Example #1
0
def _iter_sample(draws,
                 step,
                 start=None,
                 trace=None,
                 chain=0,
                 tune=None,
                 model=None,
                 random_seed=-1):
    """Modified from :func:`pymc3.sampling._iter_sample` to be more efficient with SMC algorithm."""
    model = modelcontext(model)
    draws = int(draws)
    if draws < 1:
        raise ValueError('Argument `draws` should be above 0.')

    if start is None:
        start = {}

    if random_seed != -1:
        nr.seed(random_seed)

    try:
        step = pm.step_methods.CompoundStep(step)
    except TypeError:
        pass

    point = pm.Point(start, model=model)
    step.chain_index = chain
    trace.setup(draws, chain)
    for i in range(draws):
        if i == tune:
            step = pm.sampling.stop_tuning(step)

        point, out_list = step.step(point)
        trace.record(out_list)
        yield trace
def pymc3_random_discrete(dist,
                          paramdomains,
                          valuedomain=Domain([0]),
                          ref_rand=None,
                          size=100000,
                          alpha=0.05,
                          fails=20):
    model = build_model(dist, valuedomain, paramdomains)
    domains = paramdomains.copy()
    for pt in product(domains, n_samples=100):
        pt = pm.Point(pt, model=model)
        p = alpha
        # Allow Chisq test to fail (i.e., the samples be different)
        # a certain number of times.
        f = fails
        while p <= alpha and f > 0:
            o = model.named_vars['value'].random(size=size, point=pt)
            e = ref_rand(size=size, **pt)
            o = np.atleast_1d(o).flatten()
            e = np.atleast_1d(e).flatten()
            observed = dict(zip(*np.unique(o, return_counts=True)))
            expected = dict(zip(*np.unique(e, return_counts=True)))
            for e in expected.keys():
                expected[e] = (observed.get(e, 0), expected[e])
            k = np.array([v for v in expected.values()])
            if np.all(k[:, 0] == k[:, 1]):
                p = 1.
            else:
                _, p = st.chisquare(k[:, 0], k[:, 1])
            f -= 1
        assert p > alpha, str(pt)
Example #3
0
def _initial_population(draws, model, variables, start):
    """
    Create an initial population from the prior
    """

    population = []
    var_info = OrderedDict()
    if start is None:
        init_rnd = pm.sample_prior_predictive(
            draws, var_names=[v.name for v in model.unobserved_RVs], model=model
        )
    else:
        init_rnd = start

    init = model.test_point

    for v in variables:
        var_info[v.name] = (init[v.name].shape, init[v.name].size)

    for i in range(draws):

        point = pm.Point({v.name: init_rnd[v.name][i] for v in variables}, model=model)
        population.append(model.dict_to_array(point))

    return np.array(floatX(population)), var_info
def pymc3_random(dist,
                 paramdomains,
                 ref_rand,
                 valuedomain=Domain([0]),
                 size=10000,
                 alpha=0.05,
                 fails=10,
                 extra_args=None,
                 model_args=None):
    if model_args is None:
        model_args = {}
    model = build_model(dist, valuedomain, paramdomains, extra_args)
    domains = paramdomains.copy()
    for pt in product(domains, n_samples=100):
        pt = pm.Point(pt, model=model)
        pt.update(model_args)
        p = alpha
        # Allow KS test to fail (i.e., the samples be different)
        # a certain number of times. Crude, but necessary.
        f = fails
        while p <= alpha and f > 0:
            s0 = model.named_vars['value'].random(size=size, point=pt)
            s1 = ref_rand(size=size, **pt)
            _, p = st.ks_2samp(
                np.atleast_1d(s0).flatten(),
                np.atleast_1d(s1).flatten())
            f -= 1
        assert p > alpha, str(pt)
Example #5
0
    def __init__(self,
                 vars=None,
                 covariance=None,
                 scaling=1.,
                 n_chains=100,
                 tune=True,
                 tune_interval=100,
                 model=None,
                 check_bound=True,
                 likelihood_name='like',
                 proposal_dist=MvNPd,
                 coef_variation=1.,
                 **kwargs):

        model = pm.modelcontext(model)

        if vars is None:
            vars = model.vars
        vars = pm.inputvars(vars)

        if covariance is None:
            self.covariance = np.eye(sum(v.dsize for v in vars))
        self.scaling = np.atleast_1d(scaling)
        self.tune = tune
        self.check_bnd = check_bound
        self.tune_interval = tune_interval
        self.steps_until_tune = tune_interval

        self.proposal_dist = proposal_dist(self.covariance)
        self.proposal_samples_array = self.proposal_dist(n_chains)

        self.stage_sample = 0
        self.accepted = 0

        self.beta = 0
        self.stage = 0
        self.coef_variation = coef_variation
        self.n_chains = n_chains
        self.likelihoods = []
        self.likelihood_name = likelihood_name
        self.discrete = np.concatenate(
            [[v.dtype in pm.discrete_types] * (v.dsize or 1) for v in vars])
        self.any_discrete = self.discrete.any()
        self.all_discrete = self.discrete.all()

