Example #1
0
 def setup_dr(self):
     model, options, parameters, data, covariance, __, __, __, __ = gf.setup_mcmc_case_dr(
     )
     RDR = covariance._RDR
     invR = covariance._invR
     old_set = ParameterSet(theta=np.random.rand(2),
                            ss=np.array([10.2]),
                            sigma2=np.array([0.5]),
                            prior=np.array([0.5]))
     new_set = ParameterSet(theta=np.random.rand(2),
                            ss=np.array([8.2]),
                            sigma2=np.array([0.5]),
                            prior=np.array([0.5]))
     priorobj = PriorFunction(
         priorfun=model.prior_function,
         mu=parameters._thetamu[parameters._parind[:]],
         sigma=parameters._thetasigma[parameters._parind[:]])
     sosobj = SumOfSquares(model, data, parameters)
     DR = DelayedRejection()
     DR._initialize_dr_metrics(options=options)
     accept, out_set, outbound = DR.run_delayed_rejection(
         old_set=old_set,
         new_set=new_set,
         RDR=RDR,
         ntry=2,
         parameters=parameters,
         invR=invR,
         sosobj=sosobj,
         priorobj=priorobj)
     return accept, out_set, outbound
Example #2
0
 def test_alphafun(self):
     invR = []
     invR.append(np.array([[0.4, 0.1], [0., 0.2]]))
     invR.append(np.array([[0.4, 0.1], [0., 0.2]]) / 4)
     invR.append(np.array([[0.4, 0.1], [0., 0.2]]) / 5)
     trypath = []
     trypath.append(
         ParameterSet(theta=0.1,
                      ss=np.array([10.2]),
                      sigma2=np.array([0.5]),
                      prior=np.array([0.5])))
     trypath.append(
         ParameterSet(theta=0.2,
                      ss=np.array([8.2]),
                      sigma2=np.array([0.5]),
                      prior=np.array([0.5])))
     trypath.append(
         ParameterSet(theta=0.2,
                      ss=np.array([8.2]),
                      sigma2=np.array([0.5]),
                      prior=np.array([0.5])))
     trypath.append(
         ParameterSet(theta=0.2,
                      ss=np.array([8.2]),
                      sigma2=np.array([0.5]),
                      prior=np.array([0.5])))
     __, options, __, __ = gf.setup_mcmc()
     DR = DelayedRejection()
     DR._initialize_dr_metrics(options=options)
     alpha = DR.alphafun(trypath=trypath, invR=invR)
     self.assertIsInstance(alpha,
                           np.ndarray,
                           msg='Expect numpy array return')
     self.assertEqual(alpha.size, 1, msg='Expect single element array')
Example #3
0
 def test_set_based_on_accept_true(self):
     next_set = ParameterSet(theta=np.random.random_sample(size=(2, 1)),
                             ss=0.4)
     old_set = ParameterSet(theta=np.random.random_sample(size=(2, 1)),
                            ss=0.6)
     out_set = update_set_based_on_acceptance(accept=True,
                                              old_set=old_set,
                                              next_set=next_set)
     self.assertEqual(out_set, next_set)
Example #4
0
 def setup_trypath(self, iq=0):
     trypath = []
     trypath.append(ParameterSet(theta=0.1))
     trypath.append(ParameterSet(theta=0.2))
     trypath.append(ParameterSet(theta=0.3))
     trypath.append(ParameterSet(theta=0.4))
     stage = len(trypath) - 2
     y1, y2, y3, y4 = extract_state_elements(iq=iq,
                                             stage=stage,
                                             trypath=trypath)
     return trypath, y1, y2, y3, y4
Example #5
0
 def test_logposteriorratio_with_2d(self):
     trypath = []
     trypath.append(
         ParameterSet(theta=0.1,
