Example #1
0
def fix_mesh(mesh, resolution):
    bbox_min, bbox_max = mesh.bbox
    diag_len = norm(bbox_max - bbox_min)

    target_len = diag_len * resolution

    rospy.loginfo("\tTarget resolution: {} mm".format(target_len))

    count = 0
    mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100)
    mesh, __ = pymesh.split_long_edges(mesh, target_len)
    num_vertices = mesh.num_vertices
    while True:
        mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6)
        mesh, __ = pymesh.collapse_short_edges(mesh,
                                               target_len,
                                               preserve_feature=True)
        mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100)
        if mesh.num_vertices == num_vertices:
            break

        num_vertices = mesh.num_vertices
        rospy.loginfo("\t#vertices: {}".format(num_vertices))
        count += 1
        if count > 2: break

    mesh = pymesh.resolve_self_intersection(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    mesh = pymesh.compute_outer_hull(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5)
    mesh, __ = pymesh.remove_isolated_vertices(mesh)

    return mesh
Example #2
0
def fix_meshes(mesh, detail="normal"):
    meshCopy = mesh

    # copy/pasta of pymesh script fix_mesh from qnzhou, see pymesh on GitHub
    bbox_min, bbox_max = mesh.bbox
    diag_len = np.linalg.norm(bbox_max - bbox_min)
    if detail == "normal":
        target_len = diag_len * 5e-3
    elif detail == "high":
        target_len = diag_len * 2.5e-3
    elif detail == "low":
        target_len = diag_len * 1e-2

    count = 0
    mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100)
    mesh, __ = pymesh.split_long_edges(mesh, target_len)
    num_vertices = mesh.num_vertices
    while True:
        mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6)
        mesh, __ = pymesh.collapse_short_edges(mesh,
                                               target_len,
                                               preserve_feature=True)
        mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100)
        if mesh.num_vertices == num_vertices:
            break

        num_vertices = mesh.num_vertices
        count += 1
        if count > 10:
            break

    mesh = pymesh.resolve_self_intersection(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    mesh = pymesh.compute_outer_hull(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5)
    mesh, __ = pymesh.remove_isolated_vertices(mesh)

    if is_mesh_broken(mesh, meshCopy) is True:
        if detail == "high":
            print(
                f'The function fix_meshes broke mesh, trying with lower details settings'
            )
            fix_meshes(mesh, detail="normal")
        if detail == "normal":
            print(
                f'The function fix_meshes broke mesh, trying with lower details settings'
            )
            fix_meshes(mesh, detail="low")
        if detail == "low":
            print(
                f'The function fix_meshes broke mesh, no lower settings can be applied, no fix was done'
            )
            return meshCopy
    else:
        return mesh
Example #3
0
def carve_mesh(target_mesh, block, N, batch_size, out_name,
        initial_N=0, save_intermediate=True, debug=False):
    name, ext = os.path.splitext(out_name);
    tree = pymesh.AABBTree();
    tree.load_mesh(target_mesh);

    dodecahedron = pymesh.generate_dodecahedron(1.0, np.zeros(3));
    vertices = dodecahedron.vertices;
    faces = dodecahedron.faces;

    for i in range(initial_N, N, batch_size):
        pts = block.vertices;
        squared_dist, face_indices, closest_pts = \
                tree.look_up_with_closest_points(pts);
        n = np.min([batch_size, N-i, len(pts)]);
        indices = np.argsort(squared_dist)[::-1][:n];
        radii = np.sqrt(squared_dist[indices]);
        centers = pts[indices, :];
        to_remove = [pymesh.form_mesh(
            np.dot(pymesh.Quaternion(numpy.random.rand(4)).to_matrix(), vertices.T * r).T + p, faces)
            for r,p in zip(radii, centers)];
        to_remove = pymesh.merge_meshes(to_remove);
        if debug:
            pymesh.save_mesh("deubg_block.msh", block);
            pymesh.save_mesh("deubg_cut.msh", to_remove);
        block = pymesh.boolean(block, to_remove, "difference", engine="igl");
        block, __ = pymesh.collapse_short_edges(block, 1e-12, False);
        if save_intermediate:
            pymesh.save_mesh("{}_{:06}{}".format(name, i, ext), block);
    return block;
def clean_up_mesh(mesh, tol):
    new_mesh, _ = pymesh.remove_isolated_vertices(mesh)
    new_mesh, _ = pymesh.remove_duplicated_vertices(new_mesh)
    new_mesh, _ = pymesh.remove_duplicated_faces(new_mesh)
    new_mesh, _ = pymesh.remove_degenerated_triangles(new_mesh)
    new_mesh, _ = pymesh.collapse_short_edges(new_mesh, rel_threshold=0.2)
    return new_mesh
Example #5
0
def carve_mesh(target_mesh, block, N, batch_size, out_name,
        initial_N=0, save_intermediate=True, debug=False):
    name, ext = os.path.splitext(out_name);
    tree = pymesh.AABBTree();
    tree.load_mesh(target_mesh);

