Example #1
0
    def test_convert_eta_to_c(self):
        """
        Check general transformation of estimated shape parameters to the
        original parameterization. Check overflow handling.
        """
        # Create a 2d array of shapes, where each row represents another
        # vector of shapes to be transformed and tested
        test_shapes = np.array([[-1, 1], [800, 1], [-1, -800], [0, 0]])

        #####
        # Determine the expected results
        #####
        expected_results = np.ones((test_shapes.shape[0], 3))
        expected_results[-1] = 1.0 / 3
        # Explicitly calculate the results for the first row
        vals_1 = np.array([test_shapes[0, 0], test_shapes[0, 1], 0])
        exp_vals_1 = np.exp(vals_1)
        denom_1 = exp_vals_1.sum()
        expected_results[0] = exp_vals_1 / denom_1
        # Explicitly calculate the results for the middle rows, taking care of
        # overflow and underflow.
        vals_2 = np.array([test_shapes[1, 0], test_shapes[1, 1], 0])
        exp_vals_2 = np.exp(vals_2)
        exp_vals_2[0] = asym.max_comp_value
        denom_2 = exp_vals_2.sum()
        expected_results[1] = exp_vals_2 / denom_2

        vals_3 = np.array([test_shapes[2, 0], test_shapes[2, 1], 0])
        exp_vals_3 = np.exp(vals_3)
        exp_vals_3[1] = asym.min_comp_value
        denom_3 = exp_vals_3.sum()
        expected_results[2] = exp_vals_3 / denom_3

        # Use _convert_eta_to_c and compare the results for 1D inputs
        for i in xrange(test_shapes.shape[0]):
            func_results = asym._convert_eta_to_c(test_shapes[i],
                                                  self.fake_shape_ref_pos)

            # Make sure the results are correct
            self.assertIsInstance(func_results, np.ndarray)
            self.assertEqual(len(func_results.shape), 1)
            self.assertEqual(func_results.shape[0], expected_results.shape[1])
            npt.assert_allclose(func_results, expected_results[i])

        # Check the 2D inputs. Note that for 2D ndarray, we need the array of
        # shape parameters to be transposed such that we have an array of
        # shape (num_estimated_shapes, num_samples_of_parameters).
        # To adequately compare, we need to transpose expected_results too.
        func_results_2d = asym._convert_eta_to_c(test_shapes.T,
                                                 self.fake_shape_ref_pos)
        # Make sure the results are correct
        self.assertIsInstance(func_results_2d, np.ndarray)
        self.assertEqual(len(func_results_2d.shape), 2)
        self.assertEqual(func_results_2d.shape, expected_results.T.shape)
        npt.assert_allclose(func_results_2d, expected_results.T)

        return None
Example #2
0
    def test_asym_transform_deriv_v(self):
        """
        Tests basic behavior of the asym_transform_deriv_v. Essentially the
        only things that can go wrong is underflow or overflow from the shape
        parameters going to zero or 1.0.
        """
        # Declare  set of index values to be tested
        test_index = np.array([1, 0, -1, -2, 2])
        # Figure out how many alternatives are there
        num_alts = self.fake_rows_to_alts.shape[1]
        # Test what happens with large shape parameters (that result in
        # 'natural' shape parameters near 1.0)
        large_shapes = np.array([800, 0])
        large_results = np.array([
            0, -np.log(asym.min_comp_value),
            np.log(num_alts - 1), asym.max_comp_value,
            -np.log(asym.min_comp_value)
        ])
        # Test what happens with large shape parameters (that result in
        # 'natural' shape parameters near 1.0)
        small_shapes = np.array([-800, 0])
        natural_small_shapes = asym._convert_eta_to_c(small_shapes,
                                                      self.fake_shape_ref_pos)
        small_results = np.array([
            -np.log(natural_small_shapes[0]), -np.log(natural_small_shapes[1]),
            (np.log(num_alts - 1) - np.log(1 - natural_small_shapes[2])),
            (np.log(num_alts - 1) - np.log(1 - natural_small_shapes[0])),
            -np.log(natural_small_shapes[2])
        ])