                      ss=np.array([10.2, 5.1]),
                      sigma2=np.array([0.5, 0.6]),
                      prior=np.array([0.5, 0.75])))
     trypath.append(
         ParameterSet(theta=0.2,
                      ss=np.array([8.2, 7.5]),
                      sigma2=np.array([0.5, 1.2]),
                      prior=np.array([0.5, 0.25])))
     zq = log_posterior_ratio(x1=trypath[0], x2=trypath[-1])
     self.assertTrue(isinstance(zq, float), msg='Expect float return')
Example #6
0
 def test_chain_not_accepted_within_bounds(self):
     accept = 0
     outsidebounds = 0
     CL = {
         'theta': np.array([1.0, 2.0]),
         'ss': 1.0,
         'prior': 0.0,
         'sigma2': 0.0
     }
     parset = ParameterSet(theta=CL['theta'],
                           ss=CL['ss'],
                           prior=CL['prior'],
                           sigma2=CL['sigma2'])
     mcstat = gf.setup_initialize_chains(CL)
     mcstat._MCMC__rejected = {
         'total': 10,
         'in_adaptation_interval': 4,
         'outside_bounds': 1
     }
     mcstat._MCMC__update_chain(accept=accept,
                                new_set=parset,
                                outsidebounds=outsidebounds)
     self.assertTrue(np.array_equal(mcstat._MCMC__chain[-1, :],
                                    mcstat._MCMC__old_set.theta),
                     msg=str('theta added to end of chain - {}'.format(
                         mcstat._MCMC__chain[-1, :])))
Example #7
0
 def test_set_outsidebounds(self):
     next_set = ParameterSet()
     next_set, outbound = set_outside_bounds(next_set = next_set)
     self.assertEqual(next_set.alpha, 0, msg = 'next_set.alpha should be 0')
     self.assertEqual(next_set.prior, 0, msg = 'next_set.prior should be 0')
     self.assertEqual(next_set.ss, np.inf, msg = 'next_set.ss should be np.inf')
     self.assertEqual(outbound, 1, msg = 'outbound should be 1')  
Example #8
0
 def test_nth_stage_logpropratio(self):
     iq = 0
     trypath = []
     trypath.append(
         ParameterSet(theta=0.1,
                      ss=np.array([10.2]),
                      sigma2=np.array([0.5]),
                      prior=np.array([0.5])))
     trypath.append(
         ParameterSet(theta=0.2,
                      ss=np.array([8.2]),
                      sigma2=np.array([0.5]),
                      prior=np.array([0.5])))
     zq = nth_stage_log_proposal_ratio(iq=iq, trypath=trypath, invR=None)
     self.assertTrue(np.array_equal(zq, np.zeros([1])),
                     msg='Expect arrays to match')
    def test_unpack_set(self):
        CL = {'theta': 1.0, 'ss': 1.0, 'prior': 0.0, 'sigma2': 0.0}
        parset = ParameterSet(theta=CL['theta'],
                              ss=CL['ss'],
                              prior=CL['prior'],
                              sigma2=CL['sigma2'])

        MA = Metropolis()
        oldpar, ss, oldprior, sigma2 = MA.unpack_set(parset)
        NL = {'theta': oldpar, 'ss': ss, 'prior': oldprior, 'sigma2': sigma2}
        self.assertDictEqual(CL, NL)
Example #10
0
 def test_nth_stage_logpropratio_invR(self):
     iq = 0
     invR = [np.array([[0.4, 0.1], [0., 0.2]])]
     trypath = []
     trypath.append(
         ParameterSet(theta=0.1,
                      ss=np.array([10.2]),
                      sigma2=np.array([0.5]),
                      prior=np.array([0.5])))
     trypath.append(
         ParameterSet(theta=0.2,
                      ss=np.array([8.2]),
                      sigma2=np.array([0.5]),
                      prior=np.array([0.5])))
     trypath.append(
         ParameterSet(theta=0.2,
                      ss=np.array([8.2]),
