Example #1
0
def get_profile_data(exp_x, result, excel=False):
    # This func will take the result of experimental fit, clear the background, print an excel file with clean data and return clean intensity
    center = []
    amplitude = []
    fraction = []
    fwhm = []
    for name, value in zip(list(result.params.valuesdict().keys()),
                           list(result.params.valuesdict().values())):
        if 'center' in name:
            center.append(value)
        if 'amplitude' in name:
            amplitude.append(value)
        if 'fraction' in name:
            fraction.append(value)
        if 'fwhm' in name:
            fwhm.append(value)
    clean_intensity = []
    for two_theta in exp_x:
        intensity = 0
        for c, cent in enumerate(center):
            intensity += pseudo_voigt(two_theta, cent, fwhm[c], fraction[c],
                                      amplitude[c])
        clean_intensity.append(intensity)
    spec = Spectrum(exp_x, clean_intensity)
    spec.normalize(mode='max', value=100)
    if excel == True:
        dict_intense = {'two_theta': spec.x, 'intensity': spec.y}
        dict_intense = pd.DataFrame(dict_intense)
        dict_intense.to_excel('data_400_exp_without_bck.xlsx')
    return fwhm, center, amplitude, fraction, spec.y
Example #2
0
class SpectrumTest(PymatgenTest):
    def setUp(self):
        self.spec1 = Spectrum(np.arange(0, 10, 0.1), np.random.randn(100))
        self.spec2 = Spectrum(np.arange(0, 10, 0.1), np.random.randn(100))

        self.multi_spec1 = Spectrum(np.arange(0, 10, 0.1),
                                    np.random.randn(100, 2))
        self.multi_spec2 = Spectrum(np.arange(0, 10, 0.1),
                                    np.random.randn(100, 2))

    def test_normalize(self):
        self.spec1.normalize(mode="max")
        self.assertAlmostEqual(np.max(self.spec1.y), 1)
        self.spec1.normalize(mode="sum")
        self.assertAlmostEqual(np.sum(self.spec1.y), 1)

        self.multi_spec1.normalize(mode="sum")
        self.assertAlmostEqual(np.sum(self.multi_spec1.y[:, 0]), 1)
        self.assertAlmostEqual(np.sum(self.multi_spec1.y[:, 1]), 1)

        # XRD style mode.
        self.spec1.normalize(mode="max", value=100)
        self.assertAlmostEqual(np.max(self.spec1.y), 100)

    def test_operators(self):
        scaled_spect = 3 * self.spec1 + self.spec2
        self.assertTrue(
            np.allclose(scaled_spect.y, 3 * self.spec1.y + self.spec2.y))
        self.assertAlmostEqual(
            self.spec1.get_interpolated_value(0.05),
            (self.spec1.y[0] + self.spec1.y[1]) / 2,
        )

        scaled_spect = self.spec1 - self.spec2
        self.assertTrue(
            np.allclose(scaled_spect.y, self.spec1.y - self.spec2.y))

        scaled_spect = self.spec1 / 3
        self.assertTrue(np.allclose(scaled_spect.y, self.spec1.y / 3))

        scaled_spect = 3 * self.multi_spec1 + self.multi_spec2
        self.assertTrue(
            np.allclose(scaled_spect.y,
                        3 * self.multi_spec1.y + self.multi_spec2.y))
        self.assertArrayAlmostEqual(
            self.multi_spec1.get_interpolated_value(0.05),
            (self.multi_spec1.y[0, :] + self.multi_spec1.y[1, :]) / 2,
        )

    def test_smear(self):
        y = np.array(self.spec1.y)
        self.spec1.smear(0.2)
        self.assertFalse(np.allclose(y, self.spec1.y))
        self.assertAlmostEqual(sum(y), sum(self.spec1.y))

        y = np.array(self.multi_spec1.y)
        self.multi_spec1.smear(0.2)
        self.assertFalse(np.allclose(y, self.multi_spec1.y))
        self.assertArrayAlmostEqual(np.sum(y, axis=0),
                                    np.sum(self.multi_spec1.y, axis=0))

    def test_str(self):
        # Just make sure that these methods work.
        self.assertIsNotNone(str(self.spec1))
        self.assertIsNotNone(str(self.multi_spec1))

    def test_copy(self):
        spec1copy = self.spec1.copy()
        spec1copy.y[0] = spec1copy.y[0] + 1
        self.assertNotEqual(spec1copy.y[0], self.spec1.y[0])
        self.assertEqual(spec1copy.y[1], self.spec1.y[1])
Example #3
0
    uvw = [0.00556691, -0.00089748, 0.00282308]  #D5000
if 'GADDS' in name_of_outfileinput:
    uvw = [0.04586492, 0.0146818, 0.01856546]  #GADDS

