Example #1
0
 def __init__(self, vars, out_vars, shared, blocked=True):
     self.vars = vars
     self.ordering = ArrayOrdering(vars)
     self.lordering = utility.ListArrayOrdering(out_vars, intype='tensor')
     lpoint = [var.tag.test_value for var in out_vars]
     self.shared = {var.name: shared for var, shared in shared.items()}
     self.blocked = blocked
     self.bij = DictToArrayBijection(self.ordering, self.population[0])
     self.lij = utility.ListToArrayBijection(self.lordering, lpoint)
Example #2
0
 def __init__(self, vars, shared, blocked=True):
     """
     Parameters
     ----------
     vars: list of sampling variables
     shared: dict of aesara variable -> shared variable
     blocked: Boolean (default True)
     """
     self.vars = vars
     self.ordering = ArrayOrdering(vars)
     self.shared = {
         get_var_name(var): shared
         for var, shared in shared.items()
     }
     self.blocked = blocked
     self.bij = None
Example #3
0
    def __init__(self, model=None):

        # Get the model
        self.model = pm.modelcontext(model)

        # Get the variables
        self.varnames = get_default_varnames(self.model.unobserved_RVs, False)

        # Get the starting point
        self.start = Point(self.model.test_point, model=self.model)
        self.ndim = len(self.start)
        self.mean = None
        self.cov = None

        # Compile the log probability function
        self.vars = inputvars(self.model.cont_vars)
        self.bij = DictToArrayBijection(ArrayOrdering(self.vars), self.start)
        self.func = get_theano_function_for_var(
            self.model.logpt, model=self.model
        )
Example #4
0
def fixed_hessian(point, vars=None, model=None):
    """
    Returns a fixed Hessian for any chain location.

    Parameters
    ----------
    model: Model (optional if in `with` context)
    point: dict
    vars: list
        Variables for which Hessian is to be calculated.
    """

    model = modelcontext(model)
    if vars is None:
        vars = model.cont_vars
    vars = inputvars(vars)

    point = Point(point, model=model)

    bij = DictToArrayBijection(ArrayOrdering(vars), point)
    rval = np.ones(bij.map(point).size) / 10
    return rval
Example #5
0
def join_nonshared_inputs(xs, vars, shared, make_shared=False):
    """
    Takes a list of theano Variables and joins their non shared inputs into a single input.

    Parameters
    ----------
    xs: list of theano tensors
    vars: list of variables to join

    Returns
    -------
    tensors, inarray
    tensors: list of same tensors but with inarray as input
    inarray: vector of inputs
    """
    if not vars:
        raise ValueError("Empty list of variables.")

    joined = tt.concatenate([var.ravel() for var in vars])

    if not make_shared:
        tensor_type = joined.type
        inarray = tensor_type("inarray")
    else:
        inarray = theano.shared(joined.tag.test_value, "inarray")

    ordering = ArrayOrdering(vars)
    inarray.tag.test_value = joined.tag.test_value

    get_var = {var.name: var for var in vars}
    replace = {
        get_var[var]: reshape_t(inarray[slc], shp).astype(dtyp)
        for var, slc, shp, dtyp in ordering.vmap
    }

    replace.update(shared)

    xs_special = [theano.clone(x, replace, strict=False) for x in xs]
    return xs_special, inarray
Example #6
0
    def __init__(self, vars=None, model=None, point=None):
        self.model = pm.modelcontext(model)

        # Work out the full starting coordinates
        if point is None:
            point = self.model.test_point
        else:
            pm.util.update_start_vals(point, self.model.test_point, self.model)

        # Fit all the parameters by default
        if vars is None:
            vars = self.model.cont_vars
        self.vars = inputvars(vars)
        allinmodel(self.vars, self.model)

        # Work out the relevant bijection map
        point = Point(point, model=self.model)
        self.bijection = DictToArrayBijection(ArrayOrdering(self.vars), point)

        # Pre-compile the theano model and gradient
        nlp = -self.model.logpt
        grad = theano.grad(nlp, self.vars, disconnected_inputs="ignore")
        self.func = get_theano_function_for_var([nlp] + grad, model=self.model)
Example #7
0
def optimize(start=None,
             vars=None,
             model=None,
             return_info=False,
             verbose=True,
             **kwargs):
    """Maximize the log prob of a PyMC3 model using scipy

    All extra arguments are passed directly to the ``scipy.optimize.minimize``
    function.