        # Bundle the arguments needed for _asym_transform_deriv_v()
        args = [
            test_index, self.fake_df[self.alt_id_col].values,
            self.fake_rows_to_alts, self.fake_shapes
        ]

        # Create the needed output array
        num_rows = test_index.shape[0]
        output = diags(np.ones(num_rows), 0, format='csr')

        # Validate the results from asym_transform_deriv_v
        for shape_array, results in [(large_shapes, large_results),
                                     (small_shapes, small_results)]:
            # Get the reslts from asym_transform_deriv_v
            args[-1] = shape_array
            kwargs = {
                "ref_position": self.fake_shape_ref_pos,
                "output_array": output
            }
            derivative = asym._asym_transform_deriv_v(*args, **kwargs)

            # Ensure the results are as expected
            self.assertIsInstance(derivative, type(output))
            self.assertEqual(len(derivative.shape), 2)
            self.assertEqual(derivative.shape, (num_rows, num_rows))
            npt.assert_allclose(np.diag(derivative.A), results)

        return None
Example #3
0
    def test_asym_transform_deriv_shape(self):
        """
        Ensures that the asym_transform_deriv_shape() function provides
        correct results, and handles all forms of overflow and underflow
        correctly.
        """
        # Create index values to test the function with.
        test_index = np.array([1, 0, -2, -1e400, 1e400])

        # Figure out how many alternatives are there
        num_alts = self.fake_rows_to_alts.shape[1]

        # Test what happens with shape parameters of 'normal' magnitude
        regular_shapes = self.fake_shapes
        natural_reg_shapes = self.natural_shapes

        result_2 = (natural_reg_shapes[2]**-1 + test_index[2] /
                    (1.0 - natural_reg_shapes[2]))

        regular_results = np.array([
            0, natural_reg_shapes[1]**-1, result_2, -asym.max_comp_value,
            -asym.max_comp_value
        ])

        # Test what happens with large shape parameters (that result in
        # 'natural' shape parameters near 1.0)
        large_shapes = np.array([800, 0])
        natural_large_shapes = asym._convert_eta_to_c(large_shapes,
                                                      self.fake_shape_ref_pos)
        large_results = np.array([
            0, asym.max_comp_value, asym.max_comp_value, -asym.max_comp_value,
            -asym.max_comp_value
        ])

        # Test what happens with large shape parameters (that result in
        # 'natural' shape parameters near 1.0)
        small_index = test_index.copy()
        small_index[0] = 0.5

        small_shapes = np.array([-800, 0])
        natural_small_shapes = asym._convert_eta_to_c(small_shapes,
                                                      self.fake_shape_ref_pos)
        result_3_3 = (natural_small_shapes[2]**-1 + test_index[2] /
                      (1 - natural_small_shapes[2]))
        small_results = np.array([
            asym.max_comp_value, natural_small_shapes[1]**-1, result_3_3,
            -asym.max_comp_value, -asym.max_comp_value
        ])

        # Bundle the arguments needed for _asym_transform_deriv_shape()
        args = [
            test_index, self.fake_df[self.alt_id_col].values,
            self.fake_rows_to_alts, self.fake_shapes
        ]

        # Create the needed output array for the overall derivative with
        # respect to the reparameterized shape parameters
        num_rows = test_index.shape[0]
        output = np.matrix(np.zeros((num_rows, num_alts - 1)), dtype=float)

        # Create the needed output array for the intermediate derivative of the
        # 'natural' shape parameters with respect to the reparameterized shape
        # parameters.
        deriv_output = np.zeros((num_alts, num_alts - 1), dtype=float)

        # Create the array needed for dh_dc
        dh_dc_array = self.fake_rows_to_alts.copy()

        # Create a function that will take the reparameterized shapes and the
        # shape reference position and return the derivative of the natural
        # shapes with respect to the reparameterized shapes.
        interim_deriv_func = partial(asym._calc_deriv_c_with_respect_to_eta,
                                     output_array=deriv_output)

        # Take note of the kwargs needed for asym_transform_deriv_shape()
        deriv_kwargs = {
            "ref_position": self.fake_shape_ref_pos,
            "dh_dc_array": dh_dc_array,
            "fill_dc_d_eta": interim_deriv_func,
            "output_array": output
        }

