Example #1
0
def combinedOwnerSimuPlot():
    import copy
    logger.debug('starting combinedOwnerSimuPlot')
    folders = [
        folder for folder in os.listdir(os.getcwd()) if os.path.isdir(folder)
        and not folder == 'localBaseDir' and not folder == 'ghousing.jobs'
    ]
    logger.debug('folders are %s ' % folders)
    tableList = [(folder,
                  os.path.join(os.getcwd(), folder, 'output', 'aggregate.out'))
                 for folder in folders]
    tableDicts = dict([(folder,
                        tableDict.fromTextFile(
                            table,
                            width=np.max([len(folder)
                                          for folder in folders]) + 5,
                            prec=10)) for folder, table in tableList
                       if os.path.isfile(table)])
    tableKeys = tableDicts.keys()
    tableKeys.sort()
    if tableDicts:
        for ixTable, tableKey in enumerate(tableKeys):
            table = copy.deepcopy(tableDicts[tableKey])
            table.keep(['age', 'owner'])
            table.rename('owner', tableKey)
            if ixTable == 0:
                fullTable = copy.deepcopy(table)
            else:
                fullTable.merge(table, 'age')
                fullTable.drop('_merge')
            logger.info(fullTable)

        empOwnershipFile = os.path.join(os.getcwd(), 'localBaseDir', 'input',
                                        'PSIDOwnershipProfilealleduc.out')
        empOwnershipTable = tableDict.fromTextFile(empOwnershipFile,
                                                   width=20,
                                                   prec=10)
        empOwnershipTable.rename('PrOwnership', 'empOwnership')
        fullTable.merge(empOwnershipTable, 'age')
        fullTable.drop('_merge')
        if fullTable:
            logger.info(fullTable)
            f = open(os.path.join(os.getcwd(), 'ownerSimu'), 'w')
            print >> f, fullTable
            f.flush()
        else:
            logger.info('no owner simus')
        logger.debug('done combinedOwnerSimuPlot')

        plotSimulation(table=os.path.join(os.getcwd(), 'ownerSimu'),
                       xVar='age',
                       yVars=list(fullTable.cols),
                       yVarRange=(0., 1.),
                       figureFile=os.path.join(os.getcwd(), 'ownerSimu.png'),
                       verb='CRITICAL')
Example #2
0
def combinedOwnerSimuPlot():
    import copy

    logger.debug("starting combinedOwnerSimuPlot")
    folders = [
        folder
        for folder in os.listdir(os.getcwd())
        if os.path.isdir(folder) and not folder == "localBaseDir" and not folder == "ghousing.jobs"
    ]
    logger.debug("folders are %s " % folders)
    tableList = [(folder, os.path.join(os.getcwd(), folder, "output", "aggregate.out")) for folder in folders]
    tableDicts = dict(
        [
            (folder, tableDict.fromTextFile(table, width=np.max([len(folder) for folder in folders]) + 5, prec=10))
            for folder, table in tableList
            if os.path.isfile(table)
        ]
    )
    tableKeys = tableDicts.keys()
    tableKeys.sort()
    if tableDicts:
        for ixTable, tableKey in enumerate(tableKeys):
            table = copy.deepcopy(tableDicts[tableKey])
            table.keep(["age", "owner"])
            table.rename("owner", tableKey)
            if ixTable == 0:
                fullTable = copy.deepcopy(table)
            else:
                fullTable.merge(table, "age")
                fullTable.drop("_merge")
            logger.info(fullTable)

        empOwnershipFile = os.path.join(os.getcwd(), "localBaseDir", "input", "PSIDOwnershipProfilealleduc.out")
        empOwnershipTable = tableDict.fromTextFile(empOwnershipFile, width=20, prec=10)
        empOwnershipTable.rename("PrOwnership", "empOwnership")
        fullTable.merge(empOwnershipTable, "age")
        fullTable.drop("_merge")
        if fullTable:
            logger.info(fullTable)
            f = open(os.path.join(os.getcwd(), "ownerSimu"), "w")
            print >> f, fullTable
            f.flush()
        else:
            logger.info("no owner simus")
        logger.debug("done combinedOwnerSimuPlot")