    dodecahedron = pymesh.generate_dodecahedron(1.0, np.zeros(3));
    vertices = dodecahedron.vertices;
    faces = dodecahedron.faces;

    for i in range(initial_N, N, batch_size):
        pts = block.vertices;
        squared_dist, face_indices, closest_pts = \
                tree.look_up_with_closest_points(pts);
        n = np.min([batch_size, N-i, len(pts)]);
        indices = np.argsort(squared_dist)[::-1][:n];
        radii = np.sqrt(squared_dist[indices]);
        centers = pts[indices, :];
        to_remove = [pymesh.form_mesh(
            np.dot(pymesh.Quaternion(numpy.random.rand(4)).to_matrix(), vertices.T * r).T + p, faces)
            for r,p in zip(radii, centers)];
        to_remove = pymesh.merge_meshes(to_remove);
        if debug:
            pymesh.save_mesh("deubg_block.msh", block);
            pymesh.save_mesh("deubg_cut.msh", to_remove);
        block = pymesh.boolean(block, to_remove, "difference", engine="igl");
        block, __ = pymesh.collapse_short_edges(block, 1e-12, False);
        if save_intermediate:
            pymesh.save_mesh("{}_{:06}{}".format(name, i, ext), block);
    return block;
Example #6
0
def fix_mesh(mesh, detail=5e-3):
    # "normal": 5e-3
    # "high":   2.5e-3
    # "low":    2e-2
    # "vlow":   2.5e-2
    bbox_min, bbox_max = mesh.bbox
    diag_len = np.linalg.norm(bbox_max - bbox_min)
    if detail is None:
        detail = 5e-3
    target_len = diag_len * detail
    print("Target resolution: {} mm".format(target_len))

    count = 0
    mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100)
    mesh, __ = pymesh.split_long_edges(mesh, target_len)
    num_vertices = mesh.num_vertices
    while True:
        mesh, __ = pymesh.collapse_short_edges(mesh, 1e-4)
        mesh, __ = pymesh.collapse_short_edges(mesh,
                                               target_len,
                                               preserve_feature=True)

        mesh, __ = pymesh.remove_isolated_vertices(mesh)
        mesh, __ = pymesh.remove_duplicated_vertices(mesh, tol=1e-4)
        mesh, __ = pymesh.remove_duplicated_faces(mesh)
        mesh, __ = pymesh.remove_degenerated_triangles(mesh)
        mesh, __ = pymesh.remove_isolated_vertices(mesh)

        mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100)
        if mesh.num_vertices == num_vertices:
            break

        num_vertices = mesh.num_vertices
        print("fix #v: {}".format(num_vertices))
        count += 1
        if count > 10:
            break

    mesh = pymesh.resolve_self_intersection(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    mesh = pymesh.compute_outer_hull(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5)
    mesh, __ = pymesh.remove_isolated_vertices(mesh)

    return mesh
Example #7
0
def fix_mesh(mesh, detail="normal"):

    bbox_min, bbox_max = mesh.bbox
    diag_len = norm(bbox_max - bbox_min)

    if detail == "normal":
        target_len = diag_len * 1e-2

    elif detail == "high":
        target_len = diag_len * 5e-3

    elif detail == "low":
        target_len = diag_len * 0.03

    print("Target resolution: {} mm".format(target_len))

    count = 0
    mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100)
    mesh, __ = pymesh.split_long_edges(mesh, target_len)
    num_vertices = mesh.num_vertices

    while True:
        mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6)
        mesh, __ = pymesh.collapse_short_edges(mesh,
                                               target_len,
                                               preserve_feature=True)
        mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100)

        if mesh.num_vertices == num_vertices:
            break

        num_vertices = mesh.num_vertices
        print("#v: {}".format(num_vertices))
        count += 1
        if count > 10:
            break

    mesh = pymesh.resolve_self_intersection(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    mesh = pymesh.compute_outer_hull(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5)
    mesh, __ = pymesh.remove_isolated_vertices(mesh)

