Example #1
0
    def homo_mustach(self, frame):
        """ Hmophily mustach
        """
        if self.model is None: return
        expe = self.expe
        figs = []

        Y = self._Y
        N = Y[0].shape[0]
        model = self.model

        if not hasattr(self.gramexp, 'tables'):
            corpuses = self.specname(self.gramexp.get_set('corpus'))
            models = self.gramexp.get_set('model')
            tables = {}
            corpuses = self.specname(self.gramexp.get_set('corpus'))
            for m in models:
                sim = ['natural', 'latent']
                Meas = ['links', 'non-links']
                table = {
                    'natural': {
                        'links': [],
                        'non-links': []
                    },
                    'latent': {
                        'links': [],
                        'non-links': []
                    }
                }
                tables[m] = table

            self.gramexp.Meas = Meas
            self.gramexp.tables = tables
            table = tables[expe.model]
        else:
            table = self.gramexp.tables[expe.model]
            Meas = self.gramexp.Meas

        ### Global degree
        d, dc, yerr = random_degree(Y)
        sim_nat = model.similarity_matrix(sim='natural')
        sim_lat = model.similarity_matrix(sim='latent')
        step_tab = len(self.specname(self.gramexp.get_set('corpus')))

        if not hasattr(self.gramexp._figs[expe.model], 'damax'):
            damax = -np.inf
        else:
            damax = self.gramexp._figs[expe.model].damax
        self.gramexp._figs[expe.model].damax = max(sim_nat.max(),
                                                   sim_lat.max(), damax)
        for it_dat, data in enumerate(Y):

            #homo_object = data
            #homo_object = model.likelihood()

            table['natural']['links'].extend(sim_nat[data == 1].tolist())
            table['natural']['non-links'].extend(sim_nat[data == 0].tolist())
            table['latent']['links'].extend(sim_lat[data == 1].tolist())
            table['latent']['non-links'].extend(sim_lat[data == 0].tolist())

        if self._it == self.expe_size - 1:
            for _model, table in self.gramexp.tables.items():
                ax = self.gramexp._figs[_model].fig.gca()

                bp = ax.boxplot([table['natural']['links']],
                                widths=0.5,
                                positions=[1],
                                whis='range')
                bp = ax.boxplot([table['natural']['non-links']],
                                widths=0.5,
                                positions=[2],
                                whis='range')
                bp = ax.boxplot([table['latent']['links']],
                                widths=0.5,
                                positions=[4],
                                whis='range')
                bp = ax.boxplot([table['latent']['non-links']],
                                widths=0.5,
                                positions=[5],
                                whis='range')

                ax.set_ylabel('Similarity')
                ax.set_xticks([1.5, 4.5])
                ax.set_xticklabels(('natural', 'latent'), rotation=0)
                ax.set_xlim(0, 6)

                nbox = 4
                top = self.gramexp._figs[_model].damax
                pos = [1, 2, 4, 5]
                upperLabels = ['linked', '    non-linked'] * 2
                #weights = ['light', 'ultralight']
                weights = ['normal', 'normal']
                for tick in range(nbox):
                    ax.text(pos[tick],
                            top + top * 0.015,
                            upperLabels[tick],
                            horizontalalignment='center',
                            weight=weights[tick % 2])

                print(_model)
                t1 = sp.stats.ttest_ind(table['natural']['links'],
                                        table['natural']['non-links'])
                t2 = sp.stats.ttest_ind(table['latent']['links'],
                                        table['latent']['non-links'])
                print(t1)
                print(t2)
Example #2
0
    def pvalue(self, _type='global'):
        """ similar to zipf but compute pvalue and print table

            Parameters
            ==========
            _type: str in [global, local, feature]
        """
        if self.model is None: return
        expe = self.expe
        figs = []

        Y = self._Y
        N = Y[0].shape[0]
        model = self.model

        Table, Meas = self.init_fit_tables(_type, Y)

        self.log.info('using `%s\' burstiness' % _type)

        if _type == 'global':
            ### Global degree
            for it_dat, data in enumerate(Y):
                d, dc = degree_hist(adj_to_degree(data), filter_zeros=True)
                gof = gofit(d, dc)
                if not gof:
                    continue

                for i, v in enumerate(Meas):
                    Table[self.corpus_pos, i, it_dat] = gof[v]