                      sigma2=np.array([0.5]),
                      prior=np.array([0.5])))
     zq = nth_stage_log_proposal_ratio(iq=iq, trypath=trypath, invR=invR)
     self.assertTrue(isinstance(zq, float), msg='Expect float return')
 def setup_rms(cls, CL):
     sos_object, prior_object, parameters = gf.setup_mcmc_case_mh()
     MS = Metropolis()
     R = np.array([[0.4, 0.2], [0, 0.3]])
     parset = ParameterSet(theta=CL['theta'],
                           ss=CL['ss'],
                           prior=CL['prior'],
                           sigma2=CL['sigma2'])
     accept, _, outbound, npar_sample_from_normal = MS.run_metropolis_step(
         old_set=parset,
         parameters=parameters,
         R=R,
         prior_object=prior_object,
         sos_object=sos_object)
     return accept, outbound
def setup_initialize_chains(CL, updatesigma=True, nsos=1):
    mcstat = setup_mcmc_case_cp()
    mcstat.simulation_options.updatesigma = updatesigma
    mcstat.model_settings.nsos = nsos
    mcstat._MCMC__old_set = ParameterSet(theta=CL['theta'],
                                         ss=CL['ss'],
                                         prior=CL['prior'],
                                         sigma2=CL['sigma2'])
    mcstat._MCMC__chain_index = mcstat.simulation_options.nsimu - 1
    mcstat._MCMC__initialize_chains(
        chainind=0,
        nsimu=mcstat.simulation_options.nsimu,
        npar=mcstat.parameters.npar,
        nsos=mcstat.model_settings.nsos,
        updatesigma=mcstat.simulation_options.updatesigma,
        sigma2=mcstat.model_settings.sigma2)
    return mcstat
Example #13
0
 def test_chain_accepted(self):
     accept = 1
     outsidebounds = 0
     CL = {
         'theta': np.array([1.0, 2.0]),
         'ss': 1.0,
         'prior': 0.0,
         'sigma2': 0.0
     }
     parset = ParameterSet(theta=CL['theta'],
                           ss=CL['ss'],
                           prior=CL['prior'],
                           sigma2=CL['sigma2'])
     mcstat = gf.setup_initialize_chains(CL)
     mcstat._MCMC__update_chain(accept=accept,
                                new_set=parset,
                                outsidebounds=outsidebounds)
     self.assertTrue(np.array_equal(mcstat._MCMC__chain[-1, :],
                                    parset.theta),
                     msg=str('theta added to end of chain - {}'.format(
                         mcstat._MCMC__chain[-1, :])))
     self.assertEqual(mcstat._MCMC__old_set,
                      parset,
                      msg='old_set updated to new set')
Example #14
0
 def test_PS_default_match(self):
     PS = ParameterSet()
     PSD = PS.__dict__
     for (k,v) in PSD.items():
         self.assertEqual(v, None, msg = str('Default {} is None'.format(k)))
Example #15
0
 def test_PS_set_theta(self):
     x = 1.2
     key = ['theta']
     PS = ParameterSet(theta = x)
     self.standard_check(key, x, PS)
Example #16
0
 def test_PS_set_ss(self):
     x = 1.2
     key = ['ss']
     PS = ParameterSet(ss = x)
     self.standard_check(key, x, PS)
Example #17
0
 def test_PS_set_prior(self):
     x = 1.2
     key = ['prior']
     PS = ParameterSet(prior = x)
     self.standard_check(key, x, PS)
Example #18
0
 def test_PS_set_theta_and_prior(self):
     x = 1.2
     keys = ['theta', 'prior']
     PS = ParameterSet(theta = x, prior = x)
     self.standard_check(keys, x, PS)
Example #19
0
 def test_PS_set_alpha(self):
     x = 1.2
     key = ['alpha']
     PS = ParameterSet(alpha = x)
     self.standard_check(key, x, PS)
Example #20
0
 def test_PS_set_sigma2(self):
     x = 1.2
     key = ['sigma2']
     PS = ParameterSet(sigma2 = x)
     self.standard_check(key, x, PS)