Example #1
0
        #ax.legend(loc=1);

        # Calculate class membership, by using hmc_trace and logp_normal function:
        #confidenceThreshold = 0.95
        #class0LogProb = [logp_normal(np.mean(hmc_trace.get_values('mu_0')), np.mean(hmc_trace.get_values('sigma')[:,0]) , data[k,channel]) for k in np.where(sectionNumber == section)]
        #class1LogProb = [logp_normal(np.mean(hmc_trace.get_values('mu_1')), np.mean(hmc_trace.get_values('sigma')[:,1]) , data[k,channel]) for k in np.where(sectionNumber == section)]
        #normalizedProbs = [exp_normalize(np.array((class0LogProb[0][i], class1LogProb[0][i]))) for i in range(len(class0LogProb[0]))]
        #maxProbs = [max(normalizedProbs[i]) for i in range(len(normalizedProbs))]
        #classMembership = [np.argmax(normalizedProbs[i]) for i in range(len(normalizedProbs))]
        #confidentClass = [2 if maxProbs[i] < confidenceThreshold else classMembership[i] for i in range(len(classMembership))]

        # Calculate class membership, by using advi_trace and logp_normal function:
        confidenceThreshold = 0.95
        class0LogProb = [
            logp_normal(np.mean(advi_trace.get_values('mu')[:, 0]),
                        np.mean(advi_trace.get_values('sigma')[:, 0]),
                        data[k, channel]) for k in range(np.shape(data)[0])
        ]
        class1LogProb = [
            logp_normal(np.mean(advi_trace.get_values('mu')[:, 1]),
                        np.mean(advi_trace.get_values('sigma')[:, 1]),
                        data[k, channel]) for k in range(np.shape(data)[0])
        ]
        normalizedProbs = [
            exp_normalize(np.array((class0LogProb[i], class1LogProb[i])))
            for i in range(len(class0LogProb))
        ]
        maxProbs = [
            max(normalizedProbs[i]) for i in range(len(normalizedProbs))
        ]
        classMembership = [
 def logp_(value):
     logps = [tt.log(pi[i]) + logp_normal(mus[i], sigmas[i], value)
              for i in range(3)]
     return tt.sum(logsumexp(tt.stacklists(logps), axis=0))
    def logp_gmix(mus, pi, sigmas):
        def logp_(value):
            logps = [tt.log(pi[i]) + logp_normal(mus[i], sigmas[i], value)
                     for i in range(3)]
            return tt.sum(logsumexp(tt.stacklists(logps), axis=0))
        return logp_

        with pm.Model() as model:
            w = pm.Dirichlet('w', alpha)
            mus = pm.Normal('mu', mu = mean_priorMean, sigma = mean_priorSigma, shape = (n_components, n_dimensions))
            sigmas = pm.Gamma('sigma', mu = sigma_priorMean, sigma = sigma_priorSigma, shape = (n_components, n_dimensions))
            c = pm.Normal('c', mu = spectralSignature_priorMean, sigma = spectralSignature_priorSigma, shape = (n_dimensions, n_dimensions))
            prior = sample_prior(samples = 1000)
            data_corrected = tt.log(tt.dot(data,tt.inv(c)))
            x = pm.DensityDist('x', logp_gmix(mus, w, sigmas), observed=data_corrected)
            
            # Plot prior for some parameters:
            f = plt.figure()
            plt.hist(prior['mu'][:,:,0])
            plt.show()
            f.savefig("figures/" + slideNames[slide] + "/" + "muPriorSection" + str(section) + "channel" + str(channel) + ".png", bbox_inches='tight')
            plt.close(f) 
            
            f = plt.figure()
            plt.hist(prior['taus_0'][:,1])
            plt.show()
            f.savefig("figures/" + slideNames[slide] + "/" + "sigmaPriorSection" + str(section) + "channel" + str(channel) + ".png", bbox_inches='tight')
            plt.close(f) 

            f = plt.figure()
            plt.hist(prior['w'])
            plt.show()
            f.savefig("figures/" + slideNames[slide] + "/" + "wPriorSection" + str(section) + "channel" + str(channel) + ".png", bbox_inches='tight')
            plt.close(f) 

