Example #1
0
    def prox(self, x, tau):
        # define current number of iterations
        if isinstance(self.niter, int):
            niter = self.niter
        else:
            niter = self.niter(self.count)

        # solve proximal optimization
        if self.Op is not None and self.b is not None:
            y = x + tau * self.OpTb
            if self.q is not None:
                y -= tau * self.alpha * self.q
            if self.Op.explicit:
                Op1 = MatrixMult(
                    np.eye(self.Op.shape[1]) +
                    tau * self.sigma * np.conj(self.Op.A.T) @ self.Op.A)
                x = Op1.div(y)
            else:
                Op1 = Identity(self.Op.shape[1], dtype=self.Op.dtype) + \
                      tau * self.sigma * self.Op.H * self.Op
                x = lsqr(Op1, y, iter_lim=niter, x0=self.x0)[0]
            if self.warm:
                self.x0 = x
        elif self.b is not None:
            num = x + tau * self.sigma * self.b
            if self.q is not None:
                num -= tau * self.alpha * self.q
            x = num / (1. + tau * self.sigma)
        else:
            num = x
            if self.q is not None:
                num -= tau * self.alpha * self.q
            x = num / (1. + tau * self.sigma)
        return x
Example #2
0
def test_add(par):
    """Check __add__ operator against one proximal operator to which we
    can add a dot-product (e.g., Quadratic)
    """
    A = np.random.normal(0, 1, (par['nx'], par['nx']))
    A = A.T @ A
    quad = Quadratic(Op=MatrixMult(A), b=np.ones(par['nx']), niter=500)
    quad1 = Quadratic(Op=MatrixMult(A), niter=500)
    quad1 = quad1 + np.ones(par['nx'])

    # prox / dualprox
    x = np.random.normal(0., 1., par['nx']).astype(par['dtype'])
    tau = 2.
    assert_array_equal(quad.prox(x, tau), quad1.prox(x, tau))
    assert_array_equal(quad.proxdual(x, tau), quad1.proxdual(x, tau))
Example #3
0
 def prox(self, x, tau):
     if self.Op is not None and self.b is not None:
         y = x - tau * self.b
         if self.Op.explicit:
             Op1 = MatrixMult(np.eye(self.Op.shape[0]) + tau * self.Op.A)
             x = Op1.div(y)
         else:
             Op1 = Identity(self.Op.shape[0], dtype=self.Op.dtype) + \
                   tau * self.Op.A
             x = lsqr(Op1, y, iter_lim=self.niter, x0=self.x0)[0]
         if self.warm:
             self.x0 = x
     elif self.b is not None:
         x = x - tau * self.b
     return x
Example #4
0
def test_Quadratic(par):
    """Quadratic functional and proximal/dual proximal
    """
    A = np.random.normal(0, 1, (par['nx'], par['nx']))
    A = A.T @ A
    quad = Quadratic(Op=MatrixMult(A), b=np.ones(par['nx']), niter=500)

    # prox / dualprox
    tau = 2.
    x = np.random.normal(0., 1., par['nx']).astype(par['dtype'])
    assert moreau(quad, x, tau)
Example #5
0
def PrestackInversion(data,
                      theta,
                      wav,
                      m0=None,
                      linearization='akirich',
                      explicit=False,
                      simultaneous=False,
                      epsI=None,
                      epsR=None,
                      dottest=False,
                      returnres=False,
                      epsRL1=None,
                      kind='centered',
                      **kwargs_solver):
    r"""Pre-stack linearized seismic inversion.

    Invert pre-stack seismic operator to retrieve a set of elastic property
    profiles from band-limited seismic pre-stack data (i.e., angle gathers).
    Depending on the choice of input parameters, inversion can be
    trace-by-trace with explicit operator or global with either
    explicit or linear operator.

    Parameters
    ----------
    data : :obj:`np.ndarray`
        Band-limited seismic post-stack data of size
        :math:`[(n_{lins} \times) n_{t0} \times n_{\theta} (\times n_x \times n_y)]`
    theta : :obj:`np.ndarray`
        Incident angles in degrees
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must had odd number of elements
        and centered to zero)
    m0 : :obj:`np.ndarray`, optional
        Background model of size :math:`[n_{t0} \times n_{m}
        (\times n_x \times n_y)]`
    linearization : :obj:`str` or :obj:`list`, optional
        choice of linearization, ``akirich``: Aki-Richards, ``fatti``: Fatti
        ``PS``: PS or a combination of them (required only when ``m0``
        is ``None``).
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preferred for large data)
        or a ``MatrixMult`` linear operator with dense matrix
        (``True``, preferred for small data)
    simultaneous : :obj:`bool`, optional
        Simultaneously invert entire data (``True``) or invert
        trace-by-trace (``False``) when using ``explicit`` operator
        (note that the entire data is always inverted when working
        with linear operator)
    epsI : :obj:`float` or :obj:`list`, optional
        Damping factor(s) for Tikhonov regularization term. If a list of
        :math:`n_{m}` elements is provided, the regularization term will have
        different strenght for each elastic property
    epsR : :obj:`float`, optional
        Damping factor for additional Laplacian regularization term
    dottest : :obj:`bool`, optional
        Apply dot-test
    returnres : :obj:`bool`, optional
        Return residuals
    epsRL1 : :obj:`float`, optional
        Damping factor for additional blockiness regularization term
    kind : :obj:`str`, optional
        Derivative kind (``forward`` or ``centered``).
    **kwargs_solver
        Arbitrary keyword arguments for :py:func:`scipy.linalg.lstsq`
        solver (if ``explicit=True`` and  ``epsR=None``)
        or :py:func:`scipy.sparse.linalg.lsqr` solver (if ``explicit=False``
        and/or ``epsR`` is not ``None``))

    Returns
    -------
    minv : :obj:`np.ndarray`
        Inverted model of size :math:`[n_{t0} \times n_{m}
        (\times n_x \times n_y)]`
    datar : :obj:`np.ndarray`
        Residual data (i.e., data - background data) of
        size :math:`[n_{t0} \times n_{\theta} (\times n_x \times n_y)]`

    Notes
    -----
    The different choices of cost functions and solvers used in the
    seismic pre-stack inversion module follow the same convention of the
    seismic post-stack inversion module.

    Refer to :py:func:`pylops.avo.poststack.PoststackInversion` for
    more details.
    """
    ncp = get_array_module(data)

    # find out dimensions
    if m0 is None and linearization is None:
        raise NotImplementedError('either m0 or linearization '
                                  'must be provided')
    elif m0 is None:
        if isinstance(linearization, str):
            nm = _linearizations[linearization]
        else:
            nm = _linearizations[linearization[0]]
    else:
        nm = m0.shape[1]

    data_shape = data.shape
    data_ndim = data.ndim
    n_lins = 1
    multi = 0
    if not isinstance(linearization, str):
        n_lins = data_shape[0]
        data_shape = data_shape[1:]
        data_ndim -= 1
        multi = 1

    if data_ndim == 2:
        dims = 1
        nt0, ntheta = data_shape
        nspat = None
        nspatprod = nx = 1
    elif data_ndim == 3:
        dims = 2
        nt0, ntheta, nx = data_shape
        nspat = (nx, )
        nspatprod = nx
    else:
        dims = 3
        nt0, ntheta, nx, ny = data_shape
        nspat = (nx, ny)
        nspatprod = nx * ny
        data = data.reshape(nt0, ntheta, nspatprod)

