def reset(self, init_qs=None): self.curr_timestep = 1 if init_qs is None: if self.inference_algo == 'VANILLA': self.qs = utils.obj_array_uniform(self.n_states) else: # in the case you're doing MMP (i.e. you have an inference_horizon > 1), we have to account for policy- and timestep-conditioned posterior beliefs self.qs = utils.obj_array(len(self.policies)) for p_i, _ in enumerate(self.policies): self.qs[p_i] = utils.obj_array( self.inference_horizon + self.policy_len + 1) # + 1 to include belief about current timestep # self.qs[p_i][0] = copy.deepcopy(self.D) # initialize the very first belief of the inference_horizon as the prior over initial hidden states self.qs[p_i][0] = utils.obj_array_uniform(self.n_states) first_belief = utils.obj_array(len(self.policies)) for p_i, _ in enumerate(self.policies): first_belief[p_i] = copy.deepcopy(self.D) if self.edge_handling_params['policy_sep_prior']: self.set_latest_beliefs(last_belief=first_belief) else: self.set_latest_beliefs(last_belief=self.D) else: if isinstance(init_qs, Categorical): self.qs = init_qs else: self.qs = Categorical(values=init_qs) return self.qs
def rand_dist_states(num_states): if type(num_states) is int: num_states = [num_states] states = obj_array(len(num_states)) for i in range(len(num_states)): states[i] = norm_dist(np.random.rand(num_states[i])) return states
def average_states_over_policies(qs_pi, q_pi): """ Parameters ---------- `qs_seq_pi` - marginal posteriors over hidden states, per policy, at the current time point `q_pi` - posterior beliefs about policies - (num_policies x 1) numpy 1D array Returns: --------- `qs_bma` - marginal posterior over hidden states for the current timepoint, averaged across policies according to their posterior probability given by `q_pi` """ q_pi = utils.to_numpy(q_pi) num_factors = len(qs_pi[0]) # get the number of hidden state factors using the shape of the first-policy-conditioned posterior num_states = [qs_f.shape[0] for qs_f in qs_pi[0]] # get the dimensionalities of each hidden state factor qs_bma = utils.obj_array(num_factors) for f in range(num_factors): qs_bma[f] = np.zeros(num_states[f]) for p_idx, policy_weight in enumerate(q_pi): for f in range(num_factors): qs_bma[f] += qs_pi[p_idx][f] * policy_weight return qs_bma
def rand_onehot_obs(num_obs): if type(num_obs) is int: num_obs = [num_obs] obs = obj_array(len(num_obs)) for i in range(len(num_obs)): ob = np.random.randint(num_obs[i]) obs[i] = onehot(ob, num_obs[i]) return obs
def get_future_qs(self): """ This method only gets the last `policy_len` timesteps of each policy-conditioned belief over hidden states. This is a step of pre-processing that needs to be done before computing the expected free energy of policies. We do this to avoid computing the expected free energy of policies using ('post-dictive') beliefs about hidden states in the past """ future_qs_seq = utils.obj_array(len(self.qs)) for p_idx in range(len(self.qs)): future_qs_seq[p_idx] = self.qs[p_idx][ -self. policy_len:] # this grabs only the last `policy_len` beliefs about hidden states, under each policy return future_qs_seq
def set_latest_beliefs(self, last_belief=None): """ This method sets the 'last' belief before the inference horizon. In the case that the inference horizon reaches back to the first timestep of the simulation, then the `latest_belief` is identical to the first belief / the prior (`self.D`). """ if last_belief is None: last_belief = utils.obj_array(len(self.policies)) for p_i, _ in enumerate(self.policies): last_belief[p_i] = copy.deepcopy(self.qs[p_i][0]) if self.edge_handling_params['use_BMA'] and ( self.curr_timestep - self.inference_horizon > 0): self.latest_belief = inference.average_states_over_policies( last_belief, self.q_pi ) # average the earliest marginals together using posterior over policies (`self.q_pi`) else: self.latest_belief = last_belief return self.latest_belief
