def test_plot_logreg_xtime_none(self): from matplotlib import pyplot as plt temp = get_temp_folder(__file__, "temp_plot_logreg_xtime") img = os.path.join(temp, "plot_logreg.png") data = os.path.join(temp, "..", "data", "onnxruntime_LogisticRegression.perf.csv") df = pandas.read_csv(data) ax = plot_bench_xtime(df, row_cols='N', col_cols='method', hue_cols=None, title="unittest") fig = ax[0, 0].get_figure() fig.savefig(img) if __name__ == "__main__": plt.show() plt.close('all') self.assertExists(img)
def test_plot_logreg_xtime_bug(self): from matplotlib import pyplot as plt temp = get_temp_folder(__file__, "temp_plot_logreg_xtime_bug") img = os.path.join(temp, "plot_cache.png") data = os.path.join(temp, "..", "data", "bench_plot_gridsearch_cache.csv") df = pandas.read_csv(data) ax = plot_bench_xtime(df, row_cols=['n_jobs'], x_value='mean', hue_cols=['N'], cmp_col_values='test', title="unittest") fig = ax[0].get_figure() fig.savefig(img) if __name__ == "__main__": plt.show() plt.close('all') self.assertExists(img)
def label_fct(la): la = la.replace("onxpython_compiled", "opyc") la = la.replace("onxpython", "opy") la = la.replace("onxonnxruntime1", "ort") la = la.replace("fit_intercept", "fi") la = la.replace("True", "1") la = la.replace("False", "0") la = la.replace("max_depth", "mxd") return la plot_bench_xtime( df[df.norm], col_cols='dataset', hue_cols='model', title= "Numerical datasets - norm=False\nBenchmark scikit-learn / onnxruntime") plt.savefig("%s.normT.time.png" % filename) # plt.show() plot_bench_xtime( df[~df.norm], col_cols='dataset', hue_cols='model', title= "Numerical datasets - norm=False\nBenchmark scikit-learn / onnxruntime") plt.savefig("%s.normF.time.png" % filename) # plt.show() plot_bench_results(