    # check if background model and data have same shape
    if m0 is not None:
        if nt0 != m0.shape[0] or\
        (dims >= 2 and nx != m0.shape[2]) or\
        (dims == 3 and ny != m0.shape[3]):
            raise ValueError('data and m0 must have same time and space axes')

    # create operator
    if isinstance(linearization, str):
        # single operator
        PPop = PrestackLinearModelling(wav,
                                       theta,
                                       nt0=nt0,
                                       spatdims=nspat,
                                       linearization=linearization,
                                       explicit=explicit,
                                       kind=kind)
    else:
        # multiple operators
        if not isinstance(wav, (list, tuple)):
            wav = [
                wav,
            ] * n_lins
        PPop = [
            PrestackLinearModelling(w,
                                    theta,
                                    nt0=nt0,
                                    spatdims=nspat,
                                    linearization=lin,
                                    explicit=explicit)
            for w, lin in zip(wav, linearization)
        ]
        if explicit:
            PPop = MatrixMult(np.vstack([Op.A for Op in PPop]),
                              dims=nspat,
                              dtype=PPop[0].A.dtype)
        else:
            PPop = VStack(PPop)

    if dottest:
        Dottest(PPop,
                n_lins * nt0 * ntheta * nspatprod,
                nt0 * nm * nspatprod,
                raiseerror=True,
                verb=True,
                backend=get_module_name(ncp))

    # swap axes for explicit operator
    if explicit:
        data = data.swapaxes(0 + multi, 1 + multi)
        if m0 is not None:
            m0 = m0.swapaxes(0, 1)

    # invert model
    if epsR is None:
        # create and remove background data from original data
        datar = data.flatten() if m0 is None else \
            data.flatten() - PPop * m0.flatten()
        # inversion without spatial regularization
        if explicit:
            if epsI is None and not simultaneous:
                # solve unregularized equations indipendently trace-by-trace
                minv = \
                    get_lstsq(data)(PPop.A,
                                    datar.reshape(n_lins*nt0*ntheta, nspatprod).squeeze(),
                                    **kwargs_solver)[0]
            elif epsI is None and simultaneous:
                # solve unregularized equations simultaneously
                if ncp == np:
                    minv = lsqr(PPop, datar, **kwargs_solver)[0]
                else:
                    minv = cgls(PPop,
                                datar,
                                x0=ncp.zeros(int(PPop.shape[1]), PPop.dtype),
                                **kwargs_solver)[0]
            elif epsI is not None:
                # create regularized normal equations
                PP = ncp.dot(PPop.A.T, PPop.A) + \
                     epsI * ncp.eye(nt0*nm, dtype=PPop.A.dtype)
                datarn = np.dot(PPop.A.T,
                                datar.reshape(nt0 * ntheta, nspatprod))
                if not simultaneous:
                    # solve regularized normal eqs. trace-by-trace
                    minv = get_lstsq(data)(PP, datarn, **kwargs_solver)[0]
                else:
                    # solve regularized normal equations simultaneously
                    PPop_reg = MatrixMult(PP, dims=nspatprod)
                    if ncp == np:
                        minv = lsqr(PPop_reg, datarn.ravel(),
                                    **kwargs_solver)[0]
                    else:
                        minv = cgls(PPop_reg,
                                    datarn.ravel(),
                                    x0=ncp.zeros(int(PPop_reg.shape[1]),
                                                 PPop_reg.dtype),
                                    **kwargs_solver)[0]
            #else:
            #    # create regularized normal eqs. and solve them simultaneously
            #    PP = np.dot(PPop.A.T, PPop.A) + epsI * np.eye(nt0*nm)
            #    datarn = PPop.A.T * datar.reshape(nt0*ntheta, nspatprod)
            #    PPop_reg = MatrixMult(PP, dims=ntheta*nspatprod)
            #    minv = lstsq(PPop_reg, datarn.flatten(), **kwargs_solver)[0]
        else:
            # solve unregularized normal equations simultaneously with lop
            if ncp == np:
                minv = lsqr(PPop, datar, **kwargs_solver)[0]
            else:
                minv = cgls(PPop,
                            datar,
                            x0=ncp.zeros(int(PPop.shape[1]), PPop.dtype),
                            **kwargs_solver)[0]
    else:
        # Create Thicknov regularization
        if epsI is not None:
            if isinstance(epsI, (list, tuple)):
                if len(epsI) != nm:
                    raise ValueError('epsI must be a scalar or a list of'
                                     'size nm')
                RegI = Diagonal(np.array(epsI),
                                dims=(nt0, nm, nspatprod),
                                dir=1)
            else:
                RegI = epsI * Identity(nt0 * nm * nspatprod)

        if epsRL1 is None:
            # L2 inversion with spatial regularization
            if dims == 1:
                Regop = SecondDerivative(nt0 * nm,
                                         dtype=PPop.dtype,
                                         dims=(nt0, nm))
            elif dims == 2:
                Regop = Laplacian((nt0, nm, nx), dirs=(0, 2), dtype=PPop.dtype)
            else:
                Regop = Laplacian((nt0, nm, nx, ny),
                                  dirs=(2, 3),
                                  dtype=PPop.dtype)
            if epsI is None:
                Regop = (Regop, )
                epsR = (epsR, )
            else:
                Regop = (Regop, RegI)
                epsR = (epsR, 1)
            minv = \
                RegularizedInversion(PPop, Regop, data.ravel(),
                                     x0=m0.flatten() if m0 is not None
                                     else None, epsRs=epsR,
                                     returninfo=False, **kwargs_solver)
        else:
            # Blockiness-promoting inversion with spatial regularization
            if dims == 1:
                RegL1op = FirstDerivative(nt0 * nm, dtype=PPop.dtype)
                RegL2op = None
            elif dims == 2:
                RegL1op = FirstDerivative(nt0 * nx * nm,
                                          dims=(nt0, nm, nx),
                                          dir=0,
                                          dtype=PPop.dtype)
                RegL2op = SecondDerivative(nt0 * nx * nm,
                                           dims=(nt0, nm, nx),
                                           dir=2,
                                           dtype=PPop.dtype)
            else:
                RegL1op = FirstDerivative(nt0 * nx * ny * nm,
                                          dims=(nt0, nm, nx, ny),
                                          dir=0,
                                          dtype=PPop.dtype)
                RegL2op = Laplacian((nt0, nm, nx, ny),
                                    dirs=(2, 3),
                                    dtype=PPop.dtype)
            if dims == 1:
                if epsI is not None:
                    RegL2op = (RegI, )
                    epsR = (1, )
            else:
                if epsI is None:
                    RegL2op = (RegL2op, )
                    epsR = (epsR, )
                else:
                    RegL2op = (RegL2op, RegI)
                    epsR = (epsR, 1)
            epsRL1 = (epsRL1, )
            if 'mu' in kwargs_solver.keys():
                mu = kwargs_solver['mu']
                kwargs_solver.pop('mu')
            else:
                mu = 1.
            if 'niter_outer' in kwargs_solver.keys():
                niter_outer = kwargs_solver['niter_outer']
                kwargs_solver.pop('niter_outer')
            else:
                niter_outer = 3
            if 'niter_inner' in kwargs_solver.keys():
                niter_inner = kwargs_solver['niter_inner']
                kwargs_solver.pop('niter_inner')
            else:
                niter_inner = 5
            minv = SplitBregman(PPop, (RegL1op, ),
                                data.ravel(),
                                RegsL2=RegL2op,
                                epsRL1s=epsRL1,
                                epsRL2s=epsR,
                                mu=mu,
                                niter_outer=niter_outer,
                                niter_inner=niter_inner,
                                x0=None if m0 is None else m0.flatten(),
                                **kwargs_solver)[0]