        plotSimulation(
            table=os.path.join(os.getcwd(), "ownerSimu"),
            xVar="age",
            yVars=list(fullTable.cols),
            yVarRange=(0.0, 1.0),
            figureFile=os.path.join(os.getcwd(), "ownerSimu.png"),
            verb="CRITICAL",
        )
def combineTables():
    print 'start combineTables'
    tableList = [
        os.path.join(os.getcwd(), folder, 'optimalRun')
        for folder in os.listdir(os.getcwd())
        if os.path.isdir(folder) and not folder == 'localBaseDir'
        and not folder == 'idRiskParaSearch.jobs'
    ]
    logger.info(tableList)
    a = [table for table in tableList]
    print a
    tableDicts = [
        tableDict.fromTextFile(table, width=20, prec=10) for table in tableList
        if os.path.isfile(table)
    ]
    logger.info('tableDicts=')
    logger.info(tableDicts)
    logger.info('check if tableDicts empty')
    if tableDicts:
        optimalRuns = tableDicts[0]
        for ixTable, table in enumerate(tableDicts):
            if ixTable == 0: continue
            optimalRuns = optimalRuns.getAppended(table)
        #optimalRuns.order(['dy', 'wBarLower'])
        #optimalRuns.sort(['dy'])
        logger.info(optimalRuns)
        f = open(os.path.join(os.getcwd(), 'optimalRuns'), 'w')
        print >> f, optimalRuns
        f.flush()
Example #4
0
def combineTables():
    print "start combineTables"
    tableList = [
        os.path.join(os.getcwd(), folder, "optimalRun")
        for folder in os.listdir(os.getcwd())
        if os.path.isdir(folder) and not folder == "localBaseDir" and not folder == "idRiskParaSearch.jobs"
    ]
    logger.info(tableList)
    a = [table for table in tableList]
    print a
    tableDicts = [tableDict.fromTextFile(table, width=20, prec=10) for table in tableList if os.path.isfile(table)]
    logger.info("tableDicts=")
    logger.info(tableDicts)
    logger.info("check if tableDicts empty")
    if tableDicts:
        optimalRuns = tableDicts[0]
        for ixTable, table in enumerate(tableDicts):
            if ixTable == 0:
                continue
            optimalRuns = optimalRuns.getAppended(table)
        # optimalRuns.order(['dy', 'wBarLower'])
        # optimalRuns.sort(['dy'])
        logger.info(optimalRuns)
        f = open(os.path.join(os.getcwd(), "optimalRuns"), "w")
        print >> f, optimalRuns
        f.flush()
Example #5
0
def combinedThresholdPlot():
    import copy
    folders = [folder for folder in os.listdir(os.getcwd()) if os.path.isdir(folder) and not folder == 'localBaseDir' and not folder == 'ghousing.jobs']
    tableList = [ (folder, os.path.join(os.getcwd(), folder, 'output', 'ownershipThreshold_1.out')) for folder in folders ]
    tableDicts = dict([ (folder, tableDict.fromTextFile(table, width = np.max([len(folder) for folder in folders]) + 5, prec = 10)) for folder, table in tableList if os.path.isfile(table)])
    tableKeys = tableDicts.keys()
    tableKeys.sort()
    if tableDicts:
        for ixTable, tableKey in enumerate(tableKeys):
#            print tableKey
#            print tableDicts[tableKey]
            table = copy.deepcopy(tableDicts[tableKey])
            table.keep(['age', 'yst1'])
            table.rename('yst1', tableKey)
            if ixTable == 0:
                fullTable = copy.deepcopy(table)
            else:
                fullTable.merge(table, 'age')
                if '_merge' in fullTable.cols:
                    fullTable.drop('_merge')
                logger.info(fullTable)
        logger.info(fullTable)
        f = open(os.path.join(os.getcwd(), 'ownerThresholds'), 'w')
        print >> f, fullTable
        f.flush()
        ax = 3
        plotSimulation(table = os.path.join(os.getcwd(), 'ownerThresholds'), xVar = 'age', yVars = list(fullTable.cols), figureFile = os.path.join(os.getcwd(), 'ownerThresholds.png'), verb = 'CRITICAL' )
Example #6
0
def combinedOwnerSimuPlot():
    import copy
    logger.debug('starting combinedOwnerSimuPlot')
    folders = [folder for folder in os.listdir(os.getcwd()) if os.path.isdir(folder) and not folder == 'localBaseDir' and not folder == 'ghousing.jobs']
    logger.debug('folders are %s ' % folders)
    tableList = [ (folder, os.path.join(os.getcwd(), folder, 'output', 'aggregate.out')) for folder in folders ]
    tableDicts = dict([ (folder, tableDict.fromTextFile(table, width = np.max([len(folder) for folder in folders]) + 5, prec = 10)) for folder, table in tableList if os.path.isfile(table)])
    tableKeys = tableDicts.keys()
    tableKeys.sort()
    if tableDicts:
        for ixTable, tableKey in enumerate(tableKeys):
            table = copy.deepcopy(tableDicts[tableKey])
            table.keep(['age', 'owner'])
            table.rename('owner', tableKey)
            if ixTable == 0:
                fullTable = copy.deepcopy(table)
            else:
                fullTable.merge(table, 'age')
                fullTable.drop('_merge')
            logger.info(fullTable)

