class Levy(ExpDesign): data_net_all = Corpus([ 'manufacturing', 'fb_uc', 'blogs', 'emaileu', 'propro', 'euroroad', 'generator7', 'generator12', 'generator10', 'generator4' ]) net_all = data_net_all + Corpus(['clique6', 'BA']) data_text_all = Corpus(['kos', 'nips12', 'nips', 'reuter50', '20ngroups']) # lucene # # Poisson Point process : # * stationarity / ergodicity of p(d_i) ? # * Erny theorem (characterization by void probabilities ? # * Inference ? Gamma Process ? # * Sparsity ? wmmsb = ExpTensor( corpus=['BA'], model='iwmmsb_scvb', N=200, chunk='adaptative_1', K=6, iterations=3, hyper='auto', testset_ratio=20, delta=[[2, 2]], chi_a=10, tau_a=100, kappa_a=0.6, chi_b=10, tau_b=500, kappa_b=0.9, h**o=0, mask='unbalanced', _data_format='w', _data_type='networks', _refdir='debug_scvb', _format= '{corpus}_{model}_{N}_{K}_{iterations}_{hyper}_{h**o}_{mask}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}', _csv_typo= '_iteration time_it _entropy _entropy_t _K _chi_a _tau_a _kappa_a _chi_b _tau_b _kappa_b _elbo _roc' ) noelw3 = ExpGroup(wmmsb, N='all', chunk=['adaptative_0.1', 'adaptative_1'], corpus=data_net_all, mask=['unbalanced'], _refdir='noel3')
def load(cls, expe, load=True): """ Return the frontend suited for the given expe""" corpus_name = expe.get('corpus') or expe.get('random') if '.' in corpus_name: c_split = corpus_name.split('.') c_name, c_ext = '.'.join(c_split[:-1]), c_split[-1] else: c_name = corpus_name c_ext = None _corpus = Corpus.get(c_name) if c_ext in GramExp._frontend_ext: # graph-tool object # @Todo: Corpus intragation! _corpus.update(data_format=c_ext) elif _corpus is False: raise ValueError('Unknown Corpus `%s\'!' % corpus) elif _corpus is None: return None if _corpus['data_type'] == 'text': frontend = frontendText(expe) elif _corpus['data_type'] == 'network': if _corpus.get('data_format') == 'gt': frontend = frontendNetwork_gt.from_expe(expe, load=load, corpus=_corpus) else: # Obsolete loading design. @Todo frontend = frontendNetwork(expe) if load is True: frontend.load_data(randomize=False) frontend.sample(expe.get('N'), randomize=False) return frontend
def load(cls, expe, skip_init=False): """ Return the frontend suited for the given expe @TODO: skip_init is not implemented """ if skip_init: cls.log.warning('skip init is not implemented') corpus_name = expe.get('corpus') or expe.get('random') or expe.get( 'concept') if expe.get('driver'): corpus_name += '.' + expe.driver.strip('.') if '.' in corpus_name: c_split = corpus_name.split('.') c_name, c_ext = '.'.join(c_split[:-1]), c_split[-1] else: c_name = corpus_name c_ext = None _corpus = Corpus.get(c_name) if c_ext in cls._frontend_ext: # graph-tool object # @Todo: Corpus integration! if not _corpus: dt_lut = {'gt': 'network'} _corpus = dict(data_type=dt_lut[c_ext]) _corpus.update(data_format=c_ext) elif _corpus is False: raise ValueError('Unknown Corpus `%s\'!' % c_name) elif _corpus is None: return None if _corpus['data_type'] == 'text': from .frontendtext import frontendText frontend = frontendText(expe) elif _corpus['data_type'] == 'network': if _corpus.get('data_format') == 'gt': from .frontendnetwork import frontendNetwork_gt frontend = frontendNetwork_gt.from_expe(expe, corpus=_corpus) else: from .frontendnetwork import frontendNetwork # Obsolete loading design. @Todo frontend = frontendNetwork(expe) frontend.load_data(randomize=False) if hasattr(frontend, 'configure'): frontend.configure() return frontend