    return mesh
def refine_mesh(mesh, cycles, long_threshold, **kwargs):
    """
    kwargs can be: abs_threshold, rel_threshold, preserve_feature
    """
    for i in range(cycles):
        mesh, _ = pymesh.split_long_edges(mesh, long_threshold)
        mesh, _ = pymesh.collapse_short_edges(mesh, **kwargs)
        
    return mesh
def fix_mesh(mesh, detail="normal"):
    bbox_min, bbox_max = mesh.bbox;
    diag_len = norm(bbox_max - bbox_min);
    if detail == "normal":
        target_len = diag_len * 1e-2;
        #target_len = diag_len * 5e-3;
    elif detail == "enormal":
        target_len = diag_len * 5e-3
    elif detail == "high":
        target_len = diag_len * 3e-3
        #target_len = diag_len * 2.5e-3;
    elif detail == "low":
        target_len = diag_len * 1e-2;
    elif detail == "ehigh":
        target_len = diag_len * 1e-3;
    print("Target resolution: {} mm".format(target_len));

    count = 0;
    mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100);
    mesh, __ = pymesh.split_long_edges(mesh, target_len);
    num_vertices = mesh.num_vertices;
    while True:
        #mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6);
        if detail == "low":
            mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=False);
        else:
            mesh, __ = pymesh.collapse_short_edges(mesh, target_len, preserve_feature=True);
        mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100);
        if mesh.num_vertices == num_vertices:
            break;

        num_vertices = mesh.num_vertices;
        print("#v: {}".format(num_vertices));
        count += 1;
        if count > 10: break;

    mesh = pymesh.resolve_self_intersection(mesh);
    mesh, __ = pymesh.remove_duplicated_faces(mesh);
    mesh = pymesh.compute_outer_hull(mesh);
    mesh, __ = pymesh.remove_duplicated_faces(mesh);
    mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5);
    mesh, __ = pymesh.remove_isolated_vertices(mesh);

    return mesh;
Example #10
0
def fix_mesh(mesh, target_len):
    bbox_min, bbox_max = mesh.bbox
    diag_len = np.linalg.norm(bbox_max - bbox_min)

    count = 0
    print("  remove degenerated triangles")
    mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100)
    print("  split long edges")
    mesh, __ = pymesh.split_long_edges(mesh, target_len)
    num_vertices = mesh.num_vertices
    while True:
        print("  pass %d" % count)
        print("    collapse short edges #1")
        mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6)
        print("    collapse short edges #2")
        mesh, __ = pymesh.collapse_short_edges(mesh,
                                               target_len,
                                               preserve_feature=True)
        print("    remove obtuse triangles")
        mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100)
        print("    %d of %s vertices." % (num_vertices, mesh.num_vertices))

        if mesh.num_vertices == num_vertices:
            break

        num_vertices = mesh.num_vertices
        count += 1
        if count > 10: break

    print("  resolve self intersection")
    mesh = pymesh.resolve_self_intersection(mesh)
    print("  remove duplicated faces")
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    print("  computer outer hull")
    mesh = pymesh.compute_outer_hull(mesh)
    print("  remove duplicated faces")
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    print("  remove obtuse triangles")
    mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5)
    print("  remove isolated vertices")
    mesh, __ = pymesh.remove_isolated_vertices(mesh)

    return mesh
Example #11
0
    def __fix_mesh(self, mesh, improvement_thres=0.8):
        mesh, __ = pymesh.split_long_edges(mesh, self.mesh_target_len)
        num_vertices = len(mesh.vertices)

        for __ in range(10):
            mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6)
            mesh, __ = pymesh.collapse_short_edges(
                mesh, self.mesh_target_len, preserve_feature=True
            )
            mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100)

            if len(mesh.vertices) < num_vertices * improvement_thres:
                break

        mesh = pymesh.resolve_self_intersection(mesh)
        mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6)
        mesh, __ = pymesh.remove_duplicated_faces(mesh)
        mesh, __ = pymesh.remove_duplicated_faces(mesh)
        mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5)
        mesh, __ = pymesh.remove_isolated_vertices(mesh)

        return mesh
def fix_mesh(mesh, target_len):
    bbox_min, bbox_max = mesh.bbox
    diag_len = np.linalg.norm(bbox_max - bbox_min)

    print("running downsample mesh to len %.3f" % target_len)
    count = 0
    mesh, __ = pymesh.split_long_edges(mesh, target_len)
    num_vertices = mesh.num_vertices
    while True:
        mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6)
        mesh, __ = pymesh.collapse_short_edges(mesh,
                                               target_len,
                                               preserve_feature=True)