            # Fit:
            with model:
                advi_fit = pm.fit(n=500, obj_optimizer=pm.adagrad(learning_rate=1e-1), method = 'advi')
                
            # Sample:
            with model:
                %time hmc_trace = pm.sample(draws=20, tune=50, cores=15)

            # Show results advi:
            f = plt.figure()
            advi_elbo = pd.DataFrame(
                {'log-ELBO': -np.log(advi_fit.hist),
                 'n': np.arange(advi_fit.hist.shape[0])})
            _ = sns.lineplot(y='log-ELBO', x='n', data=advi_elbo)
            f.savefig("figures/" + slideNames[slide] + "/" + "adviElbo_Section" + str(section) + "_channel" + str(channel) + ".png", bbox_inches='tight')
            plt.close(f) 
            advi_trace = advi_fit.sample(10000)
            pm.summary(advi_trace, include_transformed=False)
            # Plot of all component distributions in each channel
            f, axis = plt.subplots(n_components,n_dimensions, figsize=(n_components*2.5,n_dimensions*2.5))
            plt.rcParams['axes.titlesize'] = 10
            plt.rcParams['axes.facecolor'] = 'white'
            dotSize = 0.5
            colours = ('gold', 'pink','green', 'red', 'blue')
            x_min = 6
            x_max = 12
            x = np.linspace(x_min, x_max, 100)
            for i in range(n_components):
                for j in range(n_dimensions):
                    axis[i,j].plot(x, scipy.stats.norm.pdf(x,np.mean(advi_trace.get_values('mu')[:,i,j]), np.mean(advi_trace.get_values('sigma')[:,i,j])), color=colours[j])
            mean_posteriorMean = np.zeros((n_components,n_dimensions))
            for i in range(n_components):
                for j in range(n_dimensions):
                    mean_posteriorMean[i,j] = np.mean(advi_trace.get_values('mu')[:,i,j])
                    
                    
            # Show results hmc:
            f, axis = plt.subplots(n_components,n_dimensions, figsize=(n_components*2.5,n_dimensions*2.5))
            plt.rcParams['axes.titlesize'] = 10
            plt.rcParams['axes.facecolor'] = 'white'
            dotSize = 0.5
            colours = ('gold', 'pink','green', 'red', 'blue')
            x_min = 6
            x_max = 12
            x = np.linspace(x_min, x_max, 100)
            for i in range(n_components):
                for j in range(n_dimensions):
                    axis[i,j].plot(x, scipy.stats.norm.pdf(x,np.mean(hmc_trace.get_values('mu')[:,i,j]), np.mean(hmc_trace.get_values('sigma')[:,i,j])), color=colours[j])
            mean_posteriorMean = np.zeros((n_components,n_dimensions))
            for i in range(n_components):
                for j in range(n_dimensions):
                    mean_posteriorMean[i,j] = np.mean(hmc_trace.get_values('mu')[:,i,j])
                    

            # Save trace means:
            advi_mus = np.array([[np.mean(advi_trace.get_values('mu')[:,i,j]) for i in range(n_components)] for j in range(n_dimensions)])
            advi_sigmas = np.array([[np.mean(advi_trace.get_values('sigma')[:,i,j]) for i in range(n_components)] for j in range(n_dimensions)])
            advi_w = np.array([np.mean(advi_trace.get_values('w')[:,i]) for i in range(n_components)])
            advi_data = {"advi_mu": advi_mus,
                         "advi_sigma": advi_sigmas,
                         "advi_w": advi_w}
            pickle_out = open("data/" + slideNames[slide] + '_AdviFitResults.pickle',"wb")
            pickle.dump(advi_data, pickle_out)
            pickle_out.close()
            