def load(cls, expe): """ Return the frontend suited for the given expe""" corpus_name = expe.get('corpus') or expe.get('random') or expe.get( 'concept') if expe.get('driver'): corpus_name += '.' + expe.ext.strip('.') if '.' in corpus_name: c_split = corpus_name.split('.') c_name, c_ext = '.'.join(c_split[:-1]), c_split[-1] else: c_name = corpus_name c_ext = None _corpus = Corpus.get(c_name) if c_ext in GramExp._frontend_ext: # graph-tool object # @Todo: Corpus intragation! _corpus.update(data_format=c_ext) elif _corpus is False: raise ValueError('Unknown Corpus `%s\'!' % corpus) elif _corpus is None: return None if _corpus['data_type'] == 'text': from .frontendtext import frontendText frontend = frontendText(expe) elif _corpus['data_type'] == 'network': if _corpus.get('data_format') == 'gt': from .frontendnetwork import frontendNetwork_gt frontend = frontendNetwork_gt.from_expe(expe, corpus=_corpus) else: from .frontendnetwork import frontendNetwork # Obsolete loading design. @Todo frontend = frontendNetwork(expe) frontend.load_data(randomize=False) frontend.configure() return frontend
class Netw(ExpDesign): # Use for Name on figure and table _alias = dict(( ('propro', 'Protein'), ('blogs', 'Blogs'), ('euroroad', 'Euroroad'), ('emaileu', 'Emaileu'), ('manufacturing', 'Manufacturing'), ('fb_uc', 'UC Irvine'), ('generator7', 'Network1'), ('generator12', 'Network2'), ('generator10', 'Network3'), #('generator4' , 'Network4' ), ('generator4', 'Network2'), #('pmk.ilfm_cgs' , 'ILFM' ), #('pmk.immsb_cgs' , 'IMMSB' ), )) # Networks Data corpus_real_net = Corpus( ['manufacturing', 'fb_uc', 'blogs', 'emaileu', 'propro', 'euroroad']) ### Bursty CORPUS_BURST_1 = Corpus([ 'generator3', 'generator11', 'generator12', 'generator7', 'generator14' ]) ### Non Bursty CORPUS_NBURST_1 = Corpus([ 'generator4', 'generator5', 'generator6', 'generator9', 'generator10' ]) CORPUS_SYN_ICDM = Corpus( ['generator7', 'generator12', 'generator10', 'generator4']) CORPUS_REAL_ICDM = Corpus([ 'manufacturing', 'fb_uc', ]) CORPUS_ALL_ICDM = CORPUS_SYN_ICDM + CORPUS_REAL_ICDM CORPUS_REAL_PNAS = Corpus( ['manufacturing', 'fb_uc', 'blogs', 'emaileu', 'propro']) CORPUS_ALL_PNAS = CORPUS_REAL_PNAS + CORPUS_SYN_ICDM pnas_short = Corpus(['blogs', 'manufacturing', 'generator7', 'generator4']) pnas_rest = (corpus_real_net + CORPUS_SYN_ICDM) - pnas_short #data_net_all #net_all # Text Corpus # intruder ? data_text_all = Corpus(['kos', 'nips12', 'nips', 'reuter50', '20ngroups']) # lucene # Tensor Exp EXPE_ICDM = ExpTensor(( ('_data_type', ('networks', )), ('_refdir', ('debug10', 'debug11')), #('corpus' , ('fb_uc', 'manufacturing')), ('corpus', CORPUS_ALL_ICDM), ('model', ('immsb_cgs', 'ilfm_cgs')), ('K', (5, 10, 15, 20)), ('N', ('all', )), ('hyper', ('fix', 'auto')), ('h**o', (0, )), #('_repeat' , (0, 1, 2,3, 4, 5)), )) PNAS1 = ExpTensor(( ('corpus', CORPUS_ALL_PNAS), ('_data_type', 'networks'), ('_refdir', 'debug111111'), # ign in gen #('model' , 'mmsb_cgs') , ('model', ['immsb_cgs', 'ilfm_cgs']), ('K', 10), ('N', 'all'), # ign in gen ('hyper', ['auto', 'fix']), # ign in gen ('h**o', 0), # ign in gen ('_repeat', 1), ('_bind', ['immsb_cgs.auto', 'ilfm_cgs.fix']), ('iterations', '200'), ('_format', '{model}_{corpus}_{K}_{hyper}_{h**o}_{N}'))) PNAS2 = ExpTensor(( ('corpus', CORPUS_ALL_PNAS), ('_data_type', 'networks'), ('_refdir', 'pnas2'), # ign in gen #('model' , 'mmsb_cgs') , ('model', ['immsb_cgs', 'ilfm_cgs']), ('K', 10), ('N', 'all'), # ign in gen ('hyper', ['fix', 'auto']), # ign in gen ('h**o', 0), # ign in gen ('_repeat', 0), ('_bind', [ 'immsb_cgs.auto', 'ilfm_cgs.fix', 'ilfm_cgs.iterations.25', 'immsb_cgs.iterations.150' ]), ('iterations', [25, 150]), ('testset_ratio', [40, 60, 80]), ('_format', '{model}_{corpus}_{K}_{hyper}_{h**o}_{N}_{testset_ratio}'), ('_csv_typo', '_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var' ), )) PNAS3 = ExpTensor(( ('corpus', pnas_short), ('_refdir', 'pnas3'), # ign in gen ('_data_type', 'networks'), ('model', ['immsb_cgs', 'ilfm_cgs']), ('K', 10), ('N', 'all'), # ign in gen ('hyper', ['fix', 'auto']), # ign in gen ('h**o', 0), # ign in gen ('_repeat', 0), ('_bind', [ 'immsb_cgs.auto', 'ilfm_cgs.fix', 'ilfm_cgs.iterations.25', 'immsb_cgs.iterations.150' ]), ('iterations', [25, 