    # compute residual
    if returnres:
        if epsR is None:
            datar -= PPop * minv.ravel()
        else:
            datar = data.ravel() - PPop * minv.ravel()

    # re-swap axes for explicit operator
    if explicit:
        if m0 is not None:
            m0 = m0.swapaxes(0, 1)

    # reshape inverted model and residual data
    if dims == 1:
        if explicit:
            minv = minv.reshape(nm, nt0).swapaxes(0, 1)
            if returnres:
                datar = datar.reshape(n_lins, ntheta, nt0).squeeze().swapaxes(
                    0 + multi, 1 + multi)
        else:
            minv = minv.reshape(nt0, nm)
            if returnres:
                datar = datar.reshape(n_lins, nt0, ntheta).squeeze()
    elif dims == 2:
        if explicit:
            minv = minv.reshape(nm, nt0, nx).swapaxes(0, 1)
            if returnres:
                datar = datar.reshape(n_lins, ntheta, nt0,
                                      nx).squeeze().swapaxes(
                                          0 + multi, 1 + multi)
        else:
            minv = minv.reshape(nt0, nm, nx)
            if returnres:
                datar = datar.reshape(n_lins, nt0, ntheta, nx).squeeze()
    else:
        if explicit:
            minv = minv.reshape(nm, nt0, nx, ny).swapaxes(0, 1)
            if returnres:
                datar = datar.reshape(n_lins, ntheta, nt0, nx,
                                      ny).squeeze().swapaxes(
                                          0 + multi, 1 + multi)
        else:
            minv = minv.reshape(nt0, nm, nx, ny)
            if returnres:
                datar = datar.reshape(n_lins, nt0, ntheta, nx, ny).squeeze()

    if m0 is not None and epsR is None:
        minv = minv + m0

    if returnres:
        return minv, datar
    else:
        return minv
Example #6
0
def PrestackLinearModelling(wav,
                            theta,
                            vsvp=0.5,
                            nt0=1,
                            spatdims=None,
                            linearization='akirich',
                            explicit=False,
                            kind='centered'):
    r"""Pre-stack linearized seismic modelling operator.

    Create operator to be applied to elastic property profiles
    for generation of band-limited seismic angle gathers from a
    linearized version of the Zoeppritz equation. The input model must
    be arranged in a vector of size :math:`n_m \times n_{t0} (\times n_x \times n_y)`
    for ``explicit=True`` and :math:`n_{t0} \times n_m  (\times n_x \times n_y)`
    for ``explicit=False``. Similarly the output data is arranged in a
    vector of size :math:`n_{theta} \times n_{t0}  (\times n_x \times n_y)`
    for ``explicit=True`` and :math:`n_{t0} \times n_{theta} (\times n_x \times n_y)`
    for ``explicit=False``.

    Parameters
    ----------
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must had odd number of
        elements and centered to zero). Note that the ``dtype`` of this
        variable will define that of the operator
    theta : :obj:`np.ndarray`
        Incident angles in degrees. Must have same ``dtype`` of ``wav`` (or
        it will be automatically casted to it)
    vsvp : :obj:`float` or :obj:`np.ndarray`
        VS/VP ratio (constant or time/depth variant)
    nt0 : :obj:`int`, optional
        number of samples (if ``vsvp`` is a scalar)
    spatdims : :obj:`int` or :obj:`tuple`, optional
        Number of samples along spatial axis (or axes)
        (``None`` if only one dimension is available)
    linearization : :obj:`str` or :obj:`func`, optional
        choice of linearization, ``akirich``: Aki-Richards, ``fatti``: Fatti,
        ``ps``: PS or any function on the form of
        ``pylops.avo.avo.akirichards``
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preferred for large data)
        or a ``MatrixMult`` linear operator with dense matrix
        (``True``, preferred for small data)
    kind : :obj:`str`, optional
        Derivative kind (``forward`` or ``centered``).

    Returns
    -------
    Preop : :obj:`LinearOperator`
        pre-stack modelling operator.

    Raises
    ------
    NotImplementedError
        If ``linearization`` is not an implemented linearization
    NotImplementedError
        If ``kind`` is not ``forward`` nor ``centered``

    Notes
    -----
    Pre-stack seismic modelling is the process of constructing seismic
    pre-stack data from three (or two) profiles of elastic parameters in time
    (or depth) domain. This can be easily achieved using the following
    forward model:

    .. math::
        d(t, \theta) = w(t) * \sum_{i=1}^{n_m} G_i(t, \theta) m_i(t)

    where :math:`w(t)` is the time domain seismic wavelet. In compact form:

    .. math::
        \mathbf{d}= \mathbf{G} \mathbf{m}

    On the other hand, pre-stack inversion aims at recovering the different
    profiles of elastic properties from the band-limited seismic
    pre-stack data.

    """
    ncp = get_array_module(wav)

    # check kind is correctly selected
    if kind not in ['forward', 'centered']:
        raise NotImplementedError('%s not an available derivative kind...' %
                                  kind)
    # define dtype to be used
    dtype = theta.dtype  # ensure theta.dtype rules that of operator
    theta = theta.astype(dtype)

    # create vsvp profile
    vsvp = vsvp if isinstance(vsvp, ncp.ndarray) else \
        vsvp * ncp.ones(nt0, dtype=dtype)
    nt0 = len(vsvp)
    ntheta = len(theta)

    # organize dimensions
    if spatdims is None:
        dims = (nt0, ntheta)
        spatdims = None
    elif isinstance(spatdims, int):
        dims = (nt0, ntheta, spatdims)
        spatdims = (spatdims, )
    else:
        dims = (nt0, ntheta) + spatdims

    if explicit:
        # Create AVO operator
        if linearization == 'akirich':
            G = akirichards(theta, vsvp, n=nt0)
        elif linearization == 'fatti':
            G = fatti(theta, vsvp, n=nt0)
        elif linearization == 'ps':
            G = ps(theta, vsvp, n=nt0)
        elif callable(linearization):
            G = linearization(theta, vsvp, n=nt0)
        else:
            logging.error('%s not an available linearization...',
                          linearization)
            raise NotImplementedError('%s not an available linearization...' %
                                      linearization)
        nG = len(G)
        G = [
            ncp.hstack([
                ncp.diag(G_[itheta] * ncp.ones(nt0, dtype=dtype)) for G_ in G
            ]) for itheta in range(ntheta)
        ]
        G = ncp.vstack(G).reshape(ntheta * nt0, nG * nt0)

        # Create derivative operator
        if kind == 'centered':
            D = ncp.diag(0.5 * ncp.ones(nt0 - 1, dtype=dtype), k=1) - \
                ncp.diag(0.5 * ncp.ones(nt0 - 1, dtype=dtype), k=-1)
            D[0] = D[-1] = 0
        else:
            D = ncp.diag(ncp.ones(nt0 - 1, dtype=dtype), k=1) - \
                ncp.diag(ncp.ones(nt0, dtype=dtype), k=0)
            D[-1] = 0
        D = get_block_diag(theta)(*([D] * nG))

        # Create wavelet operator
        C = convmtx(wav, nt0)[:, len(wav) // 2:-len(wav) // 2 + 1]
        C = [C] * ntheta
        C = get_block_diag(theta)(*C)

        # Combine operators
        M = ncp.dot(C, ncp.dot(G, D))
        Preop = MatrixMult(M, dims=spatdims, dtype=dtype)

    else:
        # Create wavelet operator
        Cop = Convolve1D(np.prod(np.array(dims)),
                         h=wav,
                         offset=len(wav) // 2,
                         dir=0,
                         dims=dims,
                         dtype=dtype)

        # create AVO operator
        AVOop = AVOLinearModelling(theta,
                                   vsvp,
                                   spatdims=spatdims,
                                   linearization=linearization,
                                   dtype=dtype)

        # Create derivative operator
        dimsm = list(dims)
        dimsm[1] = AVOop.npars
        Dop = FirstDerivative(np.prod(np.array(dimsm)),
                              dims=dimsm,
                              dir=0,
                              sampling=1.,
                              kind=kind,
                              dtype=dtype)
        Preop = Cop * AVOop * Dop
    return Preop
Example #7
0
def PrestackWaveletModelling(m,
                             theta,
                             nwav,
                             wavc=None,
                             vsvp=0.5,
                             linearization='akirich'):
    r"""Pre-stack linearized seismic modelling operator for wavelet.