        empOwnershipFile = os.path.join(os.getcwd(), 'localBaseDir', 'input', 'PSIDOwnershipProfilealleduc.out')
        empOwnershipTable = tableDict.fromTextFile(empOwnershipFile, width = 20, prec = 10)
        empOwnershipTable.rename('PrOwnership', 'empOwnership')
        fullTable.merge(empOwnershipTable, 'age')
        fullTable.drop('_merge')
        if fullTable:
            logger.info(fullTable)
            f = open(os.path.join(os.getcwd(), 'ownerSimu'), 'w')
            print >> f, fullTable
            f.flush()
        else:
            logger.info('no owner simus')
        logger.debug('done combinedOwnerSimuPlot')

        plotSimulation(table = os.path.join(os.getcwd(), 'ownerSimu'), xVar = 'age', yVars = list(fullTable.cols), yVarRange = (0., 1.), figureFile = os.path.join(os.getcwd(), 'ownerSimu.png'), verb = 'CRITICAL' )
Example #7
0
 def next(self, *args): 
     self.iter += 1
     if self.wBarLower_task.execution.returncode == 13:
         logger.critical('wBarLower failed. terminating para combo')
         self.execution.returncode = 13
         return Run.State.TERMINATED
     elif self.wBarLower_task.execution.returncode == 0:
         wBarTable = tableDict.fromTextFile(os.path.join(self.paraFolder, 'optimwBarLower', 'overviewSimu'), width = 20, prec = 10)
         optimalRunTable = wBarTable.getSubset( np.abs(wBarTable['wBarLower'] - self.wBarLower_task.costlyOptimizer.best_x) < 1.e-7 )
         optimalRunFile = open(os.path.join(self.paraFolder, 'optimalRun'), 'w')
         print >> optimalRunFile, optimalRunTable
         return Run.State.TERMINATED
     else:
         print 'unknown return code'
         os._exit
Example #8
0
 def next(self, *args):
     self.iter += 1
     if self.wBarLower_task.execution.returncode == 13:
         logger.critical('wBarLower failed. terminating para combo')
         self.execution.returncode = 13
         return Run.State.TERMINATED
     elif self.wBarLower_task.execution.returncode == 0:
         wBarTable = tableDict.fromTextFile(os.path.join(self.paraFolder, 'optimwBarLower', 'overviewSimu'), width = 20, prec = 10)
         optimalRunTable = wBarTable.getSubset( np.abs(wBarTable['wBarLower'] - self.wBarLower_task.costlyOptimizer.best_x) < 1.e-7 )
         optimalRunFile = open(os.path.join(self.paraFolder, 'optimalRun'), 'w')
         print >> optimalRunFile, optimalRunTable
         self.execution.returncode = 0
         return Run.State.TERMINATED
     else:
         print 'unknown return code'
         os._exit
Example #9
0
def combinedThresholdPlot():
    import copy