        if mesh.num_vertices == num_vertices:
            break

        num_vertices = mesh.num_vertices
        count += 1
        if count > 10: break

    return mesh
Example #13
0
def old_fix_mesh(vertices, faces, detail="normal"):
    bbox_min = np.amin(vertices, axis=0)
    bbox_max = np.amax(vertices, axis=0)
    diag_len = norm(bbox_max - bbox_min)
    if detail == "normal":
        target_len = diag_len * 5e-3
    elif detail == "high":
        target_len = diag_len * 2.5e-3
    elif detail == "low":
        target_len = diag_len * 1e-2
    print("Target resolution: {} mm".format(target_len))

    count = 0
    vertices, faces = pymesh.split_long_edges(vertices, faces, target_len)
    num_vertices = len(vertices)
    while True:
        vertices, faces = pymesh.collapse_short_edges(vertices, faces, 1e-6)
        vertices, faces = pymesh.collapse_short_edges(vertices,
                                                      faces,
                                                      target_len,
                                                      preserve_feature=True)
        vertices, faces = pymesh.remove_obtuse_triangles(
            vertices, faces, 150.0, 100)
        if num_vertices == len(vertices):
            break
        num_vertices = len(vertices)
        print("#v: {}".format(num_vertices))
        count += 1
        if count > 10: break

    vertices, faces = pymesh.resolve_self_intersection(vertices, faces)
    vertices, faces = pymesh.remove_duplicated_faces(vertices, faces)
    vertices, faces, _ = pymesh.compute_outer_hull(vertices, faces, False)
    vertices, faces = pymesh.remove_duplicated_faces(vertices, faces)
    vertices, faces = pymesh.remove_obtuse_triangles(vertices, faces, 179.0, 5)
    vertices, faces, voxels = pymesh.remove_isolated_vertices(vertices, faces)
    return vertices, faces
Example #14
0
def fix_mesh(mesh, detail="normal"):
    bbox_min, bbox_max = mesh.bbox;
    diag_len = norm(bbox_max - bbox_min);
    if detail == "normal":
        target_len = diag_len * 5e-3;
    elif detail == "high":
        target_len = diag_len * 2.5e-3;
    elif detail == "low":
        target_len = diag_len * 1e-2;
    print("Target resolution: {} mm".format(target_len));

    count = 0;
    mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100);
    mesh, __ = pymesh.split_long_edges(mesh, target_len);
    num_vertices = mesh.num_vertices;
    while True:
        mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6);
        mesh, __ = pymesh.collapse_short_edges(mesh, target_len,
                preserve_feature=True);
        mesh, __ = pymesh.remove_obtuse_triangles(mesh, 150.0, 100);
        if mesh.num_vertices == num_vertices:
            break;

        num_vertices = mesh.num_vertices;
        print("#v: {}".format(num_vertices));
        count += 1;
        if count > 10: break;

    mesh = pymesh.resolve_self_intersection(mesh);
    mesh, __ = pymesh.remove_duplicated_faces(mesh);
    mesh = pymesh.compute_outer_hull(mesh);
    mesh, __ = pymesh.remove_duplicated_faces(mesh);
    mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5);
    mesh, __ = pymesh.remove_isolated_vertices(mesh);

    return mesh;
Example #15
0
def fix_mesh(mesh):
    mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100)
    log_mesh(mesh, "Remove degenerate faces")
    mesh, __ = pymesh.collapse_short_edges(mesh, MIN_RES, preserve_feature=True)
    log_mesh(mesh, "Collapse short edges")
    mesh = pymesh.resolve_self_intersection(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    log_mesh(mesh, "Remove self intersections")
    mesh = pymesh.compute_outer_hull(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    log_mesh(mesh, "New hull, remove duplicates")
    mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.5, 5)
    log_mesh(mesh, "Remote obtuse faces")
    mesh, __ = pymesh.remove_isolated_vertices(mesh)
    log_mesh(mesh, "Remove isolated vertices")
    return mesh
    def execute(self, context):
        scene = context.scene
        pymesh_props = scene.pymesh

