
            #print 'ABOVE',  zip(range(100), np.bincount(above, minlength=11))
            memo = {b_post: all_vals, s_below: below, s_above: above}
            bl, al, nv = pyll.rec_eval([below_llik, above_llik, new_node],
                                       memo=memo)
            #print bl - al
            print 'BB2', dict(zip(all_vals, bl - al))
            print 'BB3', dict(zip(all_vals, bl))
            print 'BB4', dict(zip(all_vals, al))
            print 'ORIG PICKED', vals[ii]
            print 'PROPER OPT PICKS:', nv

            #assert np.allclose(below, [3, 3, 9])
            #assert len(below) + len(above) == len(vals)

            if do_show:
                plt.subplot(8, 1, ii)
                #plt.scatter(all_vals,
                #    np.bincount(below, minlength=11)[2:], c='b')
                #plt.scatter(all_vals,
                #    np.bincount(above, minlength=11)[2:], c='c')
                plt.scatter(all_vals, bl, c='g')
                plt.scatter(all_vals, al, c='r')
        if do_show:
            plt.show()
Example #2
0
def build_posterior(specs, prior_idxs, prior_vals, obs_idxs, obs_vals,
        oloss_idxs, oloss_vals, oloss_gamma, prior_weight):
    """
    This method clones a posterior inference graph by iterating forward in
    topological order, and replacing prior random-variables (prior_vals) with
    new posterior distributions that make use of observations (obs_vals).

    """
    assert all(isinstance(arg, pyll.Apply)
            for arg in [oloss_idxs, oloss_vals, oloss_gamma])

    expr = pyll.as_apply([specs, prior_idxs, prior_vals])
    nodes = pyll.dfs(expr)

    # build the joint posterior distribution as the values in this memo
    memo = {}
    # map prior RVs to observations
    obs_memo = {}

    for nid in prior_vals:
        # construct the leading args for each call to adaptive_parzen_sampler
        # which will permit the "adaptive parzen samplers" to adapt to the
        # correct samples.
        obs_below, obs_above = scope.ap_filter_trials(
                obs_idxs[nid], obs_vals[nid],
                oloss_idxs, oloss_vals, oloss_gamma)
        obs_memo[prior_vals[nid]] = [obs_below, obs_above]
    for node in nodes:
        if node not in memo:
            new_inputs = [memo[arg] for arg in node.inputs()]
            if node in obs_memo:
                # -- this case corresponds to an observed Random Var
                # node.name is a distribution like "normal", "randint", etc.
                obs_below, obs_above = obs_memo[node]
                aa = [memo[a] for a in node.pos_args]
                fn = adaptive_parzen_samplers[node.name]
                b_args = [obs_below, prior_weight] + aa
                named_args = [[kw, memo[arg]]
                        for (kw, arg) in node.named_args]
                b_post = fn(*b_args, **dict(named_args))
                a_args = [obs_above, prior_weight] + aa
                a_post = fn(*a_args, **dict(named_args))

                assert a_post.name == b_post.name
                fn_lpdf = getattr(scope, a_post.name + '_lpdf')
                #print fn_lpdf
                a_kwargs = dict([(n, a) for n, a in a_post.named_args
                            if n not in ('rng', 'size')])
                b_kwargs = dict([(n, a) for n, a in b_post.named_args
                            if n not in ('rng', 'size')])

                # calculate the llik of b_post under both distributions
                below_llik = fn_lpdf(*([b_post] + b_post.pos_args), **b_kwargs)
                above_llik = fn_lpdf(*([b_post] + a_post.pos_args), **a_kwargs)

