Example #1
0
def profile(displacements, depth, direction, dose_dataset, plan_dataset):
    """Interpolates dose for cardinal angle horizontal profiles within a
    DICOM dose dataset.

    Since the DICOM dose dataset is in CT coordinates the corresponding
    DICOM plan is also required in order to calculate the conversion
    between CT coordinate space and depth and horizontal displacement.

    Currently, `profile()` only supports a `dose_dataset` for which
    the patient orientation is HFS and that any beams in `plan_dataset`
    have gantry angle equal to 0 (head up). Depth is assumed to be
    purely in the y axis direction in DICOM coordinates.

    Parameters
    ----------
    displacements : numpy.ndarray
        An array of displacements to interpolate within the DICOM dose
        file. 0 is defined in the DICOM z or x directions based either
        upon the ``SurfaceEntryPoint`` or the ``IsocenterPosition``
        depending on what is available within the DICOM plan file.
    depth : float
        The depth at which to interpolate within the DICOM dose file. 0 is
        defined as the surface of the phantom using either the
        ``SurfaceEntryPoint`` parameter or a combination of
        ``SourceAxisDistance``, ``SourceToSurfaceDistance``, and
        ``IsocentrePosition``.
    direction : str, one of ('inplane', 'inline', 'crossplane', 'crossline')
        Corresponds to the axis upon which to apply the displacements.
         - 'inplane' or 'inline' converts to DICOM z direction
         - 'crossplane' or 'crossline' converts to DICOM x direction
    dose_dataset : pydicom.dataset.Dataset
        The RT DICOM dose dataset to be interpolated
    plan_dataset : pydicom.dataset.Dataset
        The RT DICOM plan used to extract surface and isocentre
        parameters and verify gantry angle 0 beams are used.
    """

    require_patient_orientation(dose_dataset, "HFS")
    require_gantries_be_zero(plan_dataset)
    displacements = np.array(displacements, copy=False)

    surface_entry_point = get_surface_entry_point_with_fallback(plan_dataset)
    depth_adjust = surface_entry_point.y
    y = [depth + depth_adjust]

    if direction in ("inplane", "inline"):
        coords = (displacements + surface_entry_point.z, y,
                  [surface_entry_point.x])
    elif direction in ("crossplane", "crossline"):
        coords = ([surface_entry_point.z], y,
                  displacements + surface_entry_point.x)
    else:
        raise ValueError("Expected direction to be equal to one of "
                         "'inplane', 'inline', 'crossplane', or 'crossline'")

    extracted_dose = np.squeeze(dicom_dose_interpolate(coords, dose_dataset))

    return extracted_dose
Example #2
0
    def _from_mosaiq_base(cls, cursor, field_id):
        txfield_results, txfieldpoint_results = fetch_and_verify_mosaiq_sql(
            cursor, field_id)

        total_mu = np.array(txfield_results[0]).astype(float)
        cumulative_percentage_mu = txfieldpoint_results[:, 0].astype(float)

        if np.shape(cumulative_percentage_mu) == ():
            mu_per_control_point = [0, total_mu]
        else:
            cumulative_mu = cumulative_percentage_mu * total_mu / 100
            mu_per_control_point = np.concatenate([[0],
                                                   np.diff(cumulative_mu)])

        monitor_units = np.cumsum(mu_per_control_point).tolist()

        mlc_a = np.squeeze(
            decode_msq_mlc(txfieldpoint_results[:, 1].astype(bytes))).T
        mlc_b = np.squeeze(
            decode_msq_mlc(txfieldpoint_results[:, 2].astype(bytes))).T

        msq_gantry_angle = txfieldpoint_results[:, 3].astype(float)
        msq_collimator_angle = txfieldpoint_results[:, 4].astype(float)

        coll_y1 = txfieldpoint_results[:, 5].astype(float)
        coll_y2 = txfieldpoint_results[:, 6].astype(float)

        mlc, jaw = collimation_to_bipolar_mm(mlc_a, mlc_b, coll_y1, coll_y2)
        gantry = convert_IEC_angle_to_bipolar(msq_gantry_angle)
        collimator = convert_IEC_angle_to_bipolar(msq_collimator_angle)

        # TODO Tidy up this axis swap
        mlc = np.swapaxes(mlc, 0, 2)
        jaw = np.swapaxes(jaw, 0, 1)

        mosaiq_delivery_data = cls(monitor_units, gantry, collimator, mlc, jaw)

        return mosaiq_delivery_data
Example #3
0
def depth_dose(depths, dose_dataset, plan_dataset):
    """Interpolates dose for defined depths within a DICOM dose dataset.