        # Validate the results from asym_transform_deriv_shape
        test_arrays = [(regular_shapes, natural_reg_shapes, regular_results),
                       (large_shapes, natural_large_shapes, large_results),
                       (small_shapes, natural_small_shapes, small_results)]
        for shape_array, natural_shape_array, interim_results in test_arrays:
            if shape_array[0] == small_shapes[0]:
                args[0] = small_index

            # Get the reslts from asym_transform_deriv_shape()
            args[-1] = shape_array
            derivative = asym._asym_transform_deriv_shape(
                *args, **deriv_kwargs)

            # Calculate the derivative of the 'natural' shape parameters with
            # espect to the reparameterized shape parameters.
            interim_args = (natural_shape_array, self.fake_shape_ref_pos)
            kwargs = {"output_array": deepcopy(deriv_output)}
            dc_d_eta = asym._calc_deriv_c_with_respect_to_eta(
                *interim_args, **kwargs)

            # Place the interim results in the correct shape
            interim_results = interim_results[:, None]
            interim_results = self.fake_rows_to_alts.multiply(interim_results)

            # Calculate the correct results
            results = interim_results.A.dot(dc_d_eta)

            # Ensure the results are as expected
            self.assertIsInstance(derivative, type(output))
            self.assertEqual(len(derivative.shape), 2)
            self.assertEqual(derivative.shape, (num_rows, num_alts - 1))
            npt.assert_allclose(derivative.A, results)

        return None
Example #4
0
    def test_asym_utility_transform_2d(self):
        """
        Ensures that `_asym_utility_transform()` returns correct results when
        called with 2 dimensional systematic utility arrays and
        """
        # Create a set of systematic utilities that will test the function for
        # correct calculations, for proper dealing with overflow, and for
        # proper dealing with underflow.

        # The first and third elements tests general calculation.
        # The second element of index_array should lead to the transformation
        # equaling the 'natural' shape parameter for alternative 2.
        # The fourth element should test what happens with underflow and should
        # lead to max_comp_value.
        # The fifth element should test what happens with overflow and should
        # lead to -1.0 * max_comp_value
        index_array = np.array([1, 0, -1, 1e400, -1e400])
        index_array_2d = np.concatenate(
            [index_array[:, None], index_array[:, None]], axis=1)

        # Create 2d array of shapes
        shapes_2d = np.concatenate(
            [self.fake_shapes[:, None], self.fake_shapes[:, None]], axis=1)

        # Create 2d array of intercepts
        intercepts_2d = np.concatenate(
            [self.fake_intercepts[:, None], self.fake_intercepts[:, None]],
            axis=1)

        # We can use a the following array of the shape parameters to test
        # the underflow capabilities with respect to the shape
        # parameters.
        test_shapes_2 = np.array([-800, 0])
        test_shapes_2_2d = np.concatenate(
            [test_shapes_2[:, None], test_shapes_2[:, None]], axis=1)

        test_shapes_3 = np.array([800, 0])
        test_shapes_3_2d = np.concatenate(
            [test_shapes_3[:, None], test_shapes_3[:, None]], axis=1)

        # Figure out the value of the 'natural' shape parameters
        natural_shapes_2 = asym._convert_eta_to_c(test_shapes_2,
                                                  self.fake_shape_ref_pos)
        natural_shapes_3 = asym._convert_eta_to_c(test_shapes_3,
                                                  self.fake_shape_ref_pos)

        # Crerate the array of expected results when using shape parameters
        # of 'normal' magnitudes.
        intercept_1 = self.fake_intercepts[0]
        intercept_2 = self.fake_intercepts[1]
        intercept_3 = 0

        result_1 = (intercept_1 + np.log(self.natural_shapes[0]) *
                    (1 - index_array[0]))

        result_2 = intercept_2 + np.log(self.natural_shapes[1])

        # Note the division by 2 is due to the 'J - 1' term. See the original
        # definition of the transformation.
        result_3 = (intercept_3 + np.log(self.natural_shapes[2]) - np.log(
            (1 - self.natural_shapes[2]) / 2) * index_array[2])

        expected_results = np.array([
            result_1, result_2, result_3, asym.max_comp_value + intercept_1,
            -asym.max_comp_value
        ])[:, None]