    Args:
        start: The PyMC3 coordinate dictionary of the starting position
        vars: The variables to optimize
        model: The PyMC3 model
        return_info: Return both the coordinate dictionary and the result of
            ``scipy.optimize.minimize``
        verbose: Print the success flag and log probability to the screen

    """
    from scipy.optimize import minimize

    model = pm.modelcontext(model)

    # Work out the full starting coordinates
    if start is None:
        start = model.test_point
    else:
        update_start_vals(start, model.test_point, model)

    # Fit all the parameters by default
    if vars is None:
        vars = model.cont_vars
    vars = inputvars(vars)
    allinmodel(vars, model)

    # Work out the relevant bijection map
    start = Point(start, model=model)
    bij = DictToArrayBijection(ArrayOrdering(vars), start)

    # Pre-compile the theano model and gradient
    nlp = -model.logpt
    grad = theano.grad(nlp, vars, disconnected_inputs="ignore")
    func = get_theano_function_for_var([nlp] + grad, model=model)

    if verbose:
        names = [
            get_untransformed_name(v.name)
            if is_transformed_name(v.name) else v.name for v in vars
        ]
        sys.stderr.write("optimizing logp for variables: [{0}]\n".format(
            ", ".join(names)))
        bar = tqdm.tqdm()

    # This returns the objective function and its derivatives
    def objective(vec):
        res = func(*get_args_for_theano_function(bij.rmap(vec), model=model))
        d = dict(zip((v.name for v in vars), res[1:]))
        g = bij.map(d)
        if verbose:
            bar.set_postfix(logp="{0:e}".format(-res[0]))
            bar.update()
        return res[0], g

    # Optimize using scipy.optimize
    x0 = bij.map(start)
    initial = objective(x0)[0]
    kwargs["jac"] = True
    info = minimize(objective, x0, **kwargs)

    # Only accept the output if it is better than it was
    x = info.x if (np.isfinite(info.fun) and info.fun < initial) else x0

    # Coerce the output into the right format
    vars = get_default_varnames(model.unobserved_RVs, True)
    point = {
        var.name: value
        for var, value in zip(vars,
                              model.fastfn(vars)(bij.rmap(x)))
    }

    if verbose:
        bar.close()
        sys.stderr.write("message: {0}\n".format(info.message))
        sys.stderr.write("logp: {0} -> {1}\n".format(-initial, -info.fun))
        if not np.isfinite(info.fun):
            logger.warning("final logp not finite, returning initial point")
            logger.warning(
                "this suggests that something is wrong with the model")
            logger.debug("{0}".format(info))

    if return_info:
        return point, info
    return point
Example #8
0
def find_MAP(start=None,
             vars=None,
             method="L-BFGS-B",
             return_raw=False,
             include_transformed=True,
             progressbar=True,
             maxeval=5000,
             model=None,
             *args,
             **kwargs):
    """
    Finds the local maximum a posteriori point given a model.

    find_MAP should not be used to initialize the NUTS sampler. Simply call pymc3.sample() and it will automatically initialize NUTS in a better way.

    Parameters
    ----------
    start: `dict` of parameter values (Defaults to `model.test_point`)
    vars: list
        List of variables to optimize and set to optimum (Defaults to all continuous).
    method: string or callable
        Optimization algorithm (Defaults to 'L-BFGS-B' unless
        discrete variables are specified in `vars`, then
        `Powell` which will perform better).  For instructions on use of a callable,
        refer to SciPy's documentation of `optimize.minimize`.
    return_raw: bool
        Whether to return the full output of scipy.optimize.minimize (Defaults to `False`)
    include_transformed: bool, optional defaults to True
        Flag for reporting automatically transformed variables in addition
        to original variables.
    progressbar: bool, optional defaults to True
        Whether or not to display a progress bar in the command line.
    maxeval: int, optional, defaults to 5000
        The maximum number of times the posterior distribution is evaluated.
    model: Model (optional if in `with` context)
    *args, **kwargs
        Extra args passed to scipy.optimize.minimize