150]), ('testset_ratio', 20), ('_format', '{model}_{iterations}_{corpus}_{K}_{hyper}_{h**o}_{N}_{testset_ratio}' ), ('_csv_typo', '_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var' ), )) EXPE_ICDM_R = ExpTensor(( ('_data_type', ('networks', )), #('corpus' , ('fb_uc', 'manufacturing')), ('corpus', CORPUS_SYN_ICDM), #('_refdir' , ('debug10', 'debug11')), ('_refdir', ('debug101010', 'debug111111')), ('model', ('immsb_cgs', 'ilfm_cgs')), ('K', (5, 10, 15, 20)), ('hyper', ('fix', 'auto')), ('h**o', (0, 1, 2)), ('N', ('all', )), ('_repeat', list(range(10))), ('iterations', '200'), ('_bind', ['immsb_cgs.auto', 'ilfm_cgs.fix']), )) EXPE_ICDM_R_R = ExpTensor(( ('_data_type', ('networks', )), ('corpus', ('fb_uc', 'manufacturing')), ('_refdir', ('debug101010', 'debug111111')), ('model', ('immsb_cgs', 'ilfm_cgs')), ('K', (5, 10, 15, 20)), ('hyper', ('fix', 'auto')), ('h**o', (0, 1, 2)), ('N', ('all', )), ('_repeat', list(range(10))), ('iterations', '200'), ('_bind', ['immsb_cgs.auto', 'ilfm_cgs.fix']), )) # Single Expe MODEL_FOR_CLUSTER_IBP = ExpSpace(( ('_data_type', 'networks'), ('_refdir', 'debug11'), ('model', 'ilfm_cgs'), ('K', 20), ('N', 'all'), ('hyper', 'fix'), ('h**o', 0), #('_repeat' , '*') , )) MODEL_FOR_CLUSTER_IMMSB = ExpSpace(( ('_data_type', 'networks'), ('_refdir', 'debug11'), ('model', 'immsb_cgs'), ('K', 20), ('N', 'all'), ('hyper', 'auto'), ('h**o', 0), #('_repeat' , '*') , )) default_gen = ExpTensor(( ('corpus', CORPUS_SYN_ICDM), ('_data_type', 'networks'), ('_refdir', 'debug111111'), # ign in gen #('model' , 'mmsb_cgs') , ('model', ['immsb_cgs', 'ilfm_cgs']), ('K', 10), ('N', 'all'), # ign in gen ('hyper', ['auto', 'fix']), # ign in gen ('h**o', 0), # ign in gen ('_repeat', 1), ('_bind', ['immsb_cgs.auto', 'ilfm_cgs.fix']), ('alpha', 1), ('gmma', 1), ('delta', [(1, 5)]), )) default_check = default_gen.copy() default_check['model'] = 'immsb_cgs' MODELS_GENERATE = ExpTensor(( ('_data_type', 'networks'), ('_refdir', 'debug11'), ('model', ['immsb_cgs', 'ilfm_cgs']), ('K', 10), ('N', 'all'), ('hyper', ['fix', 'auto']), ('h**o', 0), #('_repeat' , '*') , ('_bind', ['immsb_cgs.auto', 'ilfm_cgs.fix']), ('_csv_typo ', ('_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var', )), )) #### Temp EXPE_ALL_ICDM_IBP = ExpTensor(( ('_data_type', ('networks', )), ('_refdir', ('debug111111', 'debug101010')), ('corpus', CORPUS_ALL_ICDM), ('model', ('ilfm_cgs', )), ('K', (5, 10, 15, 20)), ('N', ('all', )), ('hyper', ('fix', )), ('h**o', (0, )), ('_repeat', (6, 7, 8, 9)), ('_csv_typo ', ('_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var', )), )) EXPE_ALL_ICDM_IMMSB = ExpTensor(( ('_data_type', ('networks', )), ('_refdir', ('debug111111', 'debug101010')), ('corpus', CORPUS_ALL_ICDM), ('model', ('immsb_cgs', )), ('K', (5, 10, 15, 20)), ('N', ('all', )), ('hyper', ('auto', )), ('h**o', (0, )), ('_repeat', (6, 7, 8, 9)), ('_csv_typo ', ('_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var', )), )) RUN_DD = ExpTensor(( ('_data_type', ('networks', )), #('corpus' , ('fb_uc', 'manufacturing')), ('_refdir', ('test_temp', )), ('corpus', ('generator1', )), ('model', ('immsb_cgs', 'ilfm_cgs')), ('K', (5, )), ('N', ('all', )), ('hyper', ('auto', )), ('h**o', (0, )), ('hyper_prior', ('1 2 3 4', '20 2 10 2')), ('_repeat', (0, 1, 2, 4, 5)), ('_bind', ['immsb_cgs.auto', 'ilfm_cgs.fix']), ('_csv_typo ', ('_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var', )), )) EXPE_REAL_V2_IBP = ExpTensor(( ('_data_type', ('networks', )), ('corpus', ('propro', 'blogs', 'euroroad', 'emaileu')), ( '_refdir', ('debug111111'), ), ('model', ('ilfm_cgs', )), ('K', (10, )), ('hyper', ('fix', )), ('h**o', (0, )), ('N', ('all', )), ('_repeat', list(range(5))), ('_csv_typo ', ('_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var', )), )) EXPE_REAL_V2_IMMSB = ExpTensor(( ('_data_type', ('networks', )), ('corpus', ('propro', 'blogs', 'euroroad', 'emaileu')), ( '_refdir', ('debug111111', ), ), ('model', ('immsb_cgs', )), ('K', (10, )), ('hyper', ('auto', )), ('h**o', (0, )), ('N', ('all', )), ('_repeat', list(range(5))), ('_csv_typo ', ('_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var', )), )) RAGNRK = ExpTensor( _data_type=['networks'], corpus=['propro', 'blogs', 'euroroad', 'emaileu'], _refdir=['ragnarok'], model=['immsb_cgs'], K=[10], hyper=['auto'], h**o=[0], N=[10], _repeat=list(range(2)), _csv_typo= '_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var' ) default_expe = ExpTensor( _data_type='networks', corpus='clique4', model='immsb_cgs', hyper='auto', _refdir='debug', testset_ratio=20, K=5, N=50, iterations=10, h**o=0, _format='{model}_{corpus}_{K}_{hyper}_{h**o}_{N}', #_csv_typo = '_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var' ) debug = ExpTensor(_data_type='networks', corpus='clique4', model=['immsb_cgs', 'ilfm_cgs', 'immsb_scvb'], hyper='auto', _refdir='debug', testset_ratio=20, K=4, N=42, iterations=3, h**o=0, _format='{model}_{corpus}_{K}_{hyper}_{h**o}_{N}', _csv_typo='_iteration time_it _entropy _entropy_t _K') model_all = Model(['immsb_cgs', 'ilfm_cgs', 'immsb_scvb', 'rescal']) model_debug = Model(['mmsb_vb'])
class Levy(ExpDesign): #refdir=gapv1 is old likelihood + sampling r/p.sampling #rocw1: new likelihood + sampling r/p #rocw2: newlikelihood + mixed samling/VB r/p #rocw3: new likelihood + mixed samling/VB r/p and N_Phi added. (partial some correction and inversion sample/expectation) #rocw4: new likelihood + samling r/p and _alias = {'ml.iwmmsb_scvb3': 'WMMSB', 'ml.iwmmsb_scvb3_auto': 'WMMSB-bg', 'ml.immsb_scvb3': 'MMSB', 'ml.sbm_gt': 'SBM', 'ml.wsbm_gt': 'WSBM', 'link-dynamic-simplewiki': 'wiki-link', 'munmun_digg_reply': 'digg-reply', 'slashdot-threads': 'slashdot', } net_old = Corpus(['manufacturing', 'fb_uc', 'blogs', 'emaileu', 'propro', 'euroroad', 'generator7', 'generator12', 'generator10', 'generator4']) net_gt = Corpus(['astro-ph', 'hep-th', 'netscience', 'cond-mat']) # all undirected net_random = Corpus(['clique6', 'BA']) net_test = Corpus(['manufacturing', 'fb_uc', 'netscience']) net_large = Corpus(['link-dynamic-simplewiki', 'enron', 'foldoc']) net_w = Corpus(['manufacturing', 'fb_uc']) + net_gt # 'actor-collaboration' # Too big? net_w2 = Corpus(['slashdot-threads', 'prosper-loans', 'munmun_digg_reply', 'moreno_names']) # manufacturing net_final = Corpus(['fb_uc', #'manufacturing', 'hep-th', 'link-dynamic-simplewiki', 'enron', 'slashdot-threads', 'prosper-loans', 'munmun_digg_reply', 'moreno_names', 'astro-ph']) net_all = net_old + net_gt + net_large # # Poisson Point process : # * stationarity / ergodicity of p(d_i) ? # * Erny theorem (characterization by void probabilities ? # * Inference ? Gamma Process ? # * Sparsity ? warm = ExpTensor( corpus=['manufacturing'], model='iwmmsb_scvb3', N='all', K=10, hyper='auto', h**o=0, testset_ratio=20, validset_ratio=10, # Sampling chunk='stratify', sampling_coverage=0.42, #chi_a=10, tau_a=100, kappa_a=0.6, #chi_b=10, tau_b=500, kappa_b=0.9, chi_a=1, tau_a=1024, kappa_a=0.5, chi_b=1, tau_b=1024, kappa_b=0.5, zeros_set_prob=1/2, zeros_set_len=50, #delta = [[1, 1]], #delta = [[0.5, 10]], delta='auto', fig_xaxis=[('_observed_pt', 'visited edges')], fig_legend=4, legend_size=12, #ticks_size = 20, title_size=20, driver='gt', # graph-tool driver _data_type='networks', _refdir='debug_scvb3', _format='{corpus}_{model}_{N}_{K}_{hyper}_{h**o}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}_{delta}_{zeros_set_len}_{zeros_set_prob}', _measures='_observed_pt time_it _entropy _K _chi_a _tau_a _kappa_a _chi_b _tau_b _kappa_b _roc _wsim _pr', ) # Sparse sampling warm_sparse_chunk = ExpGroup(warm, sampling_coverage=1, chunk='sparse') # Sampling sensiblity | hyper-delta