    Since the DICOM dose dataset is in CT coordinates the corresponding
    DICOM plan is also required in order to calculate the conversion
    between CT coordinate space and depth.

    Currently, `depth_dose()` only supports a `dose_dataset` for which
    the patient orientation is HFS and that any beams in `plan_dataset`
    have gantry angle equal to 0 (head up). Depth is assumed to be
    purely in the y axis direction in DICOM coordinates.

    Parameters
    ----------
    depths : numpy.ndarray
        An array of depths to interpolate within the DICOM dose file. 0 is
        defined as the surface of the phantom using either the
        ``SurfaceEntryPoint`` parameter or a combination of
        ``SourceAxisDistance``, ``SourceToSurfaceDistance``, and
        ``IsocentrePosition``.
    dose_dataset : pydicom.dataset.Dataset
        The RT DICOM dose dataset to be interpolated
    plan_dataset : pydicom.dataset.Dataset
        The RT DICOM plan used to extract surface parameters and verify gantry
        angle 0 beams are used.
    """
    require_patient_orientation(dose_dataset, "HFS")
    require_gantries_be_zero(plan_dataset)
    depths = np.array(depths, copy=False)

    surface_entry_point = get_surface_entry_point_with_fallback(plan_dataset)
    depth_adjust = surface_entry_point.y

    y = depths + depth_adjust
    x, z = [surface_entry_point.x], [surface_entry_point.z]

    coords = (z, y, x)

    extracted_dose = np.squeeze(dicom_dose_interpolate(coords, dose_dataset))

    return extracted_dose
Example #4
0
def visual_alignment_of_equivalent_ellipse(x, y, width, length, callback):
    """Visually align the equivalent ellipse to the insert."""
    insert = shapely_insert(x, y)
    unit_circle = shapely.geometry.Point(0, 0).buffer(1)
    initial_ellipse = shapely.affinity.scale(unit_circle,
                                             xfact=width / 2,
                                             yfact=length / 2)

    def minimising_function(optimiser_input):
        x_shift, y_shift, rotation_angle = optimiser_input
        rotated = shapely.affinity.rotate(initial_ellipse,
                                          rotation_angle,
                                          use_radians=True)
        translated = shapely.affinity.translate(rotated,
                                                xoff=x_shift,
                                                yoff=y_shift)

        disjoint_area = (translated.difference(insert).area +
                         insert.difference(translated).area)

        return disjoint_area / 400

    x0 = np.append(np.squeeze(insert.centroid.coords), np.pi / 4)
    niter = 10
    T = insert.area / 40000
    stepsize = 3
    niter_success = 2
    output = scipy.optimize.basinhopping(
        minimising_function,
        x0,
        niter=niter,
        T=T,
        stepsize=stepsize,
        niter_success=niter_success,
        callback=callback,
    )

    x_shift, y_shift, rotation_angle = output.x

    return x_shift, y_shift, rotation_angle
Example #5
0
def search_for_centre_of_largest_bounded_circle(x, y, callback=None):
    """Find the centre of the largest bounded circle within the insert."""
    insert = shapely_insert(x, y)
    boundary = insert.boundary
    centroid = insert.centroid

    furthest_distance = np.hypot(np.diff(insert.bounds[::2]),
                                 np.diff(insert.bounds[1::2]))

    def minimising_function(optimiser_input):
        x, y = optimiser_input
        point = shapely.geometry.Point(x, y)

        if insert.contains(point):
            edge_distance = point.distance(boundary)
        else:
            edge_distance = -point.distance(boundary)

        return -edge_distance

    x0 = np.squeeze(centroid.coords)
    niter = 200
    T = furthest_distance / 3
    stepsize = furthest_distance / 2
    niter_success = 50
    output = scipy.optimize.basinhopping(
        minimising_function,
        x0,
        niter=niter,
        T=T,
        stepsize=stepsize,
        niter_success=niter_success,
        callback=callback,
    )

    circle_centre = output.x

    return circle_centre