    Create operator to be applied to a wavelet for generation of
    band-limited seismic angle gathers using a linearized version
    of the Zoeppritz equation.

    Parameters
    ----------
    m : :obj:`np.ndarray`
        elastic parameter profles of size :math:`[n_{t0} \times N]`
        where :math:`N=3/2`. Note that the ``dtype`` of this
        variable will define that of the operator
    theta : :obj:`int`
        Incident angles in degrees. Must have same ``dtype`` of ``m`` (or
        it will be automatically casted to it)
    nwav : :obj:`np.ndarray`
        Number of samples of wavelet to be applied/estimated
    wavc : :obj:`int`, optional
        Index of the center of the wavelet
    vsvp : :obj:`np.ndarray` or :obj:`float`, optional
        VS/VP ratio
    linearization : :obj:`str`, optional
        choice of linearization, ``akirich``: Aki-Richards,
        ``fatti``: Fatti, ``ps``: PS, or any function on the form of
        ``pylops.avo.avo.akirichards``

    Returns
    -------
    Mconv : :obj:`LinearOperator`
        pre-stack modelling operator for wavelet estimation.

    Raises
    ------
    NotImplementedError
        If ``linearization`` is not an implemented linearization

    Notes
    -----
    Pre-stack seismic modelling for wavelet estimate is the process
    of constructing seismic reflectivities using three (or two)
    profiles of elastic parameters in time (or depth)
    domain arranged in an input vector :math:`\mathbf{m}`
    of size :math:`nt0 \times N`:

    .. math::
        d(t, \theta) =  \sum_{i=1}^N G_i(t, \theta) m_i(t) * w(t)

    where :math:`w(t)` is the time domain seismic wavelet. In compact form:

    .. math::
        \mathbf{d}= \mathbf{G} \mathbf{w}

    On the other hand, pre-stack wavelet estimation aims at
    recovering the wavelet given knowledge of the band-limited
    seismic pre-stack data and the elastic parameter profiles.

    """
    ncp = get_array_module(theta)

    # define dtype to be used
    dtype = m.dtype  # ensure m.dtype rules that of operator
    theta = theta.astype(dtype)

    # Create vsvp profile
    vsvp = vsvp if isinstance(vsvp, ncp.ndarray) else \
        vsvp * ncp.ones(m.shape[0], dtype=dtype)
    wavc = nwav // 2 if wavc is None else wavc
    nt0 = len(vsvp)
    ntheta = len(theta)

    # Create AVO operator
    if linearization == 'akirich':
        G = akirichards(theta, vsvp, n=nt0)
    elif linearization == 'fatti':
        G = fatti(theta, vsvp, n=nt0)
    elif linearization == 'ps':
        G = ps(theta, vsvp, n=nt0)
    elif callable(linearization):
        G = linearization(theta, vsvp, n=nt0)
    else:
        logging.error('%s not an available linearization...', linearization)
        raise NotImplementedError('%s not an available linearization...' %
                                  linearization)
    nG = len(G)
    G = [
        ncp.hstack(
            [ncp.diag(G_[itheta] * ncp.ones(nt0, dtype=dtype)) for G_ in G])
        for itheta in range(ntheta)
    ]
    G = ncp.vstack(G).reshape(ntheta * nt0, nG * nt0)

    # Create derivative operator
    D = ncp.diag(0.5 * np.ones(nt0 - 1, dtype=dtype), k=1) - \
        ncp.diag(0.5 * np.ones(nt0 - 1, dtype=dtype), k=-1)
    D[0] = D[-1] = 0
    D = get_block_diag(theta)(*([D] * nG))

    # Create infinite-reflectivity data
    M = ncp.dot(G, ncp.dot(D, m.T.flatten())).reshape(ntheta, nt0)
    Mconv = VStack([
        MatrixMult(convmtx(M[itheta], nwav)[wavc:-nwav + wavc + 1],
                   dtype=dtype) for itheta in range(ntheta)
    ])
    return Mconv
Example #8
0
def PoststackInversion(data,
                       wav,
                       m0=None,
                       explicit=False,
                       simultaneous=False,
                       epsI=None,
                       epsR=None,
                       dottest=False,
                       **kwargs_solver):
    r"""Post-stack linearized seismic inversion.

    Invert post-stack seismic operator to retrieve an acoustic
    impedance profile from band-limited seismic post-stack data.
    Depending on the choice of input parameters, inversion can be
    trace-by-trace with explicit operator or global with either
    explicit or linear operator.

    Parameters
    ----------
    data : :obj:`np.ndarray`
        Band-limited seismic post-stack data of size :math:`[n_{t0} \times n_x]`
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must had odd number of elements and centered to zero)
    m0 : :obj:`np.ndarray`, optional
        Background model of size :math:`[n_{t0} \times n_x]`
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preffered for large data)
        or a ``MatrixMult`` linear operator with dense matrix
        (``True``, preffered for small data)
    simultaneous : :obj:`bool`, optional
        Simultaneously invert entire data (``True``) or invert
        trace-by-trace (``False``) when using ``explicit`` operator
        (note that the entire data is always inverted when working with linear operator)
    epsI : :obj:`float`, optional
        Damping factor for Tikhonov regularization term
    epsR : :obj:`float`, optional
        Damping factor for additional Laplacian regularization term
    dottest : :obj:`bool`, optional
        Apply dot-test
    **kwargs_solver
        Arbitrary keyword arguments for :py:func:`scipy.linalg.lstsq`
        solver (if ``explicit=True`` and  ``epsR=None``)
        or :py:func:`scipy.sparse.linalg.lsqr` solver (if ``explicit=False``
        and/or ``epsR`` is not ``None``))

    Returns
    -------
    minv : :obj:`np.ndarray`
        Inverted model of size :math:`[n_{t0} \times n_x]`
    dr : :obj:`np.ndarray`
        Residual data (i.e., data - background data) of
        size :math:`[n_{t0} \times n_x]`

    Notes
    -----
    The cost function and solver used in the seismic post-stack inversion module depends on the choice of
    ``explicit``, ``simultaneous``, ``epsI``, and ``epsR`` parameters:

    * ``explicit=True``, ``epsI=None`` and ``epsR=None``: the explicit solver :py:func:`scipy.linalg.lstsq`
      is used if ``simultaneous=False`` (or the iterative solver :py:func:`scipy.sparse.linalg.lsqr`
      is used if ``simultaneous=True``)
    * ``explicit=True`` with ``epsI`` and ``epsR=None``: the regularized normal equations
      :math:`\mathbf{W}^T\mathbf{d} =  (\mathbf{W}^T \mathbf{W} + \epsilon_I^2 \mathbf{I}) \mathbf{AI}`
      are instead fed into the :py:func:`scipy.linalg.lstsq` solver if ``simultaneous=False``
      (or the iterative solver :py:func:`scipy.sparse.linalg.lsqr` if ``simultaneous=True``)
    * ``explicit=False`` and ``epsR=None``: the iterative solver :py:func:`scipy.sparse.linalg.lsqr` is used
    * ``explicit=False`` with ``epsR``: the iterative solver
      :py:func:`pylops.optimization.leastsquares.RegularizedInversion` is used

    Note that the convergence of iterative solvers such as :py:func:`scipy.sparse.linalg.lsqr`
    can be very slow for this type of operator. It is suggested to take a two steps
    approach with first a trace-by-trace inversion using the explicit operator,
    followed by a regularized global inversion using the outcome of the previous
    inversion as initial guess.
    """
    if data.ndim == 1:
        dims = 1
        nt0 = data.size
        nspat = None
        nother = nx = 1
    elif data.ndim == 2:
        dims = 2
        nt0, nx = data.shape
        nspat = (nx, )
        nother = nx
    else:
        dims = 3
        nt0, nx, ny = data.shape
        nspat = (nx, ny)
        nother = nx * ny
        data = data.reshape(nt0, nother)

    # check if background model and data have same shape
    if m0 is not None and data.shape != m0.shape:
        raise ValueError('data and m0 must have same shape')

    # create operator
    PPop = PoststackLinearModelling(wav,
                                    nt0=nt0,
                                    ndims=nspat,
                                    explicit=explicit)
    if dottest:
        assert Dottest(PPop, nt0 * nother, nt0 * nother, verb=True)

    # create and remove background data from original data
    datar = data.flatten(
    ) if m0 is None else data.flatten() - PPop * m0.flatten()
    # invert model
    if epsR is None:
        # inversion without spatial regularization
        if explicit:
            if epsI is None and not simultaneous:
                # solve unregularized equations indipendently trace-by-trace
                minv = lstsq(PPop.A,
                             datar.reshape(nt0, nother).squeeze(),
                             **kwargs_solver)[0]
            elif epsI is None and simultaneous:
                # solve unregularized equations simultaneously
                minv = lsqr(PPop, datar, **kwargs_solver)[0]
            elif epsI is not None:
                # create regularized normal equations
                PP = np.dot(PPop.A.T, PPop.A) + epsI * np.eye(nt0)
                datar = np.dot(PPop.A.T, datar.reshape(nt0, nother))
                if not simultaneous:
                    # solve regularized normal equations indipendently trace-by-trace
                    minv = lstsq(PP, datar.reshape(nt0, nother),
                                 **kwargs_solver)[0]
                else:
                    # solve regularized normal equations simultaneously
                    PPop_reg = MatrixMult(PP, dims=nother)
                    minv = lsqr(PPop_reg, datar.flatten(), **kwargs_solver)[0]
            else:
                # create regularized normal equations and solve them simultaneously
                PP = np.dot(PPop.A, PPop.A) + epsI * np.eye(nt0)
                datar = PPop.A.T * datar.reshape(nt0, nother)
                PPop_reg = MatrixMult(PP, dims=nother)
                minv = lstsq(PPop_reg, datar.flatten(), **kwargs_solver)[0]
        else:
            # solve unregularized normal equations simultaneously with lop
            minv = lsqr(PPop, datar, **kwargs_solver)[0]
    else:
        # inversion with spatial regularization
        if dims == 1:
            Regop = SecondDerivative(nt0, dtype=PPop.dtype)
        elif dims == 2:
            Regop = Laplacian((nt0, nx), dtype=PPop.dtype)
        else:
            Regop = Laplacian((nt0, nx, ny), dirs=(1, 2), dtype=PPop.dtype)

        minv = RegularizedInversion(PPop, [Regop],
                                    data.flatten(),
                                    x0=m0.flatten(),
                                    epsRs=[epsR],
                                    returninfo=False,
                                    **kwargs_solver)

    if dims == 1:
        minv = minv.squeeze()
        datar = datar.squeeze()
    elif dims == 2:
        minv = minv.reshape(nt0, nx)
        datar = datar.reshape(nt0, nx)
    else:
        minv = minv.reshape(nt0, nx, ny)
        datar = datar.reshape(nt0, nx, ny)

    if m0 is not None and epsR is None:
        minv = minv + m0

    return minv, datar
Example #9
0
def PoststackLinearModelling(wav, nt0, ndims=None, explicit=False):
    r"""Post-stack linearized seismic modelling operator.

    Create operator to be applied to acoustic impedance profile
    for generation of band-limited seismic post-stack data.

    Parameters
    ----------
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must had odd number of elements
        and centered to zero)
    nt0 : :obj:`int`
        Number of samples along time axis
    ndims : :obj:`int` or :obj:`tuple`
        Number of samples along horizontal axws
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preffered for large data)
        or a ``MatrixMult`` linear operator with dense matrix (``True``,
        preffered for small data)

    Returns
    -------
    Postop : :obj:`LinearOperator`
        post-stack modelling operator.

    Notes
    -----
    Post-stack seismic modelling is the process of constructing
    seismic post-stack data from a profile of acoustic impedance in
    time (or depth) domain. This can be easily achieved using the
    following forward model:

    .. math::
        d(t, \theta=0) = w(t) * \frac{dln(AI(t))}{dt}

    where :math:`AI(t)` is the acoustic impedance profile and
    :math:`w(t)` is the time domain seismic wavelet. In compact form:

    .. math::
        \mathbf{d}= \mathbf{W} \mathbf{AI}

    On the other hand, post-stack inversion aims at recovering
    the impedance profile from the band-limited seismic stack data.

    """
    if ndims is None:
        nspat = (1, )
        ndims = (nt0, )
    elif isinstance(ndims, int):
        nspat = (ndims, )
        ndims = (nt0, ndims)
    else:
        nspat = ndims
        ndims = (nt0, ) + ndims
    if explicit:
        # Create derivative operator
        D = np.diag(0.5 * np.ones(nt0 - 1), k=1) - \
            np.diag(0.5 * np.ones(nt0 - 1), -1)
        D[0] = D[-1] = 0

        # Create wavelet operator
        C = convmtx(wav, nt0)[:, len(wav) // 2:-len(wav) // 2 + 1]

        # Combine operators
        M = np.dot(C, D)
        return MatrixMult(M, dims=nspat)
    else:
        # Create wavelet operator
        Cop = Convolve1D(np.prod(np.array(ndims)),
                         h=wav,
                         offset=len(wav) // 2,
                         dir=0,
                         dims=ndims)

        # Create derivative operator
        Dop = FirstDerivative(np.prod(np.array(ndims)),
                              dims=ndims,
                              dir=0,
                              sampling=1.)

        return Cop * Dop
Example #10
0
def PoststackInversion(data,
                       wav,
                       m0=None,
                       explicit=False,
                       simultaneous=False,
                       epsI=None,
                       epsR=None,
                       dottest=False,
                       epsRL1=None,
                       **kwargs_solver):
    r"""Post-stack linearized seismic inversion.