        # Crerate the array of expected results when using shape parameters
        # of 'abnormally' small magnitudes.
        # Note the division by 2 is due to the 'J - 1' term. See the original
        # definition of the transformation.
        result_2_2 = intercept_2 + np.log(natural_shapes_2[1])
        result_3_2 = (intercept_3 + np.log(natural_shapes_2[2]) - np.log(
            (1 - natural_shapes_2[2]) / 2) * index_array[2])

        # Note the '0' comes from (1-1) * ln(shape)
        expected_results_2 = np.array([
            0 + intercept_1, result_2_2, result_3_2,
            asym.max_comp_value + intercept_1, -asym.max_comp_value
        ])[:, None]

        # Create the array of expected results when using shape parameters
        # of 'abnormally' large magnitudes.
        result_2_3 = intercept_2 + np.log(natural_shapes_3[1])
        result_3_3 = (intercept_3 + np.log(natural_shapes_3[2]) - np.log(
            (1 - natural_shapes_3[2]) / 2) * index_array[2])

        expected_results_3 = np.array([
            0 + intercept_1, result_2_3, result_3_3, 0 + intercept_1,
            -asym.max_comp_value
        ])[:, None]

        #####
        # Perform various rounds of checking
        #####
        # Use the utility transformation function, round_1
        alt_id_vals = self.fake_df[self.alt_id_col].values
        args = [
            index_array_2d, alt_id_vals, self.fake_rows_to_alts, shapes_2d,
            intercepts_2d
        ]
        kwargs = {
            "intercept_ref_pos": self.fake_intercept_ref_pos,
            "shape_ref_position": self.fake_shape_ref_pos
        }
        func_results = asym._asym_utility_transform(*args, **kwargs)

        # Use the utility transformation function, round_2
        args[3] = test_shapes_2_2d
        func_results_2 = asym._asym_utility_transform(*args, **kwargs)

        # Use the utility transformation function, round_3
        args[3] = test_shapes_3_2d
        func_results_3 = asym._asym_utility_transform(*args, **kwargs)

        # Check the correctness of the results
        all_results = [(func_results, expected_results),
                       (func_results_2, expected_results_2),
                       (func_results_3, expected_results_3)]

        for pos, (test_results, correct_results) in enumerate(all_results):
            self.assertIsInstance(test_results, np.ndarray)
            self.assertEqual(len(test_results.shape), 2)
            self.assertEqual(test_results.shape[1], 2)
            self.assertEqual(test_results.shape[0], correct_results.shape[0])
            for col in [0, 1]:
                npt.assert_allclose(test_results[:, col][:, None],
                                    correct_results)

        return None
Example #5
0
    def setUp(self):
        # The set up being used is one where there are two choice situations,
        # The first having three alternatives, and the second having only two
        # alternatives. There is one generic variable. Two alternative
        # specific constants and all three shape parameters are used.

        # Create the betas to be used during the tests
        self.fake_betas = np.array([-0.6])

        # Create the fake outside intercepts to be used during the tests
        self.fake_intercepts = np.array([1, 0.5])

        # Create names for the intercept parameters
        self.fake_intercept_names = ["ASC 1", "ASC 2"]

        # Record the position of the intercept that is not being estimated
        self.fake_intercept_ref_pos = 2

        # Create the shape parameters to be used during the tests. Note that
        # these are the reparameterized shape parameters, thus they will be
        # exponentiated in the fit_mle process and various calculations.
        self.fake_shapes = np.array([-1, 1])

        # Create names for the intercept parameters
        self.fake_shape_names = ["Shape 1", "Shape 2"]

        # Record the position of the shape parameter that is being constrained
        self.fake_shape_ref_pos = 2

        # Calculate the 'natural' shape parameters
        self.natural_shapes = asym._convert_eta_to_c(self.fake_shapes,
                                                     self.fake_shape_ref_pos)

        # Create an array of all model parameters
        self.fake_all_params = np.concatenate(
            (self.fake_shapes, self.fake_intercepts, self.fake_betas))