#-*-*-*-*-*-*-*-*-*-*-*-*-INPUT-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

#Read from out file
two_theta, intensity = functions.read_out_file(name_of_outfileinput)
index = [c for c, i in enumerate(two_theta)
         if i > 34 and i < 100]  # this bump is coming from sample holder.
intensity = [i for c, i in enumerate(intensity) if c in index]
two_theta = [i for c, i in enumerate(two_theta) if c in index]

#Normalize out file. Max intensity will be 100
spec = Spectrum(two_theta, intensity)
spec.normalize(mode='max', value=100)

#This will fit on the scatter and return the lmfit result
result = functions.fit_experimental_data(spec.x,
                                         spec.y,
                                         expected_peaks,
                                         deg_of_bck_poly=deg_of_bck_poly)
import sys

sys.exit()
# Show the fit
f, (a0, a1) = plt.subplots(2, 1, gridspec_kw={'height_ratios': [3, 1]})
f.set_size_inches(8, 16)
a0.scatter(spec.x, spec.y, s=8)
a0.plot(spec.x, result.best_fit, 'r-', linewidth=1.4)
Example #4
0
def plot_profiles_amplitudes(*args, structure=None, labellist=None):
    ''' Attributes:
        args      > list of different measurements in pandas form
        structure > pymatgen structure
        Returns:
        plot of calculated versus measurement patterns
    '''
    calc = XRDCalculator(wavelength="CuKa1", typ='dft')
    calc2 = XRDCalculator(wavelength="CuKa1", typ='ict')
    XRD = calc.get_pattern(structure, two_theta_range=(15, 105), scaled=True)
    XRD2 = calc2.get_pattern(structure, two_theta_range=(15, 105), scaled=True)

    ##    for i in range(0,len(XRD.hkls)):
    ##        print(XRD.hkls[i])
    ##        print(XRD.y[i])
    fig, ax = plt.subplots()
    ax.set_xlim([9, 105])
    ax.set_ylim([0, 130])

    ax.scatter(XRD.x,
               np.multiply(XRD.y, 1.0),
               marker='X',
               color='b',
               label='Ab initio form factors')
    ax.scatter(XRD2.x,
               np.multiply(XRD2.y, 1.0),
               marker='X',
               color='r',
               label='Ict form factors')
    for i, j in zip(XRD.x, np.multiply(XRD.y, 1.0)):
        ax.plot([i, i], [0, j], linestyle='--', color='b', alpha=0.5)
    for i, j in zip(XRD2.x, np.multiply(XRD2.y, 1.0)):
        ax.plot([i, i], [0, j], linestyle='--', color='b', alpha=0.5)
    for c, i in enumerate(args):
        if c == 0:
            color = 'k'
            x = i['peak_two_thetas']
            y = i['amplitude']
            spec = Spectrum(x, y)
            spec.normalize(mode='max', value=90)
            ax.scatter(spec.x,
                       spec.y,
                       marker='X',
                       color=color,
                       label=labellist[c])
        if c == 1:
            color = 'r'
            x = i['peak_two_thetas']
            y = i['amplitude']
            spec = Spectrum(x, y)
            spec.normalize(mode='max', value=100)
            ax.scatter(spec.x,
                       spec.y,
                       marker='X',
                       color=color,
                       label=labellist[c])
        if c == 2:
            color = 'b'
            x = i['peak_two_thetas']
            y = i['amplitude']
            spec = Spectrum(x, y)
            spec.normalize(mode='max', value=100)
            ax.scatter(spec.x,
                       spec.y,
                       marker='X',
                       color=color,
                       label=labellist[c])

        for i, j in zip(spec.x, spec.y):
            ax.plot([i, i], [0, j], linestyle='--', color=color, alpha=0.5)

    if labellist != None:
        plt.legend()
        plt.grid()

    plt.xlabel('2\u03B8')
    plt.ylabel('Intensity (a.u.)')
    plt.show()
Example #5
0
class SpectrumTest(PymatgenTest):
    def setUp(self):
        self.spec1 = Spectrum(np.arange(0, 10, 0.1), np.random.randn(100))
        self.spec2 = Spectrum(np.arange(0, 10, 0.1), np.random.randn(100))

        self.multi_spec1 = Spectrum(np.arange(0, 10, 0.1), np.random.randn(100, 2))
        self.multi_spec2 = Spectrum(np.arange(0, 10, 0.1), np.random.randn(100, 2))

    def test_normalize(self):
        self.spec1.normalize(mode="max")
        self.assertAlmostEqual(np.max(self.spec1.y), 1)
        self.spec1.normalize(mode="sum")
        self.assertAlmostEqual(np.sum(self.spec1.y), 1)

        self.multi_spec1.normalize(mode="sum")
        self.assertAlmostEqual(np.sum(self.multi_spec1.y[:, 0]), 1)
        self.assertAlmostEqual(np.sum(self.multi_spec1.y[:, 1]), 1)

