Example #1
0
    def __init__(self,
                 nn=pmg_le.CrystalNN(),
                 bbv=0,
                 no_oxi=False,
                 approx_bonds=False,
                 token=' - ',
                 allowed_bonds=None):
        self.nn = nn
        self.bbv = bbv
        self.no_oxi = no_oxi
        self.approx_bonds = approx_bonds

        if " " not in token:
            raise ValueError("A space must be present in the token.")

        if any([str.isalnum(i) for i in token]):
            raise ValueError("The token cannot have any alphanumeric "
                             "characters.")

        token_els = token.split(" ")
        if len(token_els) != 3 and token != " ":
            raise ValueError("The token must either be a space or be padded by"
                             "single spaces with no spaces in between.")

        self.token = token

        if allowed_bonds is None:
            self.allowed_bonds = allowed_bonds
            self.fitted_bonds_ = allowed_bonds
        else:
            self.allowed_bonds = self._sanitize_bonds(allowed_bonds)
            self.fitted_bonds_ = self._sanitize_bonds(allowed_bonds)
Example #2
0
    def __init__(self, nn_method=pmg_le.CrystalNN()):
        """

        Args:
            **nn_method: The nearest neighbor method used to determine atomic
                connectivity.
        """
        self.nn_method = nn_method
def get_structure_coord_df(atoms):
    atoms_i = atoms
    structure = AseAtomsAdaptor.get_structure(atoms_i)

    # CrysNN = local_env.VoronoiNN(
    #     tol=0,
    #     targets=None,
    #     cutoff=13.0,
    #     allow_pathological=False,
    #     weight='solid_angle',
    #     extra_nn_info=True,
    #     compute_adj_neighbors=True,
    #     )

    CrysNN = local_env.CrystalNN(weighted_cn=False,
                                 cation_anion=False,
                                 distance_cutoffs=(0.01, 0.4),
                                 x_diff_weight=3.0,
                                 porous_adjustment=True,
                                 search_cutoff=7,
                                 fingerprint_length=None)

    coord_data_dict = dict()
    data_master = []
    for i_cnt, site_i in enumerate(structure.sites):
        site_elem_i = site_i.species_string

        data_dict_i = dict()
        data_dict_i["element"] = site_elem_i
        data_dict_i["structure_index"] = i_cnt

        nn_info_i = CrysNN.get_nn_info(structure, i_cnt)
        data_dict_i["nn_info"] = nn_info_i

        neighbor_list = []
        for neighbor_j in nn_info_i:
            neigh_elem_j = neighbor_j["site"].species_string
            neighbor_list.append(neigh_elem_j)

        neighbor_count_dict = dict()
        for i in neighbor_list:
            neighbor_count_dict[i] = neighbor_count_dict.get(i, 0) + 1

        data_dict_i["neighbor_count"] = neighbor_count_dict
        data_master.append(data_dict_i)

    df_struct_coord_i = pd.DataFrame(data_master)

    return (df_struct_coord_i)
Example #4
0
 def __init__(self,
              root_dir,
              max_num_nbr=12,
              radius=8,
              nn_method=None,
              dmin=0,
              step=0.2,
              disable_save_torch=False,
              random_seed=123):
     self.root_dir = root_dir
     self.max_num_nbr, self.radius, self.nn_method = max_num_nbr, radius, nn_method
     self.disable_save_torch = disable_save_torch
     assert os.path.exists(root_dir), 'root_dir does not exist!'
     id_prop_file = os.path.join(self.root_dir, 'id_prop.csv')
     assert os.path.exists(id_prop_file), 'id_prop.csv does not exist!'
     with open(id_prop_file) as f:
         reader = csv.reader(f)
         self.id_prop_data = [[
             x.strip().replace('\ufeff', '') for x in row
         ] for row in reader]
     random.seed(random_seed)
     random.shuffle(self.id_prop_data)
     atom_init_file = os.path.join(self.root_dir, 'atom_init.json')
     assert os.path.exists(atom_init_file), 'atom_init.json does not exist!'
     self.ari = AtomCustomJSONInitializer(atom_init_file)
     self.gdf = GaussianDistance(dmin=dmin, dmax=self.radius, step=step)
     self.torch_data_path = os.path.join(self.root_dir, 'cifdata')
     if self.nn_method:
         if self.nn_method.lower() == 'minimumvirenn':
             self.nn_object = local_env.MinimumVIRENN()
         elif self.nn_method.lower() == 'voronoinn':
             self.nn_object = local_env.VoronoiNN()
         elif self.nn_method.lower() == 'jmolnn':
             self.nn_object = local_env.JmolNN()
         elif self.nn_method.lower() == 'minimumdistancenn':
             self.nn_object = local_env.MinimumDistanceNN()
         elif self.nn_method.lower() == 'minimumokeeffenn':
             self.nn_object = local_env.MinimumOKeeffeNN()
         elif self.nn_method.lower() == 'brunnernn_real':
             self.nn_object = local_env.BrunnerNN_real()
         elif self.nn_method.lower() == 'brunnernn_reciprocal':
             self.nn_object = local_env.BrunnerNN_reciprocal()
         elif self.nn_method.lower() == 'brunnernn_relative':
             self.nn_object = local_env.BrunnerNN_relative()
         elif self.nn_method.lower() == 'econnn':
             self.nn_object = local_env.EconNN()
         elif self.nn_method.lower() == 'cutoffdictnn':
             #requires a cutoff dictionary located in cgcnn/cut_off_dict.txt
             self.nn_object = local_env.CutOffDictNN(
                 cut_off_dict='cut_off_dict.txt')
         elif self.nn_method.lower() == 'critic2nn':
             self.nn_object = local_env.Critic2NN()
         elif self.nn_method.lower() == 'openbabelnn':
             self.nn_object = local_env.OpenBabelNN()
         elif self.nn_method.lower() == 'covalentbondnn':
             self.nn_object = local_env.CovalentBondNN()
         elif self.nn_method.lower() == 'crystalnn':
             self.nn_object = local_env.CrystalNN()
         else:
             raise ValueError('Invalid NN algorithm specified')
     else:
         self.nn_object = None
atoms = row_i["atoms"]
atoms

# view_in_vesta(atoms)

# +
from pymatgen.analysis import local_env
from pymatgen.io.ase import AseAtomsAdaptor

structure = AseAtomsAdaptor.get_structure(atoms)

CrysNN = local_env.CrystalNN(weighted_cn=False,
                             cation_anion=False,
                             distance_cutoffs=(0.5, 1),
                             x_diff_weight=3.0,
                             porous_adjustment=True,
                             search_cutoff=7,
                             fingerprint_length=None)

coord_data_dict = {
    # "": ,
}

data_master = []
for i_cnt, site_i in enumerate(structure.sites):
    site_elem_i = site_i.species_string

    data_dict_i = dict()

    data_dict_i["element"] = site_elem_i