        # The mapping between rows and alternatives is given below.
        self.fake_rows_to_alts = csr_matrix(
            np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1]]))

        # Create the fake design matrix with columns denoting X
        # The intercepts are not included because they are kept outside the
        # index in the scobit model.
        self.fake_design = np.array([[1], [2], [3], [1.5], [3.5]])

        # Create the index array for this set of choice situations
        self.fake_index = self.fake_design.dot(self.fake_betas)

        # Create the needed dataframe for the Asymmetric Logit constructor
        self.fake_df = pd.DataFrame({
            "obs_id": [1, 1, 1, 2, 2],
            "alt_id": [1, 2, 3, 1, 3],
            "choice": [0, 1, 0, 0, 1],
            "x": self.fake_design[:, 0],
            "intercept": [1 for i in range(5)]
        })

        # Record the various column names
        self.alt_id_col = "alt_id"
        self.obs_id_col = "obs_id"
        self.choice_col = "choice"

        # Create the index specification  and name dictionaryfor the model
        self.fake_specification = OrderedDict()
        self.fake_names = OrderedDict()
        self.fake_specification["x"] = [[1, 2, 3]]
        self.fake_names["x"] = ["x (generic coefficient)"]

        # Bundle args and kwargs used to construct the Asymmetric Logit model.
        self.constructor_args = [
            self.fake_df, self.alt_id_col, self.obs_id_col, self.choice_col,
            self.fake_specification
        ]

        # Create a variable for the kwargs being passed to the constructor
        self.constructor_kwargs = {
            "intercept_ref_pos": self.fake_intercept_ref_pos,
            "shape_ref_pos": self.fake_shape_ref_pos,
            "names": self.fake_names,
            "intercept_names": self.fake_intercept_names,
            "shape_names": self.fake_shape_names
        }

        # Initialize a basic Asymmetric Logit model whose coefficients will be
        # estimated.
        self.model_obj = asym.MNAL(*self.constructor_args,
                                   **self.constructor_kwargs)

        return None
    def make_asym_model(self):
        # The set up being used is one where there are two choice situations,
        # The first having three alternatives, and the second having only two
        # alternatives. There is one generic variable. Two alternative
        # specific constants and all three shape parameters are used.

        # Create the betas to be used during the tests
        fake_betas = np.array([-0.6])

        # Create the fake outside intercepts to be used during the tests
        fake_intercepts = np.array([1, 0.5])

        # Create names for the intercept parameters
        fake_intercept_names = ["ASC 1", "ASC 2"]

        # Record the position of the intercept that is not being estimated
        fake_intercept_ref_pos = 2

        # Create the shape parameters to be used during the tests. Note that
        # these are the reparameterized shape parameters, thus they will be
        # exponentiated in the fit_mle process and various calculations.
        fake_shapes = np.array([-1, 1])

        # Create names for the intercept parameters
        fake_shape_names = ["Shape 1", "Shape 2"]

        # Record the position of the shape parameter that is being constrained
        fake_shape_ref_pos = 2

        # Calculate the 'natural' shape parameters
        natural_shapes = asym._convert_eta_to_c(fake_shapes,
                                                fake_shape_ref_pos)

        # Create an array of all model parameters
        fake_all_params = np.concatenate((fake_shapes,
                                          fake_intercepts,
                                          fake_betas))

        # Get the mappping between rows and observations
        fake_rows_to_obs = csr_matrix(np.array([[1, 0],
                                                [1, 0],
                                                [1, 0],
                                                [0, 1],
                                                [0, 1]]))

        # Create the fake design matrix with columns denoting X
        # The intercepts are not included because they are kept outside the
        # index in the scobit model.
        fake_design = np.array([[1],
                                [2],
                                [3],
                                [1.5],
                                [3.5]])

        # Create the index array for this set of choice situations
        fake_index = fake_design.dot(fake_betas)

        # Create the needed dataframe for the Asymmetric Logit constructor
        fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2],
                                "alt_id": [1, 2, 3, 1, 3],
                                "choice": [0, 1, 0, 0, 1],
                                "x": fake_design[:, 0],
                                "intercept": [1 for i in range(5)]})