    Notes
    -----
    Older code examples used find_MAP() to initialize the NUTS sampler,
    but this is not an effective way of choosing starting values for sampling.
    As a result, we have greatly enhanced the initialization of NUTS and
    wrapped it inside pymc3.sample() and you should thus avoid this method.
    """
    model = modelcontext(model)
    if start is None:
        start = model.test_point
    else:
        update_start_vals(start, model.test_point, model)

    check_start_vals(start, model)

    if vars is None:
        vars = model.cont_vars
    vars = inputvars(vars)
    disc_vars = list(typefilter(vars, discrete_types))
    allinmodel(vars, model)

    start = Point(start, model=model)
    bij = DictToArrayBijection(ArrayOrdering(vars), start)
    logp_func = bij.mapf(model.fastlogp_nojac)
    x0 = bij.map(start)

    try:
        dlogp_func = bij.mapf(model.fastdlogp_nojac(vars))
        compute_gradient = True
    except (AttributeError, NotImplementedError, tg.NullTypeGradError):
        compute_gradient = False

    if disc_vars or not compute_gradient:
        pm._log.warning(
            "Warning: gradient not available." +
            "(E.g. vars contains discrete variables). MAP " +
            "estimates may not be accurate for the default " +
            "parameters. Defaulting to non-gradient minimization " +
            "'Powell'.")
        method = "Powell"

    if "fmin" in kwargs:
        fmin = kwargs.pop("fmin")
        warnings.warn(
            "In future versions, set the optimization algorithm with a string. "
            'For example, use `method="L-BFGS-B"` instead of '
            '`fmin=sp.optimize.fmin_l_bfgs_b"`.')

        cost_func = CostFuncWrapper(maxeval, progressbar, logp_func)

        # Check to see if minimization function actually uses the gradient
        if "fprime" in getargspec(fmin).args:

            def grad_logp(point):
                return nan_to_num(-dlogp_func(point))

            opt_result = fmin(cost_func, x0, fprime=grad_logp, *args, **kwargs)
        else:
            # Check to see if minimization function uses a starting value
            if "x0" in getargspec(fmin).args:
                opt_result = fmin(cost_func, x0, *args, **kwargs)
            else:
                opt_result = fmin(cost_func, *args, **kwargs)

        if isinstance(opt_result, tuple):
            mx0 = opt_result[0]
        else:
            mx0 = opt_result
    else:
        # remove 'if' part, keep just this 'else' block after version change
        if compute_gradient:
            cost_func = CostFuncWrapper(maxeval, progressbar, logp_func,
                                        dlogp_func)
        else:
            cost_func = CostFuncWrapper(maxeval, progressbar, logp_func)

        try:
            opt_result = minimize(cost_func,
                                  x0,
                                  method=method,
                                  jac=compute_gradient,
                                  *args,
                                  **kwargs)
            mx0 = opt_result["x"]  # r -> opt_result
        except (KeyboardInterrupt, StopIteration) as e:
            mx0, opt_result = cost_func.previous_x, None
            if isinstance(e, StopIteration):
                pm._log.info(e)
        finally:
            last_v = cost_func.n_eval
            if progressbar:
                assert isinstance(cost_func.progress, ProgressBar)
                cost_func.progress.total = last_v
                cost_func.progress.update(last_v)
                print()

    vars = get_default_varnames(model.unobserved_RVs, include_transformed)
    mx = {
        var.name: value
        for var, value in zip(vars,
                              model.fastfn(vars)(bij.rmap(mx0)))
    }

    if return_raw:
        return mx, opt_result
    else:
        return mx
Example #9
0
 def __init__(self, vars, fs, allvars=False, blocked=True):
     self.vars = vars
     self.ordering = ArrayOrdering(vars)
     self.fs = fs
     self.allvars = allvars
     self.blocked = blocked