    folders = [
        folder
        for folder in os.listdir(os.getcwd())
        if os.path.isdir(folder) and not folder == "localBaseDir" and not folder == "ghousing.jobs"
    ]
    tableList = [
        (folder, os.path.join(os.getcwd(), folder, "output", "ownershipThreshold_1.out")) for folder in folders
    ]
    tableDicts = dict(
        [
            (folder, tableDict.fromTextFile(table, width=np.max([len(folder) for folder in folders]) + 5, prec=10))
            for folder, table in tableList
            if os.path.isfile(table)
        ]
    )
    tableKeys = tableDicts.keys()
    tableKeys.sort()
    if tableDicts:
        for ixTable, tableKey in enumerate(tableKeys):
            #            print tableKey
            #            print tableDicts[tableKey]
            table = copy.deepcopy(tableDicts[tableKey])
            table.keep(["age", "yst1"])
            table.rename("yst1", tableKey)
            if ixTable == 0:
                fullTable = copy.deepcopy(table)
            else:
                fullTable.merge(table, "age")
                if "_merge" in fullTable.cols:
                    fullTable.drop("_merge")
                logger.info(fullTable)
        logger.info(fullTable)
        f = open(os.path.join(os.getcwd(), "ownerThresholds"), "w")
        print >> f, fullTable
        f.flush()
        ax = 3
        plotSimulation(
            table=os.path.join(os.getcwd(), "ownerThresholds"),
            xVar="age",
            yVars=list(fullTable.cols),
            figureFile=os.path.join(os.getcwd(), "ownerThresholds.png"),
            verb="CRITICAL",
        )
Example #10
0
def combinedThresholdPlot():
    import copy
    folders = [
        folder for folder in os.listdir(os.getcwd()) if os.path.isdir(folder)
        and not folder == 'localBaseDir' and not folder == 'ghousing.jobs'
    ]
    tableList = [(folder,
                  os.path.join(os.getcwd(), folder, 'output',
                               'ownershipThreshold_1.out'))
                 for folder in folders]
    tableDicts = dict([(folder,
                        tableDict.fromTextFile(
                            table,
                            width=np.max([len(folder)
                                          for folder in folders]) + 5,
                            prec=10)) for folder, table in tableList
                       if os.path.isfile(table)])
    tableKeys = tableDicts.keys()
    tableKeys.sort()
    if tableDicts:
        for ixTable, tableKey in enumerate(tableKeys):
            #            print tableKey
            #            print tableDicts[tableKey]
            table = copy.deepcopy(tableDicts[tableKey])
            table.keep(['age', 'yst1'])
            table.rename('yst1', tableKey)
            if ixTable == 0:
                fullTable = copy.deepcopy(table)
            else:
                fullTable.merge(table, 'age')
                if '_merge' in fullTable.cols:
                    fullTable.drop('_merge')
                logger.info(fullTable)
        logger.info(fullTable)
        f = open(os.path.join(os.getcwd(), 'ownerThresholds'), 'w')
        print >> f, fullTable
        f.flush()
        ax = 3
        plotSimulation(table=os.path.join(os.getcwd(), 'ownerThresholds'),
                       xVar='age',
                       yVars=list(fullTable.cols),
                       figureFile=os.path.join(os.getcwd(),
                                               'ownerThresholds.png'),
                       verb='CRITICAL')
Example #11
0
    def new_tasks(self, extra):

        logger.info('entering new_tasks')

        # Adjust logging level for stream handler. Could be extracted into a general function.
        for handler in logger.handlers:
            if not isinstance(handler, logbook.FileHandler):
                logger.handlers.remove(handler)
        mySH = logbook.StreamHandler(stream = sys.stdout, level = self.params.solverVerb.upper(), format_string = '{record.message}', bubble = True)
        logger.handlers.append(mySH)

        baseDir = self.params.initial
        xVars    = self.params.xVars

        countryList = self.params.countryList.split()

        ctryIndices = getIndex(base = [len(countryList), len(countryList)], restr = 'lowerTr')
        for ctryIndex in ctryIndices:
            logger.info(countryList[ctryIndex[0]] + countryList[ctryIndex[1]])


        # Compute domain
        xVarsDom = self.params.xVarsDom.split()
        lowerBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 0], dtype = 'float64')
        upperBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 1], dtype = 'float64')
        domain = zip(lowerBds, upperBds)