        elif _type == 'local':
            ### Z assignement method
            a, b = model.get_params()
            N, K = a.shape
            print('theta shape: %s' % (str((N, K))))
            now = Now()
            if 'mmsb' in expe.model:
                ZZ = []
                for _i, _ in enumerate(Y):
                    #for _ in Y: # Do not reflect real local degree !
                    theta = self._Theta[_i]
                    phi = self._Phi[_i]
                    Z = np.empty((2, N, N))
                    order = np.arange(N**2).reshape((N, N))
                    if expe.symmetric:
                        triu = np.triu_indices(N)
                        order = order[triu]
                    else:
                        order = order.flatten()
                    order = zip(*np.unravel_index(order, (N, N)))

                    for i, j in order:
                        Z[0, i, j] = categorical(theta[i])
                        Z[1, i, j] = categorical(theta[j])
                    Z[0] = np.triu(Z[0]) + np.triu(Z[0], 1).T
                    Z[1] = np.triu(Z[1]) + np.triu(Z[1], 1).T
                    ZZ.append(Z)
                self.log.info('Z formation %s second', nowDiff(now))

            clustering = 'modularity'
            comm = model.communities_analysis(data=Y[0], clustering=clustering)
            print('clustering method: %s, active clusters ratio: %f' %
                  (clustering, len(comm['block_hist'] > 0) / K))

            local_degree_c = {}
            ### Iterate over all classes couple
            if expe.symmetric:
                #k_perm = np.unique( map(list, map(set, itertools.product(np.unique(clusters) , repeat=2))))
                k_perm = np.unique(
                    list(
                        map(
                            list,
                            map(
                                list,
                                map(set, itertools.product(range(K),
                                                           repeat=2))))))
            else:
                #k_perm = itertools.product(np.unique(clusters) , repeat=2)
                k_perm = itertools.product(range(K), repeat=2)

            for it_k, c in enumerate(k_perm):
                if isinstance(c, (np.int64, np.float64)):
                    k = l = c
                elif len(c) == 2:
                    # Stochastic Equivalence (extra class bind
                    k, l = c
                    #continue
                else:
                    # Comunnities (intra class bind)
                    k = l = c.pop()
                #if i > expe.limit_class:
                #   break
                if k != l:
                    continue

                degree_c = []
                YY = []
                if 'mmsb' in expe.model:
                    for y, z in zip(Y, ZZ):  # take the len of ZZ if < Y
                        y_c = y.copy()
                        phi_c = np.zeros(y.shape)
                        # UNDIRECTED !
                        phi_c[(z[0] == k) &
                              (z[1] == l
                               )] = 1  #; phi_c[(z[0] == l) & (z[1] == k)] = 1
                        y_c[phi_c != 1] = 0
                        #degree_c += adj_to_degree(y_c).values()
                        #yerr= None
                        YY.append(y_c)
                elif 'ilfm' in expe.model:
                    for _i, y in enumerate(Y):
                        theta = self._Theta[_i]
                        YY.append(
                            (y *
                             np.outer(theta[:, k], theta[:, l])).astype(int))

                d, dc, yerr = random_degree(YY)
                if len(d) == 0: continue
                gof = gofit(d, dc)
                if not gof:
                    continue

                for i, v in enumerate(Meas):
                    Table[self.corpus_pos, i, it_k] = gof[v]

        elif _type == 'feature':
            raise NotImplementedError

        if self._it == self.expe_size - 1:
            for _model, table in self.gramexp.tables.items():

                # Mean and standard deviation
                table_mean = np.char.array(np.around(
                    table.mean(2), decimals=3)).astype("|S20")
                table_std = np.char.array(np.around(table.std(2),
                                                    decimals=3)).astype("|S20")
                table = table_mean + b' $\pm$ ' + table_std

                # Table formatting
                corpuses = self.specname(self.gramexp.get_set('corpus'))
                table = np.column_stack((self.specname(corpuses), table))
                tablefmt = 'simple'
                table = tabulate(table,
                                 headers=['__' + _model.upper() + '__'] + Meas,
                                 tablefmt=tablefmt,
                                 floatfmt='.3f')
                print()
                print(table)
                if expe._write:
                    if expe._mode == 'predictive':
                        base = '%s_%s_%s' % (self.specname(
                            expe.corpus), self.specname(_model), _type)
                    else:
                        base = '%s_%s_%s' % ('MG', self.specname(_model),
                                             _type)
                    self.write_frames(table, base=base, ext='md')
Example #3
0
    def h**o(self, _type='pearson', _sim='latent'):
        """ Hmophily test -- table output
            Parameters
            ==========
            _type: similarity type in (contengency, pearson)
            _sim: similarity metric in (natural, latent)
        """
        if self.model is None: return
        expe = self.expe
        figs = []