def test_update_posterior_states_v2(self): """ Testing our SPM-ified version of `run_MMP` with 1 hidden state factor & 1 outcome modality, at a random fixed timestep during the generative process """ past_len = 3 future_len = 4 num_policies = 5 num_states = [6, 7, 8] num_controls = [9, 10, 11] num_obs = [12, 13, 14] num_modalities = len(num_obs) A = random_A_matrix(num_obs, num_states) B = random_B_matrix(num_states, num_controls) prev_obs = [rand_onehot_obs(num_obs) for _ in range(past_len)] prev_actions = np.array([rand_controls(num_controls) for _ in range(past_len)]) policies = [ np.array([rand_controls(num_controls) for _ in range(future_len)]) for _ in range(num_policies) ] prior = rand_dist_states(num_states) qs_seq_pi, VFE_policies = update_posterior_states_v2(A, B, prev_obs, policies, prev_actions, prior=prior, policy_sep_prior = False) qs_seq_pi_future = utils.obj_array(num_policies) for p_idx in range(num_policies): qs_seq_pi_future[p_idx] = qs_seq_pi[p_idx][(1 + past_len) :] # create C matrix # horizon = len(qs_seq_pi_future[0]) # C = utils.obj_array(horizon) # for t in range(horizon): # C[t] = utils.obj_array(num_modalities) # for g in range(num_modalities): # C[t][g] = np.ones(num_obs[g]) C = utils.obj_array_uniform(num_obs) q_pi, efe = update_posterior_policies_mmp( qs_seq_pi_future, A, B, C, policies, use_utility=True, use_states_info_gain=True, use_param_info_gain=False, prior = None, pA=None, pB=None, F = VFE_policies, E = None, gamma=16.0, return_numpy=True, ) qs_pi_curr_t = utils.obj_array(num_policies) for p_idx in range(num_policies): qs_pi_curr_t[p_idx] = qs_seq_pi[p_idx][past_len] qs_bma = average_states_over_policies(qs_pi_curr_t, q_pi) # Bayesian model average of hidden states across policies
def run_mmp(lh_seq, B, policy, prev_actions=None, prior=None, num_iter=10, grad_descent=False, tau=0.25, last_timestep=False, save_vfe_seq=False): """ Marginal message passing scheme for updating posterior beliefs about multi-factor hidden states over time, conditioned on a particular policy. Parameters: -------------- `lh_seq`[numpy object array]: Likelihoods of hidden state factors given a sequence of observations over time. This is logged beforehand `B`[numpy object array]: Transition likelihood of the generative model, mapping from hidden states at T to hidden states at T+1. One B matrix per modality (e.g. `B[f]` corresponds to f-th factor's B matrix) This is used in inference to compute the 'forward' and 'backward' messages conveyed between beliefs about temporally-adjacent timepoints. `policy` [2-D numpy.ndarray]: Matrix of shape (policy_len, num_control_factors) that indicates the indices of each action (control state index) upon timestep t and control_factor f in the element `policy[t,f]` for a given policy. `prev_actions` [None or 2-D numpy.ndarray]: If provided, should be a matrix of previous actions of shape (infer_len, num_control_factors) taht indicates the indices of each action (control state index) taken in the past (up until the current timestep). `prior`[None or numpy object array]: If provided, this a numpy object array with one sub-array per hidden state factor, that stores the prior beliefs about initial states (at t = 0, relative to `infer_len`). `num_iter`[Int]: Number of variational iterations `grad_descent` [Bool]: Flag for whether to use gradient descent (predictive coding style) `tau` [Float]: Decay constant for use in `grad_descent` version `last_timestep` [Bool]: Flag for whether we are at the last timestep of belief updating `save_vfe_seq` [Bool]: Flag for whether to save the sequence of variational free energies over time (for this policy). If `False`, then VFE is integrated across time/iterations. Returns: -------------- `qs_seq`[list]: the sequence of beliefs about the different hidden state factors over time, one multi-factor posterior belief per timestep in `infer_len` `F`[Float or list, depending on setting of save_vfe_seq] """ # window past_len = len(lh_seq) future_len = policy.shape[0] if last_timestep: infer_len = past_len + future_len - 1 else: infer_len = past_len + future_len future_cutoff = past_len + future_len - 2 # dimensions _, num_states, _, num_factors = get_model_dimensions(A=None, B=B) B = to_arr_of_arr(B) # beliefs qs_seq = obj_array(infer_len) for t in range(infer_len): qs_seq[t] = obj_array_uniform(num_states) # last message qs_T = obj_array_zeros(num_states) # prior if prior is None: prior = obj_array_uniform(num_states) # transposed transition trans_B = obj_array(num_factors) for f in range(num_factors): trans_B[f] = spm_norm(np.swapaxes(B[f], 0, 1)) # full policy if prev_actions is None: prev_actions = np.zeros((past_len, policy.shape[1])) policy = np.vstack((prev_actions, policy)) # initialise variational free energy of policy (accumulated over time) if save_vfe_seq: F = [] F.append(0.0) else: F = 0.0 for itr in range(num_iter): for t in range(infer_len): for f in range(num_factors): # likelihood if t < past_len: lnA = spm_log(spm_dot(lh_seq[t], qs_seq[t], [f])) else: lnA = np.zeros(num_states[f]) # past message if t == 0: lnB_past = spm_log(prior[f]) else: past_msg = B[f][:, :, int(policy[t - 1, f])].dot(qs_seq[t - 1][f]) lnB_past = spm_log(past_msg) # future message if t >= future_cutoff: lnB_future = qs_T[f] else: future_msg = trans_B[f][:, :, int(policy[t, f])].dot( qs_seq[t + 1][f]) lnB_future = spm_log(future_msg) # inference if grad_descent: lnqs = spm_log(qs_seq[t][f]) coeff = 1 if (t >= future_cutoff) else 2 err = (coeff * lnA + lnB_past + lnB_future) - coeff * lnqs err -= err.mean() lnqs = lnqs + tau * err qs_seq[t][f] = softmax(lnqs) if (t == 0) or (t == (infer_len - 1)): F += +0.5 * lnqs.dot(0.5 * err) else: F += lnqs.dot( 0.5 * (err - (num_factors - 1) * lnA / num_factors) ) # @NOTE: not sure why Karl does this in SPM_MDP_VB_X, we should look into this else: qs_seq[t][f] = softmax(lnA + lnB_past + lnB_future) if not grad_descent: if save_vfe_seq: if t < past_len: F.append( F[-1] + calc_free_energy(qs_seq[t], prior, num_factors, likelihood=spm_log(lh_seq[t]))[0]) else: F.append( F[-1] + calc_free_energy(qs_seq[t], prior, num_factors)[0]) else: if t < past_len: F += calc_free_energy(qs_seq[t], prior, num_factors, likelihood=spm_log(lh_seq[t])) else: F += calc_free_energy(qs_seq[t], prior, num_factors) return qs_seq, F
A[0][:, :, 1] = np.ones((num_obs[0], num_states[0])) / num_obs[0] A[0][:, :, 2] = np.array([[0.8, 0.2], [0.0, 0.0], [0.2, 0.8]]) A[1][2, :, 0] = np.ones(num_states[0]) A[1][0:2, :, 1] = softmax( np.eye(num_obs[1] - 1) ) # bandit statistics (mapping between reward-state (first hidden state factor) and rewards (Good vs Bad)) A[1][2, :, 2] = np.ones(num_states[0]) # establish a proprioceptive mapping that determines how the agent perceives its own `decision_state` A[2][0, :, 0] = 1.0 A[2][1, :, 1] = 1.0 A[2][2, :, 2] = 1.0 control_fac_idx = [1] B = utils.obj_array(num_factors) for f, ns in enumerate(num_states): B[f] = np.eye(ns) if f in control_fac_idx: B[f] = B[f].reshape(ns, ns, 1) B[f] = np.tile(B[f], (1, 1, ns)) B[f] = B[f].transpose(1, 2, 0) else: B[f] = B[f].reshape(ns, ns, 1) C = utils.obj_array_zeros([num_ob for num_ob in num_obs]) C[1][0] = 1.0 # put a 'reward' over first observation C[1][1] = -2.0 # put a 'punishment' over first observation # this implies that C[1][2] is 'neutral' agent = Agent(A=A, B=B, C=C, control_fac_idx=[1])
def update_posterior_policies_mmp( qs_seq_pi, A, B, C, policies, use_utility=True, use_states_info_gain=True, use_param_info_gain=False, prior=None, pA=None, pB=None, F=None, E=None, gamma=16.0, return_numpy=True, ): """ `qs_seq_pi`: numpy object array that stores posterior marginals beliefs over hidden states for each policy. The structure is nested as policies --> timesteps --> hidden state factors. So qs_seq_pi[p_idx][t][f] is the belief about factor `f` at time `t`, under policy `p_idx` `A`: numpy object array that stores likelihood mappings for each modality. `B`: numpy object array that stores transition matrices (possibly action-conditioned) for each hidden state factor `policies`: numpy object array that stores each (potentially-multifactorial) policy in `policies[p_idx]`. Shape of `policies[p_idx]` is `(num_timesteps, num_factors)` `use_utility`: Boolean that determines whether expected utility should be incorporated into computation of EFE (default: `True`) `use_states_info_gain`: Boolean that determines whether state epistemic value (info gain about hidden states) should be incorporated into computation of EFE (default: `True`) `use_param_info_gain`: Boolean that determines whether parameter epistemic value (info gain about generative model parameters) should be incorporated into computation of EFE (default: `False`) `prior`: numpy object array that stores priors over hidden states - this matters when computing the first value of the parameter info gain for the Dirichlet parameters over B `pA`: numpy object array that stores Dirichlet priors over likelihood mappings (one per modality) `pB`: numpy object array that stores Dirichlet priors over transition mappings (one per hidden state factor) `F` : 1D numpy array that stores variational free energy of each policy `E` : 1D numpy array that stores prior probability each policy (e.g. 'habits') `gamma`: Float that encodes the precision over policies `return_numpy`: Boolean that determines whether output should be a numpy array or an instance of the Categorical class (default: `True`) """ A = utils.to_numpy(A) B = utils.to_numpy(B) num_obs, num_states, num_modalities, num_factors = utils.get_model_dimensions( A, B) horizon = len(qs_seq_pi[0]) num_policies = len(qs_seq_pi) # initialise`qo_seq` as object arrays to initially populate `qo_seq_pi` qo_seq = utils.obj_array(horizon) for t in range(horizon): qo_seq[t] = utils.obj_array_zeros(num_obs) # initialise expected observations qo_seq_pi = utils.obj_array(num_policies) for p_idx in range(num_policies): # qo_seq_pi[p_idx] = copy.deepcopy(obs_over_time) qo_seq_pi[p_idx] = qo_seq efe = np.zeros(num_policies) if F is None: F = np.zeros(num_policies) if E is None: E = np.zeros(num_policies) for p_idx, policy in enumerate(policies): qs_seq_pi_i = qs_seq_pi[p_idx] for t in range(horizon): qo_pi_t = get_expected_obs(qs_seq_pi_i[t], A) qo_seq_pi[p_idx][t] = qo_pi_t if use_utility: efe[p_idx] += calc_expected_utility(qo_seq_pi[p_idx][t], C) if use_states_info_gain: efe[p_idx] += calc_states_info_gain(A, qs_seq_pi_i[t]) if use_param_info_gain: if pA is not None: efe[p_idx] += calc_pA_info_gain(pA, qo_seq_pi[p_idx][t], qs_seq_pi_i[t]) if pB is not None: if t > 0: efe[p_idx] += calc_pB_info_gain( pB, qs_seq_pi_i[t], qs_seq_pi_i[t - 1], policy) else: if prior is not None: efe[p_idx] += calc_pB_info_gain( pB, qs_seq_pi_i[t], prior, policy) q_pi = softmax(efe * gamma - F + E) if return_numpy: q_pi = q_pi / q_pi.sum(axis=0) else: q_pi = utils.to_categorical(q_pi) q_pi.normalize() return q_pi, efe
def update_posterior_states_v2( A, B, prev_obs, policies, prev_actions=None, prior=None, return_numpy=True, policy_sep_prior = True, **kwargs, ): """ Update posterior over hidden states using marginal message passing """ # safe convert to numpy A = utils.to_numpy(A) num_obs, num_states, num_modalities, num_factors = utils.get_model_dimensions(A, B) A = utils.to_arr_of_arr(A) B = utils.to_arr_of_arr(B) prev_obs = utils.process_observation_seq(prev_obs, num_modalities, num_obs) if prior is not None: if policy_sep_prior: for p_idx, policy in enumerate(policies): prior[p_idx] = utils.process_prior(prior[p_idx], num_factors) else: prior = utils.process_prior(prior, num_factors) lh_seq = get_joint_likelihood_seq(A, prev_obs, num_states) if prev_actions is not None: prev_actions = np.stack(prev_actions,0) qs_seq_pi = utils.obj_array(len(policies)) F = np.zeros(len(policies)) # variational free energy of policies if policy_sep_prior: for p_idx, policy in enumerate(policies): # get sequence and the free energy for policy qs_seq_pi[p_idx], F[p_idx] = run_mmp( lh_seq, B, policy, prev_actions=prev_actions, prior=prior[p_idx], **kwargs ) else: for p_idx, policy in enumerate(policies): # get sequence and the free energy for policy qs_seq_pi[p_idx], F[p_idx] = run_mmp( lh_seq, B, policy, prev_actions=prev_actions, prior=prior, **kwargs ) return qs_seq_pi, F