            # Calculate class membership, by using advi_trace and logp_normal function:                            
            confidenceThreshold = 0.66
            class0LogProb = [logp_normal(np.mean(advi_trace.get_values('mu')[:,0]), np.mean(advi_trace.get_values('sigma')[:,0]) , data[k,channel]) for k in np.where(sectionNumber == section)]
            class1LogProb = [logp_normal(np.mean(advi_trace.get_values('mu')[:,1]), np.mean(advi_trace.get_values('sigma')[:,1]) , data[k,channel]) for k in np.where(sectionNumber == section)]
            normalizedProbs = [exp_normalize(np.array((class0LogProb[0][i], class1LogProb[0][i]))) for i in range(len(class0LogProb[0]))]
            maxProbs = [max(normalizedProbs[i]) for i in range(len(normalizedProbs))]
            classMembership = [np.argmax(normalizedProbs[i]) for i in range(len(normalizedProbs))]
            confidentClass = [2 if maxProbs[i] < confidenceThreshold else classMembership[i] for i in range(len(classMembership))]

            # Class membership probability:
            pickle_out = open("data/" + slideNames[slide] + "Probability-" + celltypeOrder[channel] + '.pickle',"wb")
            pickle.dump(normalizedProbs, pickle_out)
            pickle_out.close()

            ### Plot results:

            # Histograms:
            if sum(np.array(confidentClass) == 1) > 0:
                boundary1 = min(data[sectionNumber == section,channel][np.array(confidentClass) == 1])
            else:
                boundary1 = np.inf
            if sum(np.array(confidentClass) == 2) > 0:
                boundary2 = min(data[sectionNumber == section,channel][np.array(confidentClass) == 2])
            else:
                boundary2 = 0
            fig = plt.figure()
            fig, ax = plt.subplots()
            N, bins, patches = ax.hist(data[sectionNumber == section,channel], edgecolor='white', linewidth=1, bins = 100)
            for i in range(0, len(patches)):
                if bins[i] < boundary2:
                    patches[i].set_facecolor('b')   
                elif bins[i] < boundary1:
                    patches[i].set_facecolor('black')
                else:
                    patches[i].set_facecolor('r')
            plt.gca().set_title('Log Intensity and Classification Channel ' + channelOrder[channel])
            plt.show()
            fig.savefig("figures/" + slideNames[slide] + "/" + "HistogramIntensityAndClassification" + "Section" + str(section) + "channel" + str(channel) + ".png", bbox_inches='tight')
            plt.close(fig) 
            
            # Scatterplots:
            colours = np.repeat('black', sum(sectionNumber == section))                            
            if sum(np.array(confidentClass) == 1) > 0:
                colours[np.array(confidentClass) == 1] = 'red'  

            fig = plt.figure()                            
            plt.scatter(kptn_data[sectionNumber == section,0], np.exp(data[sectionNumber == section,channel]), c = colours, s = 0.1)
            plt.gca().set_title('Intensity and Classification Channel ' + channelOrder[channel])
            plt.show()
            fig.savefig("figures/" + slideNames[slide] + "/" + "ScatterPlotIntensityAndClassification" + "Section" + str(section) + "channel" + channelOrder[channel] + ".png", bbox_inches='tight')  
            plt.close(fig) 
            
            fig = plt.figure()                             
            plt.scatter(kptn_data[sectionNumber == section,0], data[sectionNumber == section,channel], c = colours, s = 0.1)                         
            plt.gca().set_title('Log Intensity and Classification Channel ' + channelOrder[channel])
            plt.show()
            fig.savefig("figures/" + slideNames[slide] + "/" + "ScatterPlotLOGIntensityAndClassification" + "Section" + str(section) + "channel" + channelOrder[channel] + ".png", bbox_inches='tight')
            plt.close(fig) 
            
            # Slide location of each cell type (including unclassified):

            fig = plt.figure()   
            plt.scatter(kptn_data[sectionNumber == section,0][np.array(confidentClass) == 1], kptn_data[sectionNumber == section,1][np.array(confidentClass) == 1], s = 0.05)
            plt.gca().set_title('Nuclei Positive Classification Slide  ' + str(slide) + " Section " + str(section) + " Channel " + channelOrder[channel] + ".png")
            plt.show()
            fig.savefig("figures/" + slideNames[slide] + "/" + "PositiveClassificationPosition" + str(slide) + "section" + str(section) + "channel" + channelOrder[channel] + ".png", bbox_inches='tight')  
            plt.close(fig) 
Example #4
0
 def logp_(value):        
     logps = [tt.log(pi[i]) + logp_normal(mus[i,:], taus[i], value) for i in range(n_components)]
     return tt.sum(logsumexp(tt.stacklists(logps)[:, :n_samples], axis=0))
        # Fit:
        with model:
            advi_fit = pm.fit(n=2000, obj_optimizer=pm.adagrad(learning_rate=1e-1), method = 'advi')  