        # create initial population
        self.population = []
        self.array_population = np.zeros(n_chains)
        for i in range(self.n_chains):
            dummy = pm.Point({v.name: v.random() for v in vars}, model=model)
            self.population.append(dummy)

        shared = make_shared_replacements(vars, model)
        self.logp_forw = logp_forw(model.logpt, vars, shared)
        self.check_bnd = logp_forw(model.varlogpt, vars, shared)
        self.delta_logp = pm.metropolis.delta_logp(model.logpt, vars, shared)

        super(ATMCMC, self).__init__(vars, shared)
Example #6
0
def _initial_population(draws, model, variables):
    """
    Create an initial population from the prior
    """

    population = []
    var_info = {}
    start = model.test_point
    init_rnd = pm.sample_prior_predictive(draws, model=model)
    for v in variables:
        var_info[v.name] = (start[v.name].shape, start[v.name].size)

    for i in range(draws):
        point = pm.Point({v.name: init_rnd[v.name][i] for v in variables}, model=model)
        population.append(model.dict_to_array(point))

    return np.array(floatX(population)), var_info
Example #7
0
    def too_slow(self):
        model = self.build_model()
        with model:
            start = pm.Point({
                'groupmean': self.obs_means.mean(),
                'groupsd_interval__': 0,
                'sd_interval__': 0,
                'means': np.array(self.obs_means),
                'u_m': np.array([.72]),
                'floor_m': 0.,
            })

            start = pm.find_MAP(start, model.vars[:-1])
            H = model.fastd2logp()
            h = np.diag(H(start))

            step = pm.HamiltonianMC(model.vars, h)
            pm.sample(50, step=step, start=start)
Example #8
0
    def too_slow(self):
        model = self.build_model()
        with model:
            start = pm.Point({
                "groupmean": self.obs_means.mean(),
                "groupsd_interval__": 0,
                "sd_interval__": 0,
                "means": np.array(self.obs_means),
                "u_m": np.array([0.72]),
                "floor_m": 0.0,
            })

            start = pm.find_MAP(start, model.vars[:-1])
            H = model.fastd2logp()
            h = np.diag(H(start))

            step = pm.HamiltonianMC(model.vars, h)
            pm.sample(50, step=step, start=start)
Example #9
0
def _initial_population(samples, chains, model, variables):
    """
    Create an initial population from the prior
    """
    population = []
    init_rnd = {}
    start = model.test_point
    for v in variables:
        if pm.util.is_transformed_name(v.name):
            trans = v.distribution.transform_used.forward_val
            init_rnd[v.name] = trans(v.distribution.dist.random(size=chains, point=start))
        else:
            init_rnd[v.name] = v.random(size=chains, point=start)

    for i in range(chains):
        population.append(pm.Point({v.name: init_rnd[v.name][i] for v in variables}, model=model))

    return population
Example #10
0
    def __init__(self,
                 vars=None,
                 out_vars=None,
                 n_chains=100,
                 scaling=1.,
                 covariance=None,
                 likelihood_name='like',
                 proposal_name='MultivariateNormal',
                 tune=True,
                 tune_interval=100,
                 coef_variation=1.,
                 check_bound=True,
                 model=None,
                 random_seed=-1):
        warnings.warn(EXPERIMENTAL_WARNING)
        if random_seed != -1:
            nr.seed(random_seed)

        model = modelcontext(model)

        if vars is None:
            vars = model.vars

        vars = inputvars(vars)

        if out_vars is None:
            out_vars = model.unobserved_RVs

        out_varnames = [out_var.name for out_var in out_vars]

        if covariance is None and proposal_name == 'MultivariateNormal':
            self.covariance = np.eye(sum(v.dsize for v in vars))
            scale = self.covariance
        elif covariance is None:
            scale = np.ones(sum(v.dsize for v in vars))
        else:
            scale = covariance

        self.scaling = np.atleast_1d(scaling)
        self.tune = tune
        self.check_bnd = check_bound
        self.tune_interval = tune_interval
        self.steps_until_tune = tune_interval

        self.proposal_name = proposal_name
        self.proposal_dist = choose_proposal(self.proposal_name, scale=scale)