    Invert post-stack seismic operator to retrieve an elastic parameter of
    choice from band-limited seismic post-stack data.
    Depending on the choice of input parameters, inversion can be
    trace-by-trace with explicit operator or global with either
    explicit or linear operator.

    Parameters
    ----------
    data : :obj:`np.ndarray`
        Band-limited seismic post-stack data of size
        :math:`[n_{t0} (\times n_x \times n_y)]`
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must have odd number of elements
        and centered to zero). If 1d, assume stationary wavelet for the entire
        time axis. If 2d of size :math:`[n_{t0} \times n_h]` use as
        non-stationary wavelet
    m0 : :obj:`np.ndarray`, optional
        Background model of size :math:`[n_{t0} (\times n_x \times n_y)]`
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preferred for large data)
        or a ``MatrixMult`` linear operator with dense matrix
        (``True``, preferred for small data)
    simultaneous : :obj:`bool`, optional
        Simultaneously invert entire data (``True``) or invert
        trace-by-trace (``False``) when using ``explicit`` operator
        (note that the entire data is always inverted when working
        with linear operator)
    epsI : :obj:`float`, optional
        Damping factor for Tikhonov regularization term
    epsR : :obj:`float`, optional
        Damping factor for additional Laplacian regularization term
    dottest : :obj:`bool`, optional
        Apply dot-test
    epsRL1 : :obj:`float`, optional
        Damping factor for additional blockiness regularization term
    **kwargs_solver
        Arbitrary keyword arguments for :py:func:`scipy.linalg.lstsq`
        solver (if ``explicit=True`` and  ``epsR=None``)
        or :py:func:`scipy.sparse.linalg.lsqr` solver (if ``explicit=False``
        and/or ``epsR`` is not ``None``)

    Returns
    -------
    minv : :obj:`np.ndarray`
        Inverted model of size :math:`[n_{t0} (\times n_x \times n_y)]`
    datar : :obj:`np.ndarray`
        Residual data (i.e., data - background data) of
        size :math:`[n_{t0} (\times n_x \times n_y)]`

    Notes
    -----
    The cost function and solver used in the seismic post-stack inversion
    module depends on the choice of ``explicit``, ``simultaneous``, ``epsI``,
    and ``epsR`` parameters:

    * ``explicit=True``, ``epsI=None`` and ``epsR=None``: the explicit
      solver :py:func:`scipy.linalg.lstsq` is used if ``simultaneous=False``
      (or the iterative solver :py:func:`scipy.sparse.linalg.lsqr` is used
      if ``simultaneous=True``)
    * ``explicit=True`` with ``epsI`` and ``epsR=None``: the regularized
      normal equations :math:`\mathbf{W}^T\mathbf{d} = (\mathbf{W}^T
      \mathbf{W} + \epsilon_I^2 \mathbf{I}) \mathbf{AI}` are instead fed
      into the :py:func:`scipy.linalg.lstsq` solver if ``simultaneous=False``
      (or the iterative solver :py:func:`scipy.sparse.linalg.lsqr`
      if ``simultaneous=True``)
    * ``explicit=False`` and ``epsR=None``: the iterative solver
      :py:func:`scipy.sparse.linalg.lsqr` is used
    * ``explicit=False`` with ``epsR`` and ``epsRL1=None``: the iterative
      solver :py:func:`pylops.optimization.leastsquares.RegularizedInversion`
      is used to solve the spatially regularized problem.
    * ``explicit=False`` with ``epsR`` and ``epsRL1``: the iterative
      solver :py:func:`pylops.optimization.sparsity.SplitBregman`
      is used to solve the blockiness-promoting (in vertical direction)
      and spatially regularized (in additional horizontal directions) problem.

    Note that the convergence of iterative solvers such as
    :py:func:`scipy.sparse.linalg.lsqr` can be very slow for this type of
    operator. It is suggested to take a two steps approach with first a
    trace-by-trace inversion using the explicit operator, followed by a
    regularized global inversion using the outcome of the previous
    inversion as initial guess.
    """
    ncp = get_array_module(wav)

    # check if background model and data have same shape
    if m0 is not None and data.shape != m0.shape:
        raise ValueError('data and m0 must have same shape')

    # find out dimensions
    if data.ndim == 1:
        dims = 1
        nt0 = data.size
        nspat = None
        nspatprod = nx = 1
    elif data.ndim == 2:
        dims = 2
        nt0, nx = data.shape
        nspat = (nx, )
        nspatprod = nx
    else:
        dims = 3
        nt0, nx, ny = data.shape
        nspat = (nx, ny)
        nspatprod = nx * ny
        data = data.reshape(nt0, nspatprod)

    # create operator
    PPop = PoststackLinearModelling(wav,
                                    nt0=nt0,
                                    spatdims=nspat,
                                    explicit=explicit)
    if dottest:
        Dottest(PPop,
                nt0 * nspatprod,
                nt0 * nspatprod,
                raiseerror=True,
                backend=get_module_name(ncp),
                verb=True)

    # create and remove background data from original data
    datar = data.flatten() if m0 is None else \
        data.flatten() - PPop * m0.flatten()
    # invert model
    if epsR is None:
        # inversion without spatial regularization
        if explicit:
            if epsI is None and not simultaneous:
                # solve unregularized equations indipendently trace-by-trace
                minv = \
                get_lstsq(data)(PPop.A, datar.reshape(nt0, nspatprod).squeeze(),
                                **kwargs_solver)[0]
            elif epsI is None and simultaneous:
                # solve unregularized equations simultaneously
                if ncp == np:
                    minv = lsqr(PPop, datar, **kwargs_solver)[0]
                else:
                    minv = \
                        cgls(PPop, datar,
                             x0=ncp.zeros(int(PPop.shape[1]), PPop.dtype),
                             **kwargs_solver)[0]
            elif epsI is not None:
                # create regularized normal equations
                PP = ncp.dot(PPop.A.T, PPop.A) + \
                     epsI * ncp.eye(nt0, dtype=PPop.A.dtype)
                datarn = ncp.dot(PPop.A.T, datar.reshape(nt0, nspatprod))
                if not simultaneous:
                    # solve regularized normal eqs. trace-by-trace
                    minv = get_lstsq(data)(PP, datarn, **kwargs_solver)[0]
                else:
                    # solve regularized normal equations simultaneously
                    PPop_reg = MatrixMult(PP, dims=nspatprod)
                    if ncp == np:
                        minv = lsqr(PPop_reg, datar.ravel(),
                                    **kwargs_solver)[0]
                    else:
                        minv = cgls(PPop_reg,
                                    datar.ravel(),
                                    x0=ncp.zeros(int(PPop_reg.shape[1]),
                                                 PPop_reg.dtype),
                                    **kwargs_solver)[0]
            else:
                # create regularized normal eqs. and solve them simultaneously
                PP = ncp.dot(PPop.A.T, PPop.A) + \
                     epsI * ncp.eye(nt0, dtype=PPop.A.dtype)
                datarn = PPop.A.T * datar.reshape(nt0, nspatprod)
                PPop_reg = MatrixMult(PP, dims=nspatprod)
                minv = \
                    get_lstsq(data)(PPop_reg.A, datarn.flatten(),
                                    **kwargs_solver)[0]
        else:
            # solve unregularized normal equations simultaneously with lop
            if ncp == np:
                minv = lsqr(PPop, datar, **kwargs_solver)[0]
            else:
                minv = \
                    cgls(PPop, datar,
                         x0=ncp.zeros(int(PPop.shape[1]), PPop.dtype),
                         **kwargs_solver)[0]
    else:
        if epsRL1 is None:
            # L2 inversion with spatial regularization
            if dims == 1:
                Regop = SecondDerivative(nt0, dtype=PPop.dtype)
            elif dims == 2:
                Regop = Laplacian((nt0, nx), dtype=PPop.dtype)
            else:
                Regop = Laplacian((nt0, nx, ny), dirs=(1, 2), dtype=PPop.dtype)