        # Show results advi:
        advi_elbo = pd.DataFrame(
            {'log-ELBO': -np.log(advi_fit.hist),
             'n': np.arange(advi_fit.hist.shape[0])})
        _ = sns.lineplot(y='log-ELBO', x='n', data=advi_elbo)
        advi_trace = advi_fit.sample(10000)
        pm.summary(advi_trace, include_transformed=False)

        # Calculate class membership, by using advi_trace and logp_normal function:                            
        confidenceThreshold = 0.95
        class0LogProb = [logp_normal(np.mean(advi_trace.get_values('mu')[:,0]), np.mean(advi_trace.get_values('sigma')[:,0]) , data[k,channel]) for k in np.where(sectionNumber == section)]
        class1LogProb = [logp_normal(np.mean(advi_trace.get_values('mu')[:,1]), np.mean(advi_trace.get_values('sigma')[:,1]) , data[k,channel]) for k in np.where(sectionNumber == section)]
        normalizedProbs = [exp_normalize(np.array((class0LogProb[0][i], class1LogProb[0][i]))) for i in range(len(class0LogProb[0]))]
        maxProbs = [max(normalizedProbs[i]) for i in range(len(normalizedProbs))]
        classMembership = [np.argmax(normalizedProbs[i]) for i in range(len(normalizedProbs))]
        confidentClass = [2 if maxProbs[i] < confidenceThreshold else classMembership[i] for i in range(len(classMembership))]
        # i.e. a value of 2 corresponds to a classification below our confidence threshold, unlike values 0 or 1

        ### Plot results:

        # Histograms:
        if sum(np.array(confidentClass) == 1) > 0:
            boundary1 = min(data[sectionNumber == section,channel][np.array(confidentClass) == 1])
            # i.e. what's the minimum value to confidently classify a cell as positive for this marker?
        else:
            boundary1 = np.inf
            #ax.legend(loc=1);

            # Calculate class membership, by using hmc_trace and logp_normal function:
            #confidenceThreshold = 0.95
            #class0LogProb = [logp_normal(np.mean(hmc_trace.get_values('mu_0')), np.mean(hmc_trace.get_values('sigma')[:,0]) , data[k,channel]) for k in np.where(sectionNumber == section)]
            #class1LogProb = [logp_normal(np.mean(hmc_trace.get_values('mu_1')), np.mean(hmc_trace.get_values('sigma')[:,1]) , data[k,channel]) for k in np.where(sectionNumber == section)]
            #normalizedProbs = [exp_normalize(np.array((class0LogProb[0][i], class1LogProb[0][i]))) for i in range(len(class0LogProb[0]))]
            #maxProbs = [max(normalizedProbs[i]) for i in range(len(normalizedProbs))]
            #classMembership = [np.argmax(normalizedProbs[i]) for i in range(len(normalizedProbs))]
            #confidentClass = [2 if maxProbs[i] < confidenceThreshold else classMembership[i] for i in range(len(classMembership))]

            # Calculate class membership, by using advi_trace and logp_normal function:
            confidenceThreshold = 0.95
            class0LogProb = [
                logp_normal(np.mean(advi_trace.get_values('mu')[:, 0]),
                            np.mean(advi_trace.get_values('sigma')[:, 0]),
                            data[k, channel])
                for k in np.where(sectionNumber == section)
            ]
            class1LogProb = [
                logp_normal(np.mean(advi_trace.get_values('mu')[:, 1]),
                            np.mean(advi_trace.get_values('sigma')[:, 1]),
                            data[k, channel])
                for k in np.where(sectionNumber == section)
            ]
            normalizedProbs = [
                exp_normalize(
                    np.array((class0LogProb[0][i], class1LogProb[0][i])))
                for i in range(len(class0LogProb[0]))
            ]
            maxProbs = [