        # XRD style mode.
        self.spec1.normalize(mode="max", value=100)
        self.assertAlmostEqual(np.max(self.spec1.y), 100)

    def test_operators(self):
        scaled_spect = 3 * self.spec1 + self.spec2
        self.assertTrue(np.allclose(scaled_spect.y, 3 * self.spec1.y + self.spec2.y))
        self.assertAlmostEqual(
            self.spec1.get_interpolated_value(0.05),
            (self.spec1.y[0] + self.spec1.y[1]) / 2,
        )

        scaled_spect = self.spec1 - self.spec2
        self.assertTrue(np.allclose(scaled_spect.y, self.spec1.y - self.spec2.y))

        scaled_spect = self.spec1 / 3
        self.assertTrue(np.allclose(scaled_spect.y, self.spec1.y / 3))

        scaled_spect = 3 * self.multi_spec1 + self.multi_spec2
        self.assertTrue(np.allclose(scaled_spect.y, 3 * self.multi_spec1.y + self.multi_spec2.y))
        self.assertArrayAlmostEqual(
            self.multi_spec1.get_interpolated_value(0.05),
            (self.multi_spec1.y[0, :] + self.multi_spec1.y[1, :]) / 2,
        )

    def test_smear(self):
        y = np.zeros(100)
        y[25] = 1
        y[50] = 1
        y[75] = 1
        spec = Spectrum(np.linspace(-10, 10, 100), y)
        spec.smear(0.3)
        self.assertFalse(np.allclose(y, spec.y))
        self.assertAlmostEqual(sum(y), sum(spec.y))

        # Test direct callable use of smearing.
        spec2 = Spectrum(np.linspace(-10, 10, 100), y)
        spec2.smear(0, func=lambda x: stats.norm.pdf(x, scale=0.3))
        self.assertTrue(np.allclose(spec.y, spec2.y))

        spec = Spectrum(np.linspace(-10, 10, 100), y)
        spec.smear(0.3, func="lorentzian")
        self.assertFalse(np.allclose(y, spec.y))
        self.assertAlmostEqual(sum(y), sum(spec.y))

        y = np.array(self.multi_spec1.y)
        self.multi_spec1.smear(0.2)
        self.assertFalse(np.allclose(y, self.multi_spec1.y))
        self.assertArrayAlmostEqual(np.sum(y, axis=0), np.sum(self.multi_spec1.y, axis=0))

    def test_str(self):
        # Just make sure that these methods work.
        self.assertIsNotNone(str(self.spec1))
        self.assertIsNotNone(str(self.multi_spec1))

    def test_copy(self):
        spec1copy = self.spec1.copy()
        spec1copy.y[0] = spec1copy.y[0] + 1
        self.assertNotEqual(spec1copy.y[0], self.spec1.y[0])
        self.assertEqual(spec1copy.y[1], self.spec1.y[1])
Example #6
0
# Reading out files
two_theta_D5000, intensity_D5000 = functions.read_out_file(
    'outFiles//D5000//1mm//Al2O3_2h30min_stripped.out')
two_theta_GADDS, intensity_GADDS = functions.read_out_file(
    'outFiles//GADDS//alumina_15min.out')

# In order make a better fit some intensity values are changed to 0. After that intensities are normalized that maximum value become 100.
indexes_to_make_zero = []
for c, i in enumerate(two_theta_D5000):
    if 41 < i < 42 or 61 < i < 62 or 73 < i < 88.5 or 0 < i < 25 or 89.5 < i < 94 or (
            intensity_D5000[c] < 0.45):
        indexes_to_make_zero.append(c)
for c in indexes_to_make_zero:
    intensity_D5000[c] = 0
spec_D5000 = Spectrum(two_theta_D5000, intensity_D5000)
spec_D5000.normalize(mode='max', value=100)

#Expected peaks are selected for the fit.
expected_peaks_D5000 = [
    25.6, 35.1, 37.79, 43.4, 52.6, 57.6, 66.56, 68.25, 89.1, 95.34, 101.14
]  #,61.35

#Fit is done on scatter data.
result_D5000 = functions.fit_experimental_data(spec_D5000.x,
                                               spec_D5000.y,
                                               expected_peaks_D5000,
                                               deg_of_bck_poly=0)