        obj_a = context.active_object
        mesh_a = import_object(context, obj_a)
        pymesh_r, info = pymesh.remove_degenerated_triangles(mesh_a)
        pymesh_r, info = pymesh.remove_obtuse_triangles(pymesh_r)
        pymesh_r, info = pymesh.remove_duplicated_faces(pymesh_r)
        pymesh_r, info = pymesh.collapse_short_edges(pymesh_r)
        pymesh_r, info = pymesh.remove_duplicated_vertices(pymesh_r)
        pymesh_r, info = pymesh.remove_isolated_vertices(pymesh_r)
        off_name = "Py.Clean." + obj_a.name
        mesh_r = export_mesh(context, pymesh_r, off_name)
        add_to_scene(context, mesh_r)

        return {'FINISHED'}
Example #17
0
    def filter(self):
        mesh = pymesh.form_mesh(self.mesh.points.values,
                                self.mesh.cells.values)

        mesh, _ = pymesh.remove_degenerated_triangles(mesh,
                                                      self.max_iterations)
        mesh, _ = pymesh.split_long_edges(mesh, self.size)
        num_vertices = mesh.num_vertices
        for _ in range(self.max_iterations):
            mesh, _ = pymesh.collapse_short_edges(mesh,
                                                  self.size,
                                                  preserve_feature=True)
            mesh, _ = pymesh.remove_obtuse_triangles(mesh, self.max_angle,
                                                     self.max_iterations)

            if mesh.num_vertices == num_vertices:
                break

            num_vertices = mesh.num_vertices

        return self.mesh.mesh_class()(mesh, parents=[self.mesh])
Example #18
0
def remeshing_and_texture(reconstruction_dir):
    texture_mesh(reconstruction_dir, 0)
    print_header("Remeshing the model")
    length = 1.0
    while 1:
        print(
            "Trying to resize mesh and texture. Current edge collapse threshold "
            + str(length) + ".")
        start = time.time()
        mesh = pymesh.load_mesh(reconstruction_dir +
                                "/scene_dense_mesh_refine.ply")
        mesh, info = pymesh.collapse_short_edges(mesh,
                                                 rel_threshold=float(length))
        if len(mesh.vertices) > 1000 and length < 4:
            pymesh.save_mesh(
                reconstruction_dir + "/remesh_" + str(length) + ".ply", mesh)
            end = time.time()
            print("Elapsed time: %d sec" % (end - start) + "\n")
            texture_mesh(reconstruction_dir, length)
            length += 0.5
        else:
            print("Can't texture mapping on resized mesh with threshold " +
                  str(length) + "!")
            return -1
polyfile = sys.argv[1]
meshfile = sys.argv[2]
trilineleng = float(sys.argv[3])
trilineshortleng = float(sys.argv[4])

x = json.loads(open(polyfile).readline())
vertices = numpy.array(x[0])
faces = numpy.array(x[1])
mesh = pymesh.form_mesh(vertices, faces)

#mesh, info = pymesh.remove_degenerated_triangles(mesh, 100)
preserve_feature = False  # see https://github.com/PyMesh/PyMesh/issues/289
mesh, info = pymesh.split_long_edges(mesh, trilineleng)
mesh, info = pymesh.collapse_short_edges(mesh,
                                         trilineshortleng,
                                         preserve_feature=preserve_feature)
mesh, info = pymesh.split_long_edges(mesh, trilineleng)
mesh, info = pymesh.collapse_short_edges(mesh,
                                         trilineshortleng,
                                         preserve_feature=preserve_feature)

#print(info)

fout = open("temp.txt", "w")
print("writing %d verts and %d faces" % (len(mesh.vertices), len(mesh.faces)))
fout.write(json.dumps([mesh.vertices.tolist(), mesh.faces.flatten().tolist()]))
fout.close()
shutil.move("temp.txt", meshfile)

# then for the flattener
Example #20
0
def regularise_mesh(mesh, tol):
    """Takes mesh & resizes triangles to tol size"""
    mesh, __ = pymesh.remove_degenerated_triangles(mesh, 100)
    mesh, _info = pymesh.split_long_edges(mesh, tol)
    mesh, __ = pymesh.collapse_short_edges(mesh, 1e-6)
    mesh, _info = pymesh.collapse_short_edges(mesh, tol, preserve_feature=True)
Example #21
0
# In[56]:

# rescale so it has vol equiv sphere radius of 1
new_squannit = cor_volume(squannit)
p = plt_mesh_square(new_squannit.vertices, new_squannit.faces, xmax)

# In[57]:

xrot = np.array([1, 0, 0])
vrot = rotate_vertices(new_squannit.vertices, xrot, np.pi / 2)
p = plt_mesh_square(vrot, new_squannit.faces, xmax)