            minv = RegularizedInversion(
                PPop, [Regop],
                data.flatten(),
                x0=None if m0 is None else m0.flatten(),
                epsRs=[epsR],
                returninfo=False,
                **kwargs_solver)
        else:
            # Blockiness-promoting inversion with spatial regularization
            if dims == 1:
                RegL1op = FirstDerivative(nt0,
                                          kind='forward',
                                          dtype=PPop.dtype)
                RegL2op = None
            elif dims == 2:
                RegL1op = FirstDerivative(nt0 * nx,
                                          dims=(nt0, nx),
                                          dir=0,
                                          kind='forward',
                                          dtype=PPop.dtype)
                RegL2op = SecondDerivative(nt0 * nx,
                                           dims=(nt0, nx),
                                           dir=1,
                                           dtype=PPop.dtype)
            else:
                RegL1op = FirstDerivative(nt0 * nx * ny,
                                          dims=(nt0, nx, ny),
                                          dir=0,
                                          kind='forward',
                                          dtype=PPop.dtype)
                RegL2op = Laplacian((nt0, nx, ny),
                                    dirs=(1, 2),
                                    dtype=PPop.dtype)

            if 'mu' in kwargs_solver.keys():
                mu = kwargs_solver['mu']
                kwargs_solver.pop('mu')
            else:
                mu = 1.
            if 'niter_outer' in kwargs_solver.keys():
                niter_outer = kwargs_solver['niter_outer']
                kwargs_solver.pop('niter_outer')
            else:
                niter_outer = 3
            if 'niter_inner' in kwargs_solver.keys():
                niter_inner = kwargs_solver['niter_inner']
                kwargs_solver.pop('niter_inner')
            else:
                niter_inner = 5
            if not isinstance(epsRL1, (list, tuple)):
                epsRL1 = list([epsRL1])
            if not isinstance(epsR, (list, tuple)):
                epsR = list([epsR])
            minv = SplitBregman(PPop, [RegL1op],
                                data.ravel(),
                                RegsL2=[RegL2op],
                                epsRL1s=epsRL1,
                                epsRL2s=epsR,
                                mu=mu,
                                niter_outer=niter_outer,
                                niter_inner=niter_inner,
                                x0=None if m0 is None else m0.flatten(),
                                **kwargs_solver)[0]

    # compute residual
    if epsR is None:
        datar -= PPop * minv.ravel()
    else:
        datar = data.ravel() - PPop * minv.ravel()

    # reshape inverted model and residual data
    if dims == 1:
        minv = minv.squeeze()
        datar = datar.squeeze()
    elif dims == 2:
        minv = minv.reshape(nt0, nx)
        datar = datar.reshape(nt0, nx)
    else:
        minv = minv.reshape(nt0, nx, ny)
        datar = datar.reshape(nt0, nx, ny)

    if m0 is not None and epsR is None:
        minv = minv + m0

    return minv, datar
Example #11
0
def PrestackLinearModelling(wav,
                            theta,
                            vsvp=0.5,
                            nt0=1,
                            spatdims=None,
                            linearization='akirich',
                            explicit=False):
    r"""Pre-stack linearized seismic modelling operator.

    Create operator to be applied to elastic property profiles
    for generation of band-limited seismic angle gathers from a
    linearized version of the Zoeppritz equation.

    Parameters
    ----------
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must had odd number of
        elements and centered to zero)
    theta : :obj:`np.ndarray`
        Incident angles in degrees
    vsvp : :obj:`float` or :obj:`np.ndarray`
        VS/VP ratio (constant or time/depth variant)
    nt0 : :obj:`int`, optional
        number of samples (if ``vsvp`` is a scalar)
    spatdims : :obj:`int` or :obj:`tuple`, optional
        Number of samples along spatial axis (or axes)
        (``None`` if only one dimension is available)
    linearization : :obj:`str`, optional
        choice of linearization, ``akirich``: Aki-Richards, ``fatti``: Fatti
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preferred for large data)
        or a ``MatrixMult`` linear operator with dense matrix
        (``True``, preferred for small data)

    Returns
    -------
    Preop : :obj:`LinearOperator`
        pre-stack modelling operator.

    Raises
    ------
    NotImplementedError
        If ``linearization`` is not an implemented linearization

    Notes
    -----
    Pre-stack seismic modelling is the process of constructing seismic
    pre-stack data from three (or two) profiles of elastic parameters in time
    (or depth) domain arranged in an input vector :math:`\mathbf{m}` of size
    :math:`nt0 \times N`. This can be easily achieved using the following
    forward model:

    .. math::
        d(t, \theta) = w(t) * \sum_{i=1}^N G_i(t, \theta) m_i(t)

    where :math:`w(t)` is the time domain seismic wavelet. In compact form:

    .. math::
        \mathbf{d}= \mathbf{G} \mathbf{m}

    On the other hand, pre-stack inversion aims at recovering the different
    profiles of elastic properties from the band-limited seismic
    pre-stack data.

    """
    # create vsvp profile
    vsvp = vsvp if isinstance(vsvp, np.ndarray) else vsvp * np.ones(nt0)
    nt0 = len(vsvp)
    ntheta = len(theta)

    # organize dimensions
    if spatdims is None:
        dims = (nt0, ntheta)
        spatdims = None
    elif isinstance(spatdims, int):
        dims = (nt0, ntheta, spatdims)
        spatdims = (spatdims, )
    else:
        dims = (nt0, ntheta) + spatdims

    if explicit:
        # Create derivative operator
        D = np.diag(0.5 * np.ones(nt0 - 1), k=1) - \
            np.diag(0.5 * np.ones(nt0 - 1), -1)
        D[0] = D[-1] = 0
        D = block_diag(*([D] * 3))

        # Create AVO operator
        if linearization == 'akirich':
            G1, G2, G3 = akirichards(theta, vsvp, n=nt0)
        elif linearization == 'fatti':
            G1, G2, G3 = fatti(theta, vsvp, n=nt0)
        else:
            logging.error('%s not an available linearization...',
                          linearization)
            raise NotImplementedError('%s not an available linearization...' %
                                      linearization)

        G = [
            np.hstack((np.diag(G1[itheta] * np.ones(nt0)),
                       np.diag(G2[itheta] * np.ones(nt0)),
                       np.diag(G3[itheta] * np.ones(nt0))))
            for itheta in range(ntheta)
        ]
        G = np.vstack(G).reshape(ntheta * nt0, 3 * nt0)

        # Create wavelet operator
        C = convmtx(wav, nt0)[:, len(wav) // 2:-len(wav) // 2 + 1]
        C = [C] * ntheta
        C = block_diag(*C)

        # Combine operators
        M = np.dot(C, np.dot(G, D))
        return MatrixMult(M, dims=spatdims)

    else:
        # Create wavelet operator
        Cop = Convolve1D(np.prod(np.array(dims)),
                         h=wav,
                         offset=len(wav) // 2,
                         dir=0,
                         dims=dims)

        # create AVO operator
        AVOop = AVOLinearModelling(theta,
                                   vsvp,
                                   spatdims=spatdims,
                                   linearization=linearization)

        # Create derivative operator
        dimsm = list(dims)
        dimsm[1] = AVOop.npars
        Dop = FirstDerivative(np.prod(np.array(dimsm)),
                              dims=dimsm,
                              dir=0,
                              sampling=1.)
        return Cop * AVOop * Dop
Example #12
0
def PrestackWaveletModelling(m,
                             theta,
                             nwav,
                             wavc=None,
                             vsvp=0.5,
                             linearization='akirich'):
    r"""Pre-stack linearized seismic modelling operator for wavelet.

