Example #1
0
 def _build_prior(self, name, X, reparameterize=True, jitter=JITTER_DEFAULT, **kwargs):
     mu = self.mean_func(X)
     cov = stabilize(self.cov_func(X), jitter)
     if reparameterize:
         size = infer_size(X, kwargs.pop("size", None))
         v = pm.StudentT(name + "_rotated_", mu=0.0, sigma=1.0, nu=self.nu, size=size, **kwargs)
         f = pm.Deterministic(name, mu + cholesky(cov).dot(v))
     else:
         f = pm.MvStudentT(name, nu=self.nu, mu=mu, cov=cov, **kwargs)
     return f
Example #2
0
    def time_drug_evaluation(self):
        # fmt: off
        drug = np.array([
            101, 100, 102, 104, 102, 97, 105, 105, 98, 101, 100, 123, 105, 103,
            100, 95, 102, 106, 109, 102, 82, 102, 100, 102, 102, 101, 102, 102,
            103, 103, 97, 97, 103, 101, 97, 104, 96, 103, 124, 101, 101, 100,
            101, 101, 104, 100, 101
        ])
        placebo = np.array([
            99, 101, 100, 101, 102, 100, 97, 101, 104, 101, 102, 102, 100, 105,
            88, 101, 100, 104, 100, 100, 100, 101, 102, 103, 97, 101, 101, 100,
            101, 99, 101, 100, 100, 101, 100, 99, 101, 100, 102, 99, 100, 99
        ])
        # fmt: on

        y = pd.DataFrame({
            "value":
            np.r_[drug, placebo],
            "group":
            np.r_[["drug"] * len(drug), ["placebo"] * len(placebo)],
        })
        y_mean = y.value.mean()
        y_std = y.value.std() * 2

        sigma_low = 1
        sigma_high = 10
        with pm.Model():
            group1_mean = pm.Normal("group1_mean", y_mean, sd=y_std)
            group2_mean = pm.Normal("group2_mean", y_mean, sd=y_std)
            group1_std = pm.Uniform("group1_std",
                                    lower=sigma_low,
                                    upper=sigma_high)
            group2_std = pm.Uniform("group2_std",
                                    lower=sigma_low,
                                    upper=sigma_high)
            lambda_1 = group1_std**-2
            lambda_2 = group2_std**-2

            nu = pm.Exponential("ν_minus_one", 1 / 29.0) + 1

            pm.StudentT("drug",
                        nu=nu,
                        mu=group1_mean,
                        lam=lambda_1,
                        observed=drug)
            pm.StudentT("placebo",
                        nu=nu,
                        mu=group2_mean,
                        lam=lambda_2,
                        observed=placebo)
            diff_of_means = pm.Deterministic("difference of means",
                                             group1_mean - group2_mean)
            pm.Deterministic("difference of stds", group1_std - group2_std)
            pm.Deterministic(
                "effect size", diff_of_means / np.sqrt(
                    (group1_std**2 + group2_std**2) / 2))
            pm.sample(draws=20000,
                      cores=4,
                      chains=4,
                      progressbar=False,
                      compute_convergence_checks=False)
Example #3
0
 def make_model(cls):
     with pm.Model() as model:
         a = pm.StudentT("a", nu=4, mu=0, sigma=1)
     return model