                #improvement = below_llik - above_llik
                #new_node = scope.broadcast_best(b_post, improvement)
                new_node = scope.broadcast_best(b_post, below_llik, above_llik)
            elif hasattr(node, 'obj'):
                # -- keep same literals in the graph
                new_node = node
            else:
                # -- this case is for all the other stuff in the graph
                new_node = node.clone_from_inputs(new_inputs)
            memo[node] = new_node
    post_specs = memo[specs]
    post_idxs = dict([(nid, memo[idxs])
        for nid, idxs in prior_idxs.items()])
    post_vals = dict([(nid, memo[vals])
        for nid, vals in prior_vals.items()])
    assert set(post_idxs.keys()) == set(post_vals.keys())
    assert set(post_idxs.keys()) == set(prior_idxs.keys())
    return post_specs, post_idxs, post_vals
Example #3
0
    def work(self, **kwargs):
        self.__dict__.update(kwargs)
        bandit = opt_q_uniform(self.target)
        prior_weight = 2.5
        gamma = 0.20
        algo = TreeParzenEstimator(bandit,
                prior_weight=prior_weight,
                n_startup_jobs=2,
                n_EI_candidates=128,
                gamma=gamma)
        print algo.opt_idxs['x']
        print algo.opt_vals['x']

        trials = Trials()
        experiment = Experiment(trials, algo)
        experiment.run(self.LEN)
        if self.show_vars:
            import hyperopt.plotting
            hyperopt.plotting.main_plot_vars(trials, bandit, do_show=1)

        idxs, vals = miscs_to_idxs_vals(trials.miscs)
        idxs = idxs['x']
        vals = vals['x']
        print "VALS", vals

        losses = trials.losses()

        from hyperopt.tpe import ap_filter_trials
        from hyperopt.tpe import adaptive_parzen_samplers

        qu = scope.quniform(1.01, 10, 1)
        fn = adaptive_parzen_samplers['quniform']
        fn_kwargs = dict(size=(4,), rng=np.random)
        s_below = pyll.Literal()
        s_above = pyll.Literal()
        b_args = [s_below, prior_weight] + qu.pos_args
        b_post = fn(*b_args, **fn_kwargs)
        a_args = [s_above, prior_weight] + qu.pos_args
        a_post = fn(*a_args, **fn_kwargs)

        #print b_post
        #print a_post
        fn_lpdf = getattr(scope, a_post.name + '_lpdf')
        print fn_lpdf
        # calculate the llik of b_post under both distributions
        a_kwargs = dict([(n, a) for n, a in a_post.named_args
                    if n not in ('rng', 'size')])
        b_kwargs = dict([(n, a) for n, a in b_post.named_args
                    if n not in ('rng', 'size')])
        below_llik = fn_lpdf(*([b_post] + b_post.pos_args), **b_kwargs)
        above_llik = fn_lpdf(*([b_post] + a_post.pos_args), **a_kwargs)
        new_node = scope.broadcast_best(b_post, below_llik, above_llik)

        print '=' * 80

        do_show = self.show_steps

        import matplotlib.pyplot as plt
        for ii in range(2, 9):
            if ii > len(idxs):
                break
            print '-' * 80
            print 'ROUND', ii
            print '-' * 80
            all_vals = [2, 3, 4, 5, 6, 7, 8, 9, 10]
            below, above = ap_filter_trials(idxs[:ii],
                    vals[:ii], idxs[:ii], losses[:ii], gamma)
            below = below.astype('int')
            above = above.astype('int')
            print 'BB0', below
            print 'BB1', above
            #print 'BELOW',  zip(range(100), np.bincount(below, minlength=11))
            #print 'ABOVE',  zip(range(100), np.bincount(above, minlength=11))
            memo = {b_post: all_vals, s_below: below, s_above: above}
            bl, al, nv = pyll.rec_eval([below_llik, above_llik, new_node],
                    memo=memo)
            #print bl - al
            print 'BB2', dict(zip(all_vals, bl - al))
            print 'BB3', dict(zip(all_vals, bl))
            print 'BB4', dict(zip(all_vals, al))
            print 'ORIG PICKED', vals[ii]
            print 'PROPER OPT PICKS:', nv

            #assert np.allclose(below, [3, 3, 9])
            #assert len(below) + len(above) == len(vals)

            if do_show:
                plt.subplot(8, 1, ii)
                #plt.scatter(all_vals,
                #    np.bincount(below, minlength=11)[2:], c='b')
                #plt.scatter(all_vals,
                #    np.bincount(above, minlength=11)[2:], c='c')
                plt.scatter(all_vals, bl, c='g')
                plt.scatter(all_vals, al, c='r')
        if do_show:
            plt.show()