# In[69]:

# reduce the number of faces to something reasonable
short_squannit1, info = pymesh.collapse_short_edges(
    new_squannit, 0.219)  # if bigger then  fewer faces
nf_mesh(short_squannit1)
meshplot.plot(short_squannit1.vertices, short_squannit1.faces)
short_squannit2, info = pymesh.collapse_short_edges(
    new_squannit, 0.17)  # if bigger then  fewer faces
nf_mesh(short_squannit2)
meshplot.plot(short_squannit2.vertices, short_squannit2.faces)

# In[70]:

p = plt_mesh_square(short_squannit2.vertices, short_squannit2.faces, xmax)

# In[71]:

xrot = np.array([1, 0, 0])
vrot = rotate_vertices(short_squannit2.vertices, xrot, np.pi / 2)
Example #22
0
def fix_meshes(mesh, detail="normal"):
    """
    A pipeline to optimise and fix mesh based on pymesh Mesh object.

    1. A box is created around the mesh.
    2. A target length is found based on diagonal of the mesh box.
    3. You can choose between 3 level of details, normal details settings seems to be a good compromise between
    final mesh size and sufficient number of vertices. It highly depends on your final goal.
    4. Remove degenerated triangles aka collinear triangles composed of 3 aligned points. The number of iterations is 5
    and should remove all degenerated triangles
    5. Remove isolated vertices, not connected to any faces or edges
    6. Remove self intersection edges and faces which is not realistic
    7. Remove duplicated faces
    8. The removing of duplicated faces can leave some vertices alone, we will removed them
    9. The calculation of outer hull volume is useful to be sure that the mesh is still ok
    10. Remove obtuse triangles > 179 who is not realistic and increase computation time
    11. We will remove potential duplicated faces again
    12. And duplicated vertices again
    13. Finally we will look if the mesh is broken or not. If yes we will try lower settings, if the lowest settings
    broke the mesh we will return the initial mesh. If not, we will return the optimised mesh.

    :param mesh: Pymesh Mesh object to optimise
    :param detail: string 'high', 'normal' or 'low' ('normal' as default), or float/int
    Settings to choose the targeting minimum length of edges
    :return: Pymesh Mesh object
    An optimised mesh or not depending on detail settings and mesh quality
    """
    meshCopy = mesh

    # copy/pasta of pymesh script fix_mesh from qnzhou, see pymesh on GitHub
    bbox_min, bbox_max = mesh.bbox
    diag_len = np.linalg.norm(bbox_max - bbox_min)
    if detail == "normal":
        target_len = diag_len * 5e-3
    elif detail == "high":
        target_len = diag_len * 2.5e-3
    elif detail == "low":
        target_len = diag_len * 1e-2
    elif detail is float or detail is int and detail > 0:
        target_len = diag_len * detail
    else:
        print(
            'Details settings is invalid, must be "low", "normal", "high" or positive int or float'
        )
        quit()

    count = 0
    mesh, __ = pymesh.remove_degenerated_triangles(mesh, 5)
    mesh, __ = pymesh.split_long_edges(mesh, target_len)
    num_vertices = mesh.num_vertices
    while True:
        mesh, __ = pymesh.collapse_short_edges(mesh,
                                               target_len,
                                               preserve_feature=True)
        mesh, info = pymesh.remove_obtuse_triangles(mesh, 179.0, 5)
        if mesh.num_vertices == num_vertices:
            break

        num_vertices = mesh.num_vertices
        count += 1
        if count > 10:
            break

    mesh, __ = pymesh.remove_duplicated_vertices(mesh)
    mesh, __ = pymesh.remove_isolated_vertices(mesh)
    mesh = pymesh.resolve_self_intersection(mesh)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    mesh, __ = pymesh.remove_duplicated_vertices(mesh)
    mesh = pymesh.compute_outer_hull(mesh)
    mesh, __ = pymesh.remove_obtuse_triangles(mesh, 179.0, 5)
    mesh, __ = pymesh.remove_duplicated_faces(mesh)
    mesh, __ = pymesh.remove_isolated_vertices(mesh)

    if is_mesh_broken(mesh, meshCopy) is True:
        if detail == "high":
            print(
                f'The function fix_meshes broke mesh, trying with lower details settings'
            )
            fix_meshes(meshCopy, detail="normal")
            return mesh
        if detail == "normal":
            print(
                f'The function fix_meshes broke mesh, trying with lower details settings'
            )
            mesh = fix_meshes(meshCopy, detail="low")
            return mesh
        if detail == "low":
            print(
                f'The function fix_meshes broke mesh, no lower settings can be applied, no fix was done'
            )
            return meshCopy
    else:
        return mesh
Example #23
0
def symmetrize(verts, faces, eps=1e-3):
    """
    verts: N,3 (x,y,z) tensor
    faces: F,3 (0,1,2) tensor