sensibility warm_sampling = ExpGroup(warm, delta=[[1, 1], [0.5, 10], [10, 0.5]], zeros_set_prob=[1/2, 1/3, 1/4], zeros_set_len=[10, 50]) arm_sampling = ExpGroup(warm_sampling, delta='auto', model='immsb_scvb3') sbm_base = ExpGroup(warm, model=['sbm_gt', 'wsbm_gt', 'rescal_als'], zeros_set_prob=None, zeros_set_len=None, delta=None, _measures='time_it _entropy _K _roc _wsim _pr') wsbm2_base = ExpGroup(sbm_base, model=['wsm_g', 'wsbm2_gt']) wsbm_base = ExpGroup(sbm_base, model=['wsbm_gt']) # Compare sensibility eta_b = ExpGroup([arm_sampling], _refdir='eta', corpus=net_w, zeros_set_prob=[1/2, 1/4]) eta_w = ExpGroup([warm_sampling], _refdir='eta', corpus=net_w, zeros_set_prob=[1/2, 1/4]) eta = ExpGroup([eta_b, eta_w]) eta_sbm = ExpGroup(sbm_base, _refdir='eta', corpus=net_w) # test/visu warm_visu = ExpGroup(warm, delta=[[1, 1], 'auto'], zeros_set_prob=[1/2], zeros_set_len=[10]) # Best selection visu (eta) best_mmsb = ExpGroup(eta_b, zeros_set_prob=1/4, zeros_set_len=50, delta='auto') best_wmmsb = ExpGroup(eta_w, zeros_set_prob=1/4, zeros_set_len=50, delta=[[0.5, 10]]) best_scvb = ExpGroup([best_mmsb, best_wmmsb]) eta_best = ExpGroup([best_scvb, eta_sbm]) # Corrected zero sampling eta2_base = ExpGroup(warm, testset_ratio=20, _refdir='roc5', corpus=net_w) # roc5§roc5_N eta2_sbm = ExpGroup(eta2_base, model=['sbm_gt', 'wsbm_gt', 'rescal_als'], zeros_set_prob=None, zeros_set_len=None, delta=None, _measures='time_it _entropy _K _roc _wsim _pr') eta2_b = ExpGroup(eta2_base, model="immsb_scvb3", zeros_set_prob=1/2, zeros_set_len=10, delta='auto') eta2_b10 = eta2_b eta2_b50 = ExpGroup(eta2_base, model="immsb_scvb3", zeros_set_prob=1/2, zeros_set_len=50, delta='auto') eta0_w = ExpGroup(eta2_base, model="iwmmsb_scvb3", zeros_set_prob=1/2, zeros_set_len=10, delta=[[10, 0.5]]) eta1_w = ExpGroup(eta2_base, model="iwmmsb_scvb3", zeros_set_prob=1/2, zeros_set_len=10, delta=[[1, 1]]) eta2_w = ExpGroup(eta2_base, model="iwmmsb_scvb3", zeros_set_prob=1/2, zeros_set_len=10, delta=[[0.5, 10]]) eta3_w = ExpGroup(eta2_base, model="iwmmsb_scvb3", zeros_set_prob=1/2, zeros_set_len=10, delta=[[0.1, 10]]) eta0_w50 = ExpGroup(eta2_base, model="iwmmsb_scvb3", zeros_set_prob=1/2, zeros_set_len=50, delta=[[10, 0.5]]) eta1_w50 = ExpGroup(eta2_base, model="iwmmsb_scvb3", zeros_set_prob=1/2, zeros_set_len=50, delta=[[1, 1]]) eta2_w50 = ExpGroup(eta2_base, model="iwmmsb_scvb3", zeros_set_prob=1/2, zeros_set_len=50, delta=[[0.5, 10]]) eta2a_w = ExpGroup(eta2_base, model="iwmmsb_scvb3_auto", zeros_set_prob=1/2, zeros_set_len=10, delta='auto', _model="ml.iwmmsb_scvb3") eta2a_w10 = eta2a_w eta2a_w50 = ExpGroup(eta2_base, model="iwmmsb_scvb3_auto", zeros_set_prob=1/2, zeros_set_len=50, delta='auto', _model="ml.iwmmsb_scvb3") eta4_full = ExpGroup([eta2_b50, eta2_w50, eta2a_w50]) # weighte are squared roc_visu_sbm = ExpGroup(sbm_base, corpus=net_w, testset_ratio=20, model=['sbm_gt', 'wsbm_gt'], _refdir='roc5') roc_visu_sbm_full = ExpGroup(sbm_base, corpus=net_w, testset_ratio=20, model=[ 'rescal_als', 'sbm_gt', 'wsbm_gt'], _refdir='roc5') roc_visu_full = ExpGroup([eta4_full, roc_visu_sbm_full]) roc_visu_final10 = ExpGroup([eta2_b, eta2_w, eta2a_w, roc_visu_sbm]) roc_visu_final50 = ExpGroup([eta2_b50, eta2_w50, eta2a_w50, roc_visu_sbm]) roc_visu_final = roc_visu_final50 roc_visu_final2 = ExpGroup([eta2_b50, eta2_w50, eta2a_w50], _refdir="roc5v") roc_visu_final2 = ExpGroup([roc_visu_final2, roc_visu_sbm]) roc_visu_final2_full = ExpGroup([roc_visu_final2, roc_visu_sbm_full]) roc_visu_final3 = ExpGroup([eta2_b50, eta1_w50, eta2a_w50], _refdir="roc5v") roc_visu_final3 = ExpGroup([roc_visu_final3, roc_visu_sbm]) online_roc = ExpGroup(roc_visu_final3, training_ratio=[1, 5, 10, 20, 30, 50, 100], _refdir='online1w', corpus=net_final, _seed='corpus', testset_ratio=20, _format='{corpus}_{model}_{N}_{K}_{hyper}_{h**o}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}_{delta}_{zeros_set_len}_{zeros_set_prob}--{training_ratio}', ) online_roc_ = ExpGroup([eta2_b50, eta2a_w50, roc_visu_sbm], training_ratio=[1, 5, 10, 20, 30, 50, 100], _refdir='online1w', corpus=net_final, _seed='corpus', testset_ratio=20, _format='{corpus}_{model}_{N}_{K}_{hyper}_{h**o}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}_{delta}_{zeros_set_len}_{zeros_set_prob}--{training_ratio}', ) online_roc_sbm = ExpGroup(roc_visu_sbm, training_ratio=[1, 5, 10, 20, 30, 50, 100], _refdir='online1w', corpus=net_final, _seed='corpus', testset_ratio=20, _format='{corpus}_{model}_{N}_{K}_{hyper}_{h**o}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}_{delta}_{zeros_set_len}_{zeros_set_prob}--{training_ratio}', ) online_roc_mmsb = ExpGroup([eta2_b50, eta1_w50, eta2a_w50], training_ratio=[1, 5, 10, 20, 30, 50, 100], _refdir='online1w', corpus=net_final, _seed='corpus', testset_ratio=20, _format='{corpus}_{model}_{N}_{K}_{hyper}_{h**o}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}_{delta}_{zeros_set_len}_{zeros_set_prob}--{training_ratio}', ) online_roc_w = ExpGroup([eta1_w50, eta2a_w50, wsbm_base], training_ratio=[1, 5, 10, 20, 30, 50, 100], _refdir='online1w', corpus=net_final, _seed='corpus', testset_ratio=20, _format='{corpus}_{model}_{N}_{K}_{hyper}_{h**o}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}_{delta}_{zeros_set_len}_{zeros_set_prob}--{training_ratio}', ) online_roc_wm = ExpGroup([eta1_w50, eta2a_w50], training_ratio=[1, 5, 10, 20, 30, 50, 100], _refdir='online1w', corpus=net_final, _seed='corpus', testset_ratio=20, _format='{corpus}_{model}_{N}_{K}_{hyper}_{h**o}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}_{delta}_{zeros_set_len}_{zeros_set_prob}--{training_ratio}', ) online_roc_wsbm = ExpGroup([wsbm_base], training_ratio=[1, 5, 10, 20, 30, 50, 100], _refdir='online1w', corpus=net_final, _seed='corpus', testset_ratio=20, _format='{corpus}_{model}_{N}_{K}_{hyper}_{h**o}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}_{delta}_{zeros_set_len}_{zeros_set_prob}--{training_ratio}', ) roc_w = ExpGroup([eta0_w, eta1_w, eta2_w, eta0_w50, eta1_w50, eta2_w50]) # squared weight roc_b = ExpGroup(eta2_base, model="immsb_scvb3", zeros_set_prob=1/2, zeros_set_len=[10, 50], delta='auto') conv_w = ExpGroup([eta0_w50, eta1_w50, eta2_w50, eta2a_w50], corpus=['astro-ph', 'enron', 'munmun_digg_reply']) param1 = ExpGroup(eta2a_w50, c0=[0.5, 1, 10, 100], r0=[0.1, 0.5, 1]) gap = ExpGroup([param1], _refdir='gap_hyper', testset_ratio=20, corpus=net_w, ce=[100], eps=[1e-6], _format='{corpus}_{model}_{N}_{K}_{hyper}_{h**o}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}_{delta}_{zeros_set_len}_{zeros_set_prob}-{c0}-{r0}-{ce}-{eps}', ) gap_visu = ExpGroup([eta2a_w50], _refdir='gap_hyper', testset_ratio=20, corpus=net_w, ce=[1, 10, 100], eps=[1e-5, 1e-6, 1e-7], c0=10, r0=1, _format='{corpus}_{model}_{N}_{K}_{hyper}_{h**o}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}_{delta}_{zeros_set_len}_{zeros_set_prob}-{c0}-{r0}-{ce}-{eps}', )
class Netw2(ExpDesign): data_net_all = Corpus([ 'manufacturing', 'fb_uc', 'blogs', 'emaileu', 'propro', 'euroroad', 'generator7', 'generator12', 'generator10', 'generator4' ]) net_all = data_net_all + Corpus(['clique6', 'BA']) # compare perplexity and rox curve from those baseline. compare_scvb = ExpTensor( corpus=['clique6', 'BA'], model=['immsb_cgs', 'ilfm_cgs', 'rescal', 'immsb_cvb'], N=200, K=6, iterations=30, hyper='auto', testset_ratio=20, h**o=0, mask='unbalanced', _data_type='networks', _refdir='debug_scvb', _format= '{corpus}_{model}_{N}_{K}_{iterations}_{hyper}_{h**o}_{mask}_{testset_ratio}', _csv_typo= '_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var' ) compare_scvb_m = ExpGroup(compare_scvb, model=['immsb_cgs', 'immsb_cvb']) cvb = ExpGroup(compare_scvb, model='immsb_cvb') scvb = ExpTensor( corpus=['BA'], model='immsb_scvb', N=200, chunk='adaptative_1', K=6, iterations=3, hyper='auto', testset_ratio=20, #chi_a = 1, #tau_a = 42, kappa_a=0.75, #chi_b = 42, #tau_b = 300, #kappa_b = 0.9, h**o=0, mask='unbalanced', _data_type='networks', _refdir='debug_scvb', _format= '{corpus}_{model}_{N}_{K}_{iterations}_{hyper}_{h**o}_{mask}_{testset_ratio}_{chunk}', _csv_typo= '_iteration time_it _entropy _entropy_t _K _chi_a _tau_a _kappa_a _chi_b _tau_b _kappa_b _elbo _roc' ) scvb_t = ExpGroup(scvb, _refdir='debug_') scvb_chi = ExpGroup( scvb, chi_a=1, tau_a=42, kappa_a=[0.6, 0.7, 0.9], chi_b=42, tau_b=300, kappa_b=[0.6, 0.7, 0.9], _format= '{corpus}_{model}_{N}_{K}_{iterations}_{hyper}_{h**o}_{mask}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}' ) scvb_chi2 = ExpGroup( scvb, chi_a=[10], tau_a=[100], kappa_a=[0.6], chi_b=[10], tau_b=[500], kappa_b=[0.9], _format= '{corpus}_{model}_{N}_{K}_{iterations}_{hyper}_{h**o}_{mask}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}' ) scvb_chi_2 = ExpGroup( scvb, chi_a=[1, 10], tau_a=[42, 100, 500], kappa_a=[0.6], chi_b=[1, 10], tau_b=[42, 100, 500], kappa_b=[0.6, 0.7, 0.9], _format= '{corpus}_{model}_{N}_{K}_{iterations}_{hyper}_{h**o}_{mask}_{testset_ratio}_{chunk}_{chi_a}-{tau_a}-{kappa_a}_{chi_b}-{tau_b}-{kappa_b}' ) # # # # * iter1 : don"t set masked, and gamma is not symmetric # # * iter2 : don"t set masked, and gamma is symmetric # # # scvb1_chi_a = ExpTensor( corpus=['blogs', 'manufacturing', 'generator7', 'generator10'], model='immsb_scvb', N='all', chunk='adaptative_1', K=6, iterations=1, hyper='auto', testset_ratio=20, chi_a=[0.5, 1, 2, 10], tau_a=[0.5, 1, 2, 16, 64, 256, 1024], kappa_a=[0.51, 0.45, 1], #h**o = 0, #mask = 'unbalanced', _data_type='networks', _refdir='debug_scvb_chia_i1', _format= '{corpus}_{model}_{N}_{K}_{iterations}_{hyper}_{h**o}_{mask}_{testset_ratio}_{chunk}-{_name}-{_id}', _csv_typo= '_iteration time_it _entropy _entropy_t _K _chi_a _tau_a _kappa_a _chi_b _tau_b _kappa_b' ) scvb1_chi_b = ExpTensor( corpus=['blogs', 'manufacturing', 'generator7', 'generator10'], model='immsb_scvb', N='all', chunk='adaptative_1', K=6, iterations=1, hyper='auto', testset_ratio=20, chi_b=[0.5, 1, 2, 10], tau_b=[0.5, 1, 2, 16, 64, 256, 1024], kappa_b=[0.51, 0.45, 1], #h**o = 0, #mask = 'unbalanced', _data_type='networks', _refdir='debug_scvb_chib_i1', _format= '{corpus}_{model}_{N}_{K}_{iterations}_{hyper}_{h**o}_{mask}_{testset_ratio}_{chunk}-{_name}-{_id}', _csv_typo= '_iteration time_it _entropy _entropy_t _K _chi_a _tau_a _kappa_a _chi_b _tau_b _kappa_b' ) # Noel expe noel = ExpGroup([scvb, compare_scvb], N='all', corpus=data_net_all, mask=['balanced', 'unbalanced'], _refdir='noel') noel_cvb = ExpGroup(cvb, N='all', corpus=data_net_all, mask=['balanced', 'unbalanced'], _refdir='noel') noel_scvb = ExpGroup(scvb, N='all', corpus=data_net_all, mask=['balanced', 'unbalanced'], _refdir='noel') noel_scvb_ada = ExpGroup(noel_scvb, chunk=[ 'adaptative_0.1', 'adaptative_0.5', 'adaptative_1', 'adaptative_10' ]) noel_mmsb = ExpGroup([scvb, compare_scvb_m], N='all', corpus=data_net_all, mask=['balanced', 'unbalanced'], _refdir='noel') compare_scvb2 = ExpGroup(compare_scvb, N='all', corpus=data_net_all, iterations=100, mask=['balanced', 'unbalanced'], _refdir='noel2') noel3 = ExpGroup(scvb_chi2, N='all', chunk=['adaptative_0.1', 'adaptative_1'], corpus=data_net_all, mask=['unbalanced'], _refdir='noel3') # cvb debug pd = ExpGroup(compare_scvb, iterations=150, model='immsb_cvb', _repeat='debug_cvb', N='all', corpus=data_net_all, mask=['unbalanced'], _refdir='noel2') pd2n = ExpGroup(compare_scvb, iterations=150, model='immsb_cvb', _repeat='debug_cvb_2n', N='all', corpus=data_net_all, mask=['unbalanced'], _refdir='noel2')