        Y = self._Y
        N = Y[0].shape[0]
        model = self.model

        self.log.info('using `%s\' type' % _type)

        if not hasattr(self.gramexp, 'tables'):
            corpuses = self.specname(self.gramexp.get_set('corpus'))
            models = self.gramexp.get_set('model')
            tables = {}
            corpuses = self.specname(self.gramexp.get_set('corpus'))
            for m in models:
                if _type == 'pearson':
                    Meas = ['pearson coeff', '2-tailed pvalue']
                    table = np.empty((len(corpuses), len(Meas), len(Y)))
                elif _type == 'contingency':
                    Meas = ['natural', 'latent', 'natural', 'latent']
                    table = np.empty((2 * len(corpuses), len(Meas), len(Y)))
                tables[m] = table

            self.gramexp.Meas = Meas
            self.gramexp.tables = tables
            table = tables[expe.model]
        else:
            table = self.gramexp.tables[expe.model]
            Meas = self.gramexp.Meas

        if _type == 'pearson':
            self.log.info('using `%s\' similarity' % _sim)
            # No variance for link expecation !!!
            Y = [Y[0]]

            ### Global degree
            d, dc, yerr = random_degree(Y)
            sim = model.similarity_matrix(sim=_sim)
            #plot(sim, title='Similarity', sort=True)
            #plot_degree(sim)
            for it_dat, data in enumerate(Y):
                #homo_object = data
                homo_object = model.likelihood()
                table[self.corpus_pos, :,
                      it_dat] = sp.stats.pearsonr(homo_object.flatten(),
                                                  sim.flatten())

        elif _type == 'contingency':

            ### Global degree
            d, dc, yerr = random_degree(Y)
            sim_nat = model.similarity_matrix(sim='natural')
            sim_lat = model.similarity_matrix(sim='latent')
            step_tab = len(self.specname(self.gramexp.get_set('corpus')))
            for it_dat, data in enumerate(Y):

                #homo_object = data
                homo_object = model.likelihood()

                table[self.corpus_pos, 0, it_dat] = sim_nat[data == 1].mean()
                table[self.corpus_pos, 1, it_dat] = sim_lat[data == 1].mean()
                table[self.corpus_pos, 2, it_dat] = sim_nat[data == 1].var()
                table[self.corpus_pos, 3, it_dat] = sim_lat[data == 1].var()
                table[self.corpus_pos + step_tab, 0,
                      it_dat] = sim_nat[data == 0].mean()
                table[self.corpus_pos + step_tab, 1,
                      it_dat] = sim_lat[data == 0].mean()
                table[self.corpus_pos + step_tab, 2,
                      it_dat] = sim_nat[data == 0].var()
                table[self.corpus_pos + step_tab, 3,
                      it_dat] = sim_lat[data == 0].var()

        if self._it == self.expe_size - 1:
            for _model, table in self.gramexp.tables.items():
                # Function in (utils. ?)
                # Mean and standard deviation
                table_mean = np.char.array(np.around(
                    table.mean(2), decimals=3)).astype("|S20")
                table_std = np.char.array(np.around(table.std(2),
                                                    decimals=3)).astype("|S20")
                table = table_mean + b' $\pm$ ' + table_std

                # Table formatting
                corpuses = self.specname(self.gramexp.get_set('corpus'))
                try:
                    table = np.column_stack((corpuses, table))
                except:
                    table = np.column_stack((corpuses * 2, table))
                tablefmt = 'simple'  # 'latex'
                table = tabulate(table,
                                 headers=['__' + _model.upper() + '__'] + Meas,
                                 tablefmt=tablefmt,
                                 floatfmt='.3f')
                print()
                print(table)
                if expe._write:
                    base = '%s_homo_%s' % (self.specname(_model), _type)
                    self.write_frames(table, base=base, ext='md')
Example #4
0
    def burstiness(self, _type='all'):
        '''Zipf Analysis
           (global burstiness) + local burstiness + feature burstiness

           Parameters
           ----------
           _type : str
            type of burstiness to compute in ('global', 'local', 'feature', 'all')
        '''
        if self.model is None: return
        expe = self.expe
        figs = []

        Y = self._Y
        N = Y[0].shape[0]
        model = self.model

        if _type in ('global', 'all'):
            # Global burstiness
            d, dc, yerr = random_degree(Y)
            fig = plt.figure()
            title = 'global | %s, %s' % (self.specname(
                expe.get('corpus')), self.specname(expe.model))
            plot_degree_2((d, dc, yerr), logscale=True, title=title)

            figs.append(plt.gcf())

        if _type in ('local', 'all'):
            # Local burstiness
            print('Computing Local Preferential attachment')
            a, b = model.get_params()
            N, K = a.shape
            print('theta shape: %s' % (str((N, K))))
            now = Now()
            if 'mmsb' in expe.model:
                ### Z assignement method #
                ZZ = []
                for _i, _ in enumerate(Y):
                    #for _ in Y: # Do not reflect real local degree !