    Modifies mesh to make it symmetric about y-z plane
    - Cut mesh into half
    - Copy left half into right half
    - merge, remove duplicate vertices
    """
    # Snap vertices close to centre to centre
    verts_centre_mask = (verts[:,0].abs() < eps)
    verts[verts_centre_mask, 0] = 0

    # import pymesh
    pmesh = pymesh.form_mesh(verts.numpy(), faces.numpy())
    pymesh.save_mesh(f'csm_mesh/debug/1.obj', pmesh)

    # Categorize vertices into left (-1), centre(0), right(1)
    verts_side = torch.sign(verts[:,0])

    # Categorize faces into left (-1), centre(0), right(1)
    face_verts_side = torch.index_select(verts_side, 0, faces.view(-1))
    face_verts_side = face_verts_side.contiguous().view(faces.shape[0], 3)
    face_left_mask = (face_verts_side[:,0]==-1) & (face_verts_side[:,1]==-1) & (face_verts_side[:,2]==-1)
    face_right_mask = (face_verts_side[:,0]==1) & (face_verts_side[:,1]==1) & (face_verts_side[:,2]==1)
    face_intesects_yz = (~face_left_mask) & (~face_right_mask)

    # Split intersecting faces
    new_verts = []
    new_faces = []
    for f in face_intesects_yz.nonzero().squeeze(1):
        i0, i1, i2 = faces[f]
        if verts_side[i0]==verts_side[i1]:
            i0, i1, i2 = i2, i0, i1
        elif verts_side[i2]==verts_side[i1]:
            i0, i1, i2 = i0, i1, i2
        elif verts_side[i0]==verts_side[i2]:
            i0, i1, i2 = i1, i0, i2
        elif verts_side[i0]==-1:
            i0, i1, i2 = i0, i1, i2
        elif verts_side[i1]==-1:
            i0, i1, i2 = i1, i0, i2
        elif verts_side[i2]==-1:
            i0, i1, i2 = i2, i0, i1
        else:
            import ipdb; ipdb.set_trace()

        # yz axis intersects i0->i1 & i0->i2
        assert(verts_side[i0] != verts_side[i1])
        assert(verts_side[i0] != verts_side[i2])

        v0 = verts[i0]
        v1 = verts[i1]
        v2 = verts[i2]

        v_n1 = (v0 * v1[0] - v1 * v0[0])/(v1[0] - v0[0])
        v_n2 = (v0 * v2[0] - v2 * v0[0])/(v2[0] - v0[0])

        i_n1 = verts.shape[0] + len(new_verts)
        i_n2 = verts.shape[0] + len(new_verts) + 1
        new_verts.append(v_n1)
        new_verts.append(v_n2)

        new_faces.append((i0, i_n1, i_n2))
        new_faces.append((i1, i_n1, i_n2))
        new_faces.append((i1, i2, i_n2))

    new_verts = torch.stack(new_verts, dim=0)
    new_faces = torch.tensor(new_faces, dtype=faces.dtype, device=faces.device)

    verts = torch.cat([verts, new_verts], dim=0)
    faces = torch.index_select(faces, 0, (~face_intesects_yz).nonzero().squeeze(1))
    faces = torch.cat([faces, new_faces], dim=0)

    # import pymesh
    pmesh = pymesh.form_mesh(verts.numpy(), faces.numpy())
    pymesh.save_mesh(f'csm_mesh/debug/2.obj', pmesh)

    # Merge vertices that are very close together
    vertex_mapping = []
    verts_new = []
    for v_id in range(verts.shape[0]):
        if v_id==0:
            vertex_mapping.append(0)
            verts_new.append(verts[0])
            continue
        min_d, min_idx = (verts[0:v_id] - verts[v_id]).norm(dim=-1).min(dim=0)
        if min_d < eps:
            vertex_mapping.append(vertex_mapping[min_idx])
        else:
            vertex_mapping.append(len(verts_new))
            verts_new.append(verts[v_id])
    assert(len(vertex_mapping)==verts.shape[0])
    vertex_mapping = torch.tensor(vertex_mapping, dtype=faces.dtype, device=faces.device)
    verts = torch.stack(verts_new, dim=0)
    faces = vertex_mapping[faces]