class Aistats19(ExpDesign): _alias = { 'ml.iwmmsb_scvb3': 'WMMSB-bg', 'ml.immsb_scvb3': 'MMSB', 'ml.sbm_gt': 'SBM', 'ml.wsbm_gt': 'WSBM', 'ml.sbm_ai': 'SBM-ai', 'ml.wsbm_ai_n': 'WSBM-ai-n', 'ml.wsbm_ai_p': 'WSBM-ai-p', 'ml.epm': 'EPM', 'link-dynamic-simplewiki': 'wiki-link', 'munmun_digg_reply': 'digg-reply', 'slashdot-threads': 'slashdot', } net_final = Corpus([ 'fb_uc', #'manufacturing', 'hep-th', 'link-dynamic-simplewiki', 'enron', 'slashdot-threads', 'prosper-loans', 'munmun_digg_reply', 'moreno_names', 'astro-ph' ]) base_graph = dict( corpus='manufacturing', _seed='corpus', testset_ratio=20, validset_ratio=10, training_ratio=100, # Model global param N='all', K=10, kernel='none', # plotting fig_legend=4, legend_size=7, #ticks_size = 20, title_size=18, fig_xaxis=('time_it', 'time'), fig_yaxis=dict(wsim='MSE'), driver='gt', # graph-tool driver _write=True, _data_type='networks', _refdir='aistat_wmmsb2', _format="{model}-{kernel}-{K}_{corpus}-{training_ratio}", _measures=[ 'time_it', 'entropy@data=valid', 'roc@data=test', #'roc@data=test&measure_freq=10', 'pr@data=test&measure_freq=20', 'wsim@data=test&measure_freq=10', 'roc2@data=test&measure_freq=10', 'wsim2@data=test&measure_freq=10', ], ) sbm_peixoto = ExpTensor(base_graph, model='sbm_gt') wsbm_peixoto = ExpTensor(base_graph, model='wsbm_gt') rescal_als = ExpTensor(base_graph, model='rescal_als') wsbm = ExpTensor( base_graph, model='sbm_aicher', kernel=['bernoulli', 'normal', 'poisson'], #kernel = 'normal', mu_tol=0.001, tau_tol=0.001, max_iter=100, ) wsbm_1 = ExpTensor( wsbm, model='sbm_ai', _model='ml.sbm_aicher', #model='ml.sbm_aicher', kernel='bernoulli', ) wsbm_2 = ExpTensor( wsbm, model='wsbm_ai_n', _model='ml.sbm_aicher', #model='ml.sbm_aicher', kernel='normal', ) wsbm_3 = ExpTensor( wsbm, model='wsbm_ai_p', _model='ml.sbm_aicher', #, model='ml.sbm_aicher', kernel='poisson', ) wsbm_t = ExpGroup([wsbm_1, wsbm_2, wsbm_3]) wmmsb = ExpTensor( base_graph, model="iwmmsb_scvb3", chunk='stratify', delta='auto', sampling_coverage=0.5, zeros_set_prob=1 / 2, zeros_set_len=50, chi_a=1, tau_a=1024, kappa_a=0.5, chi_b=1, tau_b=1024, kappa_b=0.5, tol=0.001, #fig_xaxis = ('_observed_pt', 'visited edges'), ) mmsb = ExpTensor(wmmsb, model="immsb_scvb3") epm = ExpTensor(wmmsb, model="epm") aistats_design_wmmsb = ExpGroup( [wmmsb], corpus=net_final, training_ratio=[1, 5, 10, 20, 30, 50, 100], # subsample the edges _refdir="ai19_1", ) aistats_design_mmsb = ExpGroup( [mmsb], corpus=net_final, training_ratio=[1, 5, 10, 20, 30, 50, 100], # subsample the edges _refdir="ai19_1", ) aistats_design_mm = ExpGroup([aistats_design_wmmsb, aistats_design_mmsb]) aistats_design_wsbm = ExpGroup( [wsbm], corpus=net_final, training_ratio=[1, 5, 10, 20, 30, 50, 100], # subsample the edges _refdir="ai19_1", ) aistats_design_peixoto = ExpGroup( [sbm_peixoto, wsbm_peixoto], corpus=net_final, training_ratio=[1, 5, 10, 20, 30, 50, 100], # subsample the edges _refdir="ai19_1", ) aistats_design_final = ExpGroup( [wmmsb, mmsb, wsbm_t, sbm_peixoto, wsbm_peixoto], corpus=net_final, training_ratio=[1, 5, 10, 20, 30, 50, 100], # subsample the edges _refdir="ai19_1", ) aistats_design_final_2 = ExpGroup( [wmmsb, mmsb, wsbm_t, sbm_peixoto, wsbm_peixoto, epm], corpus=net_final, K=[20, 30, 50], training_ratio=[100], # subsample the edges _refdir="ai19_1", ) # # # Post expe Fix # # aistats_compute_zcp_w_tmp = ExpGroup( [wmmsb], corpus=net_final, K=[20, 30, 50], training_ratio=[100], # subsample the edges _refdir="ai19_1", ) aistats_compute_zcp_a_tmp = ExpGroup( [wsbm_3], corpus=net_final, K=[20, 30, 50], training_ratio=[100], # subsample the edges _refdir="ai19_1", ) aistats_compute_wsim4 = ExpGroup( [wsbm_t, sbm_peixoto, wsbm_peixoto], corpus=net_final, K=[10], training_ratio=[100], # subsample the edges _refdir="ai19_1", ) aistats_doh = ExpGroup( [epm], corpus=net_final, K=[20], training_ratio=[100], # subsample the edges _refdir="ai19_1", )