        # Record the various column names
        alt_id_col = "alt_id"
        obs_id_col = "obs_id"
        choice_col = "choice"

        # Create the index specification  and name dictionaryfor the model
        fake_specification = OrderedDict()
        fake_names = OrderedDict()
        fake_specification["x"] = [[1, 2, 3]]
        fake_names["x"] = ["x (generic coefficient)"]

        # Bundle args and kwargs used to construct the Asymmetric Logit model.
        constructor_args = [fake_df,
                            alt_id_col,
                            obs_id_col,
                            choice_col,
                            fake_specification]

        # Create a variable for the kwargs being passed to the constructor
        constructor_kwargs = {"intercept_ref_pos": fake_intercept_ref_pos,
                              "shape_ref_pos": fake_shape_ref_pos,
                              "names": fake_names,
                              "intercept_names": fake_intercept_names,
                              "shape_names": fake_shape_names}

        # Initialize a basic Asymmetric Logit model whose coefficients will be
        # estimated.
        model_obj = asym.MNAL(*constructor_args, **constructor_kwargs)

        model_obj.coefs = pd.Series(fake_betas, index=fake_names["x"])
        model_obj.intercepts =\
            pd.Series(fake_intercepts, index=fake_intercept_names)
        model_obj.shapes = pd.Series(fake_shapes, index=fake_shape_names)
        model_obj.nests = None
        model_obj.params =\
            pd.concat([model_obj.shapes,
                       model_obj.intercepts,
                       model_obj.coefs],
                      axis=0, ignore_index=False)
        return model_obj
    def setUp(self):
        # The set up being used is one where there are two choice situations,
        # The first having three alternatives, and the second having only two
        # alternatives. There is one generic variable. Two alternative
        # specific constants and all three shape parameters are used.

        # Create the betas to be used during the tests
        self.fake_betas = np.array([-0.6])

        # Create the fake outside intercepts to be used during the tests
        self.fake_intercepts = np.array([1, 0.5])

        # Create names for the intercept parameters
        self.fake_intercept_names = ["ASC 1", "ASC 2"]

        # Record the position of the intercept that is not being estimated
        self.fake_intercept_ref_pos = 2

        # Create the shape parameters to be used during the tests. Note that
        # these are the reparameterized shape parameters, thus they will be
        # exponentiated in the fit_mle process and various calculations.
        self.fake_shapes = np.array([-1, 1])

        # Create names for the intercept parameters
        self.fake_shape_names = ["Shape 1", "Shape 2"]

        # Record the position of the shape parameter that is being constrained
        self.fake_shape_ref_pos = 2

        # Calculate the 'natural' shape parameters
        self.natural_shapes = asym._convert_eta_to_c(self.fake_shapes,
                                                     self.fake_shape_ref_pos)

        # Create an array of all model parameters
        self.fake_all_params = np.concatenate((self.fake_shapes,
                                               self.fake_intercepts,
                                               self.fake_betas))

        # The mapping between rows and alternatives is given below.
        self.fake_rows_to_alts = csr_matrix(np.array([[1, 0, 0],
                                                      [0, 1, 0],
                                                      [0, 0, 1],
                                                      [1, 0, 0],
                                                      [0, 0, 1],
                                                      [1, 0, 0],
                                                      [0, 1, 0],
                                                      [0, 0, 1],
                                                      [0, 1, 0],
                                                      [0, 0, 1],
                                                      [1, 0, 0],
                                                      [0, 1, 0],
                                                      [0, 0, 1],
                                                      [1, 0, 0],
                                                      [0, 1, 0],
                                                      [0, 0, 1]]))

        # Get the mappping between rows and observations
        self.fake_rows_to_obs = csr_matrix(np.array([[1, 0, 0, 0, 0, 0],
                                                     [1, 0, 0, 0, 0, 0],
                                                     [1, 0, 0, 0, 0, 0],
                                                     [0, 1, 0, 0, 0, 0],
                                                     [0, 1, 0, 0, 0, 0],
                                                     [0, 0, 1, 0, 0, 0],
                                                     [0, 0, 1, 0, 0, 0],
                                                     [0, 0, 1, 0, 0, 0],
                                                     [0, 0, 0, 1, 0, 0],
                                                     [0, 0, 0, 1, 0, 0],
                                                     [0, 0, 0, 0, 1, 0],
                                                     [0, 0, 0, 0, 1, 0],
                                                     [0, 0, 0, 0, 1, 0],
                                                     [0, 0, 0, 0, 0, 1],
                                                     [0, 0, 0, 0, 0, 1],
                                                     [0, 0, 0, 0, 0, 1]]))