    Create operator to be applied to a wavelet for generation of
    band-limited seismic angle gathers using a linearized version
    of the Zoeppritz equation.

    Parameters
    ----------
    m : :obj:`np.ndarray`
        elastic parameter profles of size :math:`[n_{t0} \times N]`
        where :math:`N=3/2`
    theta : :obj:`int`
        Incident angles in degrees
    nwav : :obj:`np.ndarray`
        Number of samples of wavelet to be applied/estimated
    wavc : :obj:`int`, optional
        Index of the center of the wavelet
    vsvp : :obj:`np.ndarray` or :obj:`float`, optional
        VS/VP ratio
    linearization : :obj:`str`, optional
        choice of linearization, ``akirich``: Aki-Richards,
        ``fatti``: Fatti

    Returns
    -------
    Mconv : :obj:`LinearOperator`
        pre-stack modelling operator for wavelet estimation.

    Raises
    ------
    NotImplementedError
        If ``linearization`` is not an implemented linearization

    Notes
    -----
    Pre-stack seismic modelling for wavelet estimate is the process
    of constructing seismic reflectivities using three (or two)
    profiles of elastic parameters in time (or depth)
    domain arranged in an input vector :math:`\mathbf{m}`
    of size :math:`nt0 \times N`:

    .. math::
        d(t, \theta) =  \sum_{i=1}^N G_i(t, \theta) m_i(t) * w(t)

    where :math:`w(t)` is the time domain seismic wavelet. In compact form:

    .. math::
        \mathbf{d}= \mathbf{G} \mathbf{w}

    On the other hand, pre-stack wavelet estimation aims at
    recovering the wavelet given knowledge of the band-limited
    seismic pre-stack data and the elastic parameter profiles.

    """
    # Create vsvp profile
    vsvp = vsvp if isinstance(vsvp, np.ndarray) else vsvp * np.ones(m.shape[0])
    wavc = nwav // 2 if wavc is None else wavc
    nt0 = len(vsvp)
    ntheta = len(theta)

    # Create derivative operator
    D = np.diag(0.5 * np.ones(nt0 - 1), k=1) - \
        np.diag(0.5 * np.ones(nt0 - 1), -1)
    D[0] = D[-1] = 0
    D = block_diag(*([D] * 3))

    # Create AVO operator
    if linearization == 'akirich':
        G1, G2, G3 = akirichards(theta, vsvp, n=nt0)
    elif linearization == 'fatti':
        G1, G2, G3 = fatti(theta, vsvp, n=nt0)
    else:
        logging.error('%s not an available linearization...', linearization)
        raise NotImplementedError('%s not an available linearization...' %
                                  linearization)

    G = [
        np.hstack((np.diag(G1[itheta] * np.ones(nt0)),
                   np.diag(G2[itheta] * np.ones(nt0)),
                   np.diag(G3[itheta] * np.ones(nt0))))
        for itheta in range(ntheta)
    ]
    G = np.vstack(G).reshape(ntheta * nt0, 3 * nt0)

    # Create infinite-reflectivity data
    M = np.dot(G, np.dot(D, m.T.flatten())).reshape(ntheta, nt0)
    Mconv = VStack([
        MatrixMult(convmtx(M[itheta], nwav)[wavc:-nwav + wavc + 1])
        for itheta in range(ntheta)
    ])

    return Mconv
Example #13
0
def PoststackLinearModelling(wav, nt0, spatdims=None, explicit=False,
                             sparse=False):
    r"""Post-stack linearized seismic modelling operator.

    Create operator to be applied to an acoustic impedance trace (or stack of
    traces) for generation of band-limited seismic post-stack data. The input
    model and data have shape :math:`[n_{t0} (\times n_x \times n_y)]`.

    Parameters
    ----------
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must had odd number of elements
        and centered to zero)
    nt0 : :obj:`int`
        Number of samples along time axis
    spatdims : :obj:`int` or :obj:`tuple`, optional
        Number of samples along spatial axis (or axes)
        (``None`` if only one dimension is available)
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preferred for large data)
        or a ``MatrixMult`` linear operator with dense matrix (``True``,
        preferred for small data)
    sparse : :obj:`bool`, optional
        Create a sparse matrix (``True``) or dense  (``False``) when
        ``explicit=True``

    Returns
    -------
    Pop : :obj:`LinearOperator`
        post-stack modelling operator.

    Notes
    -----
    Post-stack seismic modelling is the process of constructing
    seismic post-stack data from a profile of acoustic impedance in
    time (or depth) domain. This can be easily achieved using the
    following forward model:

    .. math::
        d(t, \theta=0) = w(t) * \frac{dln(AI(t))}{dt}

    where :math:`AI(t)` is the acoustic impedance profile and
    :math:`w(t)` is the time domain seismic wavelet. In compact form:

    .. math::
        \mathbf{d}= \mathbf{W} \mathbf{D} \mathbf{ai}

    On the other hand, post-stack inversion aims at recovering
    the impedance profile from the band-limited seismic stack data.

    """
    # organize dimensions
    if spatdims is None:
        dims = (nt0, )
        spatdims = None
    elif isinstance(spatdims, int):
        dims = (nt0, spatdims)
        spatdims = (spatdims,)
    else:
        dims = (nt0, ) + spatdims

    if explicit:
        # Create derivative operator
        D = np.diag(0.5 * np.ones(nt0 - 1), k=1) - \
            np.diag(0.5 * np.ones(nt0 - 1), -1)
        D[0] = D[-1] = 0

        # Create wavelet operator
        C = convmtx(wav, nt0)[:, len(wav) // 2:-len(wav) // 2 + 1]

        # Combine operators
        M = np.dot(C, D)
        if sparse:
            M = csc_matrix(M)
        Pop = MatrixMult(M, dims=spatdims)
    else:
        # Create wavelet operator
        Cop = Convolve1D(np.prod(np.array(dims)), h=wav,
                         offset=len(wav)//2, dir=0, dims=dims)

        # Create derivative operator
        Dop = FirstDerivative(np.prod(np.array(dims)), dims=dims,
                              dir=0, sampling=1.)
        Pop = Cop*Dop
    return Pop
Example #14
0
# Test python conda

import os
import time
import numpy as np
import scipy as sp
from pylops import MatrixMult
#print(np.__config__.show())
#print(sp.__config__.show())

print('OMP_NUM_THREADS', os.getenv('OMP_NUM_THREADS'))
print('MKL_NUM_THREADS', os.getenv('MKL_NUM_THREADS'))

n = 10000
x = np.ones(n)
G = np.random.normal(0., 1., (n, n))
Gop = MatrixMult(G)

# dot product
t0 = time.time()
y = np.dot(G, x)
print('Mat-vec np.dot elapsed time', time.time()-t0)
#y1 = Gop @ x

# matmul
G2 = np.dot(G, G)
print('Mat-mat np.dot elapsed time', time.time()-t0)

G2 = np.matmul(G, G)
print('Mat-mat np.matmul elapsed time', time.time()-t0)