    # Remove degenerate faces
    faces_degenerate = (faces[:,0]==faces[:,1]) | (faces[:,0]==faces[:,2]) | (faces[:,2]==faces[:,1])
    faces = torch.index_select(faces, 0, (~faces_degenerate).nonzero().squeeze(1))

    # import pymesh
    pmesh = pymesh.form_mesh(verts.numpy(), faces.numpy())
    pymesh.save_mesh(f'csm_mesh/debug/3.obj', pmesh)

    # Delete faces that lie on right side (verts_side==1)
    verts_centre_mask = (verts[:,0].abs() < eps)
    verts[verts_centre_mask, 0] = 0
    verts_side = torch.sign(verts[:,0])
    face_verts_side = torch.index_select(verts_side, 0, faces.view(-1))
    face_verts_side = face_verts_side.contiguous().view(faces.shape[0], 3)
    face_right_mask = (face_verts_side[:,0]==1) | (face_verts_side[:,1]==1) | (face_verts_side[:,2]==1)
    faces = torch.index_select(faces, 0, (~face_right_mask).nonzero().squeeze(1))

    # import pymesh
    pmesh = pymesh.form_mesh(verts.numpy(), faces.numpy())
    pymesh.save_mesh(f'csm_mesh/debug/4.obj', pmesh)

    # Flip mesh, merge
    faces_flip = faces + verts.shape[0]
    faces = torch.cat([faces, faces_flip], dim=0)
    verts_flip = verts * torch.tensor([-1,1,1], dtype=verts.dtype, device=verts.device)
    vertex_mapping_flip = torch.arange(verts.shape[0], dtype=faces.dtype, device=faces.device)
    vertex_mapping_flip[~verts_centre_mask] += verts.shape[0]
    vertex_mapping = torch.arange(verts.shape[0], dtype=faces.dtype, device=faces.device)
    vertex_mapping = torch.cat([vertex_mapping, vertex_mapping_flip], dim=0)
    verts = torch.cat([verts, verts_flip], dim=0)
    faces = vertex_mapping[faces]

    # import pymesh
    pmesh = pymesh.form_mesh(verts.numpy(), faces.numpy())
    pymesh.save_mesh(f'csm_mesh/debug/5.obj', pmesh)


    pymesh.save_mesh(f'csm_mesh/debug/5.8.obj', pmesh)
    numv = pmesh.num_vertices
    while True:
        pmesh, __ = pymesh.collapse_short_edges(pmesh, rel_threshold=0.4)

        verts = torch.as_tensor(pmesh.vertices, dtype=verts.dtype, device=verts.device)
        faces = torch.as_tensor(pmesh.faces, dtype=faces.dtype, device=faces.device)
        verts_centre_mask = (verts[:,0].abs() < 1e-3)
        verts[verts_centre_mask, 0] = 0

        pmesh = pymesh.form_mesh(verts.numpy(), faces.numpy())
        pmesh, __ = pymesh.remove_isolated_vertices(pmesh)
        pmesh, __ = pymesh.remove_duplicated_vertices(pmesh, tol=eps)
        pmesh, __ = pymesh.remove_duplicated_faces(pmesh)
        pmesh, __ = pymesh.remove_degenerated_triangles(pmesh)
        pmesh, __ = pymesh.remove_isolated_vertices(pmesh)
        # pmesh, __ = pymesh.remove_obtuse_triangles(pmesh, 120.0, 100)
        pmesh, __ = pymesh.collapse_short_edges(pmesh, 1e-2)
        pmesh, __ = pymesh.remove_duplicated_vertices(pmesh, tol=eps)

        if pmesh.num_vertices==numv:
            break
        numv = pmesh.num_vertices
    pymesh.save_mesh(f'csm_mesh/debug/5.9.obj', pmesh)

    verts = torch.as_tensor(pmesh.vertices, dtype=verts.dtype, device=verts.device)
    faces = torch.as_tensor(pmesh.faces, dtype=faces.dtype, device=faces.device)

    # Remove unused vertices
    vertices_used = torch.unique(faces.view(-1))
    vertex_mapping = torch.zeros((verts.shape[0], ), dtype=faces.dtype, device=faces.device)
    vertex_mapping[vertices_used] = torch.arange(vertices_used.shape[0], dtype=faces.dtype, device=faces.device)
    faces = vertex_mapping[faces]
    verts = verts[vertices_used]

    # import pymesh
    pmesh = pymesh.form_mesh(verts.numpy(), faces.numpy())
    pymesh.save_mesh(f'csm_mesh/debug/6.obj', pmesh)

    return verts, faces