        # Create the fake design matrix with columns denoting X
        # The intercepts are not included because they are kept outside the
        # index in the scobit model.
        self.fake_design = np.array([[1],
                                     [2],
                                     [3],
                                     [1.5],
                                     [3.5],
                                     [0.78],
                                     [0.23],
                                     [1.04],
                                     [2.52],
                                     [1.49],
                                     [0.85],
                                     [1.37],
                                     [1.17],
                                     [2.03],
                                     [1.62],
                                     [1.94]])

        # Create the index array for this set of choice situations
        self.fake_index = self.fake_design.dot(self.fake_betas)

        # Create the needed dataframe for the Asymmetric Logit constructor
        nrows = self.fake_design.shape[0]
        self.fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2, 3, 3, 3,
                                                4, 4, 5, 5, 5, 6, 6, 6],
                                     "alt_id": [1, 2, 3, 1, 3, 1, 2, 3,
                                                2, 3, 1, 2, 3, 1, 2, 3],
                                     "choice": [0, 1, 0, 0, 1, 1, 0, 0,
                                                1, 0, 1, 0, 0, 0, 0, 1],
                                     "x": self.fake_design[:, 0],
                                     "intercept": np.ones(nrows)})

        # Record the various column names
        self.alt_id_col = "alt_id"
        self.obs_id_col = "obs_id"
        self.choice_col = "choice"

        # Create the index specification  and name dictionaryfor the model
        self.fake_specification = OrderedDict()
        self.fake_names = OrderedDict()
        self.fake_specification["x"] = [[1, 2, 3]]
        self.fake_names["x"] = ["x (generic coefficient)"]

        # Bundle args and kwargs used to construct the Asymmetric Logit model.
        self.constructor_args = [self.fake_df,
                                 self.alt_id_col,
                                 self.obs_id_col,
                                 self.choice_col,
                                 self.fake_specification]

        # Create a variable for the kwargs being passed to the constructor
        self.constructor_kwargs = {"intercept_ref_pos":
                                   self.fake_intercept_ref_pos,
                                   "shape_ref_pos": self.fake_shape_ref_pos,
                                   "names": self.fake_names,
                                   "intercept_names":
                                   self.fake_intercept_names,
                                   "shape_names": self.fake_shape_names}

        # Initialize a basic Asymmetric Logit model whose coefficients will be
        # estimated.
        self.asym_model_obj = asym.MNAL(*self.constructor_args,
                                        **self.constructor_kwargs)

        self.asym_model_obj.coefs = pd.Series(self.fake_betas)
        self.asym_model_obj.intercepts =\
            pd.Series(self.fake_intercepts, index=self.fake_intercept_names)
        self.asym_model_obj.shapes =\
            pd.Series(self.fake_shapes, index=self.fake_shape_names)
        self.asym_model_obj.params =\
            pd.Series(np.concatenate([self.fake_shapes,
                                      self.fake_intercepts,
                                      self.fake_betas]),
                      index=(self.fake_shape_names +
                             self.fake_intercept_names +
                             self.fake_names["x"]))
        self.asym_model_obj.nests = None

        #####
        # Initialize a basic MNL model
        #####
        # Create the MNL specification and name dictionaries.
        self.mnl_spec, self.mnl_names = OrderedDict(), OrderedDict()
        self.mnl_spec["intercept"] = [1, 2]
        self.mnl_names["intercept"] = self.fake_intercept_names

        self.mnl_spec.update(self.fake_specification)
        self.mnl_names.update(self.fake_names)

        mnl_construct_args = self.constructor_args[:-1] + [self.mnl_spec]
        mnl_kwargs = {"names": self.mnl_names}
        self.mnl_model_obj = MNL(*mnl_construct_args, **mnl_kwargs)

        return None