                    theta = self._Theta[_i]
                    phi = self._Phi[_i]
                    Z = np.empty((2, N, N))
                    order = np.arange(N**2).reshape((N, N))
                    if expe.symmetric:
                        triu = np.triu_indices(N)
                        order = order[triu]
                    else:
                        order = order.flatten()
                    order = zip(*np.unravel_index(order, (N, N)))

                    for i, j in order:
                        Z[0, i, j] = categorical(theta[i])
                        Z[1, i, j] = categorical(theta[j])
                    Z[0] = np.triu(Z[0]) + np.triu(Z[0], 1).T
                    Z[1] = np.triu(Z[1]) + np.triu(Z[1], 1).T
                    ZZ.append(Z)
                self.log.info('Z formation %s second' % nowDiff(now))

            clustering = 'modularity'
            comm = model.communities_analysis(data=Y[0], clustering=clustering)
            print('clustering method: %s, active clusters ratio: %f' %
                  (clustering, len(comm['block_hist'] > 0) / K))

            local_degree_c = {}
            ### Iterate over all classes couple
            if expe.symmetric:
                #k_perm = np.unique( map(list, map(set, itertools.product(np.unique(clusters) , repeat=2))))
                k_perm = np.unique(
                    list(
                        map(
                            list,
                            map(
                                list,
                                map(set, itertools.product(range(K),
                                                           repeat=2))))))
            else:
                #k_perm = itertools.product(np.unique(clusters) , repeat=2)
                k_perm = itertools.product(range(K), repeat=2)

            fig = plt.figure()
            for i, c in enumerate(k_perm):
                if isinstance(c, (np.int64, np.float64)):
                    k = l = c
                elif len(c) == 2:
                    # Stochastic Equivalence (outer class)
                    k, l = c
                else:
                    # Comunnities (inner class)
                    k = l = c.pop()
                #if i > expe.limit_class:
                #   break
                if k != l:
                    continue

                degree_c = []
                YY = []
                if 'mmsb' in expe.model:
                    for y, z in zip(Y, ZZ):  # take the len of ZZ if < Y
                        y_c = np.zeros(y.shape)
                        phi_c = np.zeros(y.shape)
                        # UNDIRECTED !
                        phi_c[(z[0] == k) & (z[1] == l)] = 1
                        y_c = y * phi_c
                        #degree_c += adj_to_degree(y_c).values()
                        #yerr= None
                        YY.append(y_c)
                elif 'ilfm' in expe.model:  # or Corpus !
                    for _i, y in enumerate(Y):
                        theta = self._Theta[_i]
                        if theta.shape[1] <= max(k, l):
                            print('warning: not all block converted.')
                            continue
                        YY.append(
                            (y *
                             np.outer(theta[:, k], theta[:, l])).astype(int))

                d, dc, yerr = random_degree(YY)
                if len(d) == 0: continue
                title = 'local | %s, %s' % (self.specname(
                    expe.get('corpus')), self.specname(expe.model))
                plot_degree_2((d, dc, yerr),
                              logscale=True,
                              colors=True,
                              line=True,
                              title=title)
            figs.append(plt.gcf())

        # Blockmodel Analysis
        #if _type in  ('feature', 'all'):
        #    plt.figure()
        #    if 'mmsb' in expe.model:
        #        # Feature burstiness
        #        hist, label = clusters_hist(comm['clusters'])
        #        bins = len(hist)
        #        plt.bar(range(bins), hist)
        #        plt.xticks(np.arange(bins)+0.5, label)
        #        plt.xlabel('Class labels')
        #        plt.title('Blocks Size (max assignement)')
        #    elif 'ilfm' in expe.model:
        #        # Feature burstiness
        #        hist, label = sorted_perm(comm['block_hist'], reverse=True)
        #        bins = len(hist)
        #        plt.bar(range(bins), hist)
        #        plt.xticks(np.arange(bins)+0.5, label)
        #        plt.xlabel('Class labels')
        #        plt.title('Blocks Size (max assignement)')

        #    figs.append(plt.gcf())

        if expe._write:
            if expe._mode == 'predictive':
                base = '%s_%s' % (self.specname(
                    expe.corpus), self.specname(expe.model))
            else:
                base = '%s_%s' % ('MG', self.specname(expe.model))
            self.write_frames(figs, base=base)
            return