        self.proposal_samples_array = self.proposal_dist(n_chains)

        self.stage_sample = 0
        self.accepted = 0

        self.beta = 0
        self.stage = 0
        self.chain_index = 0
        self.resampling_indexes = np.arange(n_chains)

        self.coef_variation = coef_variation
        self.n_chains = n_chains
        self.likelihoods = np.zeros(n_chains)

        self.likelihood_name = likelihood_name
        self._llk_index = out_varnames.index(likelihood_name)
        self.discrete = np.concatenate(
            [[v.dtype in discrete_types] * (v.dsize or 1) for v in vars])
        self.any_discrete = self.discrete.any()
        self.all_discrete = self.discrete.all()

        # create initial population
        self.population = []
        self.array_population = np.zeros(n_chains)
        for _ in range(self.n_chains):
            self.population.append(
                pm.Point({v.name: v.random()
                          for v in vars}, model=model))

        self.chain_previous_lpoint = copy.deepcopy(self.population)

        shared = make_shared_replacements(vars, model)
        self.logp_forw = logp_forw(out_vars, vars, shared)
        self.check_bnd = logp_forw([model.varlogpt], vars, shared)

        super(SMC, self).__init__(vars, out_vars, shared)
Example #11
0
    def __init__(self,
                 vars=None,
                 out_vars=None,
                 samples=1000,
                 n_chains=100,
                 n_steps=25,
                 scaling=1.,
                 covariance=None,
                 likelihood_name='l_like__',
                 proposal_name='MultivariateNormal',
                 tune_interval=10,
                 threshold=0.5,
                 check_bound=True,
                 model=None,
                 random_seed=-1):

        warnings.warn(EXPERIMENTAL_WARNING)

        if random_seed != -1:
            nr.seed(random_seed)

        model = modelcontext(model)

        if vars is None:
            vars = model.vars

        vars = inputvars(vars)

        if out_vars is None:
            if not any(likelihood_name == RV.name
                       for RV in model.unobserved_RVs):
                pm._log.info('Adding model likelihood to RVs!')
                with model:
                    llk = pm.Deterministic(likelihood_name, model.logpt)
            else:
                pm._log.info('Using present model likelihood!')

            out_vars = model.unobserved_RVs

        out_varnames = [out_var.name for out_var in out_vars]

        if covariance is None and proposal_name == 'MultivariateNormal':
            self.covariance = np.eye(sum(v.dsize for v in vars))
            scale = self.covariance
        elif covariance is None:
            scale = np.ones(sum(v.dsize for v in vars))
        else:
            scale = covariance

        self.proposal_name = proposal_name
        self.proposal_dist = choose_proposal(self.proposal_name, scale=scale)

        self.scaling = np.atleast_1d(scaling)
        self.check_bnd = check_bound
        self.tune_interval = tune_interval
        self.steps_until_tune = tune_interval

        self.proposal_samples_array = self.proposal_dist(n_chains)

        self.samples = samples
        self.n_steps = n_steps
        self.stage_sample = 0
        self.accepted = 0

        self.beta = 0
        self.sjs = 1
        self.stage = 0
        self.chain_index = 0
        self.resampling_indexes = np.arange(n_chains)

        self.threshold = threshold
        self.n_chains = n_chains
        self.likelihoods = np.zeros(n_chains)

        self.likelihood_name = likelihood_name
        self._llk_index = out_varnames.index(likelihood_name)
        self.discrete = np.concatenate(
            [[v.dtype in discrete_types] * (v.dsize or 1) for v in vars])
        self.any_discrete = self.discrete.any()
        self.all_discrete = self.discrete.all()

        # create initial population
        self.population = []
        self.array_population = np.zeros(n_chains)
        start = model.test_point

        init_rnd = {}
        for v in vars:
            if pm.util.is_transformed_name(v.name):
                trans = v.distribution.transform_used.forward
                rnd = trans(
                    v.distribution.dist.random(size=self.n_chains,
                                               point=start))
                init_rnd[v.name] = rnd.eval()
            else:
                init_rnd[v.name] = v.random(size=self.n_chains, point=start)

        for i in range(self.n_chains):
            self.population.append(
                pm.Point({v.name: init_rnd[v.name][i]
                          for v in vars},
                         model=model))

        self.chain_previous_lpoint = copy.deepcopy(self.population)

        shared = make_shared_replacements(vars, model)
        self.logp_forw = logp_forw(out_vars, vars, shared)
        self.check_bnd = logp_forw([model.varlogpt], vars, shared)

        super(SMC, self).__init__(vars, out_vars, shared)