# Show the fit
f1, (a0, a1) = plt.subplots(2, 1, gridspec_kw={'height_ratios': [3, 1]})
f1.set_size_inches(8, 16)
Example #7
0
tick_list[0] = 'asdeposited'
two_theta = np.linspace(30, 100, num=1000)
plt.figure(figsize=(14, 10))
plt.gca().yaxis.tick_right()
for c, material in enumerate(material_list):

    measurement = pd.read_excel(
        '..//excelSheets//GADDS_{}.xlsx'.format(material),
        sheet_name='RawSample')
    print(measurement)

    y = np.zeros(len(two_theta))

    for LP in range(0, 6):
        y += pseudo_voigt(two_theta, measurement['peak_two_thetas'][LP],
                          measurement['fwhm'][LP], measurement['fraction'][LP],
                          100)
    spect = Spectrum(two_theta, y)
    spect.normalize(mode="max", value=100)
    plt.plot(spect.x, spect.y + 110 * c, c='k')
    plt.yticks([c * 110 for c in range(len(tick_list))],
               tick_list,
               fontsize=20)

plt.xlabel('2\u03F4 $(^\circ)$')
plt.ylabel('Intensity (a.u.)')
##plt.grid(b=True, which='major', color='#666666', linestyle='-')
##plt.minorticks_on()
##plt.grid(b=True, which='minor', color='k', linestyle='--', alpha = 0.4)
plt.show()
Example #8
0
class SpectrumTest(PymatgenTest):

    def setUp(self):
        self.spec1 = Spectrum(np.arange(0, 10, 0.1), np.random.randn(100))
        self.spec2 = Spectrum(np.arange(0, 10, 0.1), np.random.randn(100))

        self.multi_spec1 = Spectrum(np.arange(0, 10, 0.1),
                                    np.random.randn(100, 2))
        self.multi_spec2 = Spectrum(np.arange(0, 10, 0.1),
                                    np.random.randn(100, 2))

    def test_normalize(self):
        self.spec1.normalize(mode="max")
        self.assertAlmostEqual(np.max(self.spec1.y), 1)
        self.spec1.normalize(mode="sum")
        self.assertAlmostEqual(np.sum(self.spec1.y), 1)

        self.multi_spec1.normalize(mode="sum")
        self.assertAlmostEqual(np.sum(self.multi_spec1.y[:, 0]), 1)
        self.assertAlmostEqual(np.sum(self.multi_spec1.y[:, 1]), 1)

        # XRD style mode.
        self.spec1.normalize(mode="max", value=100)
        self.assertAlmostEqual(np.max(self.spec1.y), 100)

    def test_operators(self):
        scaled_spect = 3 * self.spec1 + self.spec2
        self.assertTrue(np.allclose(scaled_spect.y,
                                    3 * self.spec1.y + self.spec2.y))
        self.assertAlmostEqual(self.spec1.get_interpolated_value(0.05),
                               (self.spec1.y[0] + self.spec1.y[1]) / 2)

        scaled_spect = self.spec1 - self.spec2
        self.assertTrue(np.allclose(scaled_spect.y,
                                    self.spec1.y - self.spec2.y))

        scaled_spect = self.spec1 / 3
        self.assertTrue(np.allclose(scaled_spect.y,
                                    self.spec1.y / 3))

        scaled_spect = 3 * self.multi_spec1 + self.multi_spec2
        self.assertTrue(np.allclose(scaled_spect.y,
                                    3 * self.multi_spec1.y + self.multi_spec2.y))
        self.assertArrayAlmostEqual(
            self.multi_spec1.get_interpolated_value(0.05),
            (self.multi_spec1.y[0, :] + self.multi_spec1.y[1, :]) / 2)

    def test_smear(self):
        y = np.array(self.spec1.y)
        self.spec1.smear(0.2)
        self.assertFalse(np.allclose(y, self.spec1.y))
        self.assertAlmostEqual(sum(y), sum(self.spec1.y))

        y = np.array(self.multi_spec1.y)
        self.multi_spec1.smear(0.2)
        self.assertFalse(np.allclose(y, self.multi_spec1.y))
        self.assertArrayAlmostEqual(np.sum(y, axis=0),
                                    np.sum(self.multi_spec1.y, axis=0))

    def test_str(self):
        # Just make sure that these methods work.
        self.assertIsNotNone(str(self.spec1))
        self.assertIsNotNone(str(self.multi_spec1))

    def test_copy(self):
        spec1copy = self.spec1.copy()
        spec1copy.y[0] = spec1copy.y[0] + 1
        self.assertNotEqual(spec1copy.y[0], self.spec1.y[0])
        self.assertEqual(spec1copy.y[1], self.spec1.y[1])