def test_extract_with_confidence_output_dictionary_unsupervised(self): X, _ = load_xy(2) extractor = MFE(groups="general").fit(X.values) res = extractor.extract_with_confidence( 3, arguments_extract=dict(out_type=dict)) assert isinstance(res, dict) assert len(res) == 3
def test_extract_with_time_and_with_confidence_output_dictionary(self): X, y = load_xy(2) extractor = MFE(groups="general", measure_time="total").fit(X.values, y.values) res = extractor.extract_with_confidence( 3, arguments_extract=dict(out_type=dict)) assert isinstance(res, dict) assert len(res) == 4
def test_invalid_output_type_with_confidence_unsupervised(self): X, _ = load_xy(2) extractor = MFE(groups="general").fit(X.values) with pytest.raises(TypeError): res = extractor.extract_with_confidence( 3, arguments_extract=dict(out_type=set))
interval. """ # Load a dataset import sklearn.tree from sklearn.datasets import load_iris from pymfe.mfe import MFE data = load_iris() y = data.target X = data.data # You can also extract your meta-features with confidence intervals using # bootstrap. Keep in mind that this method extracts each meta-feature several # times, and may be very expensive depending mainly on your data and the # number of meta-feature extract methods called. # Extract meta-features with confidence interval mfe = MFE(features=["mean", "nr_cor_attr", "sd", "max"]) mfe.fit(X, y) ft = mfe.extract_with_confidence( sample_num=256, confidence=0.99, verbose=1, ) print("\n".join("{:50} {:30} {:30}".format(x, y[0], y[1]) for x, y in zip(ft[0], ft[2])))
def test_bootstrap_extractor_extract_with_confidence_without_data(self): mfe = MFE() bootstrap_extractor = _bootstrap.BootstrapExtractor(extractor=mfe) with pytest.raises(TypeError): mfe.extract_with_confidence()
def test_extract_with_confidence_without_data(self): mfe = MFE() with pytest.raises(TypeError): mfe.extract_with_confidence()