        # Make problem type specific adjustments.
        if self.params.problemType == 'one4all':
            gdpTable = tableDict.fromTextFile(fileIn = os.path.join(self.params.pathEmpirical, 'outputInput/momentTable/Gdp/gdpMoments.csv'),
                                              delim = ',', width = 20)

            jobname = 'one4all'

            logger.info('%s' % self.params.norm)
            norm = self.params.norm
            try:
                norm = int(norm)
            except ValueError:
                if norm == "np.inf" or norm == "inf":
                    norm = np.inf
                else:
                    pass # in particular custom norms

            logger.info('using norm %s' % (norm))


            path_to_stage_dir = os.getcwd()
            executable = os.path.basename(self.params.executable)
            analyzeResults = anaOne4all(len(list(ctryIndices)), norm = norm)
            nlc            = nlcOne4all(gdpTable = gdpTable, ctryList = countryList, domain = domain, logFile = os.path.join(path_to_stage_dir, 'nlc.log'))
            combOverviews  = combineOverviews.combineOverviews(overviewSimuFile = 'eSigmaTable', tableName = 'ag_eSigmaTable', sortKeys = ['norm'])
            plot3dTable    = combineOverviews.plotTable(tablePath =os.path.join(path_to_stage_dir, 'ag_eSigmaTable'), savePath = os.path.join(path_to_stage_dir, 'scatter3d'))
            plot3dTable.columnNames = ['E', 'sigma', 'norm']
            for ctryIndex in ctryIndices:
                Ctry1 = countryList[ctryIndex[0]]
                Ctry2 = countryList[ctryIndex[1]]
                # Set Ctry information for this run.
                update_parameter_in_file(os.path.join(baseDir, 'input/markovA.in'), 'Ctry',
                                          0,  Ctry1,  'space-separated')
                update_parameter_in_file(os.path.join(baseDir, 'input/markovB.in'), 'Ctry',
                                          0,  Ctry2,  'space-separated')
                # Get the correct Ctry Paras into base dir.
                self.getCtryParas(baseDir, Ctry1, Ctry2)
                # Copy base dir
                ctryBaseDir = os.path.join(path_to_stage_dir, 'base' + Ctry1 + Ctry2)
                try:
                    shutil.copytree(baseDir, ctryBaseDir)
                except:
                    logger.info('%s already exists' % baseDir)

            kwargs = extra.copy()
            kwargs['output_dir'] = path_to_stage_dir

            # yield job
            yield (jobname, gParaSearchDriver,
                   [ self.params.executable, path_to_stage_dir, self.params.architecture,
                     baseDir, self.params.xVars, self.params.initialPop,
                     self.params.nPopulation, domain, self.params.solverVerb, self.params.problemType,
                     self.params.pathEmpirical, self.params.itermax, self.params.xConvCrit, self.params.yConvCrit,
                     self.params.makePlots, self.params.optStrategy, self.params.fWeight, self.params.fCritical, self.params.countryList,
                     analyzeResults, nlc, plot3dTable, combOverviews
                   ], kwargs)



        elif self.params.problemType == 'one4eachPair':
            for ctryIndex in ctryIndices:
                Ctry1 = countryList[ctryIndex[0]]
                Ctry2 = countryList[ctryIndex[1]]
                logger.info(Ctry1 + Ctry2)
                jobname = Ctry1 + '-' + Ctry2
                # set stage dir.
                path_to_stage_dir = self.make_directory_path(self.params.output, jobname)
                gc3libs.utils.mkdir(path_to_stage_dir)
                #path_to_stage_dir = os.path.join(iterationFolder, jobname)
                # Get moments table from empirical analysis
                gdpTable = tableDict.fromTextFile(fileIn = os.path.join(self.params.pathEmpirical, 'outputInput/momentTable/Gdp/gdpMoments.csv'),
                                                  delim = ',', width = 20)

                # Set Ctry information for this run.
                update_parameter_in_file(os.path.join(baseDir, 'input/markovA.in'), 'Ctry',
                                          0,  Ctry1,  'space-separated')
                update_parameter_in_file(os.path.join(baseDir, 'input/markovB.in'), 'Ctry',
                                          0,  Ctry2,  'space-separated')
                # Get the correct Ctry Paras into base dir.
                self.getCtryParas(baseDir, Ctry1, Ctry2)
                # Copy base dir
                ctryBaseDir = os.path.join(path_to_stage_dir, 'base')
                try:
                    shutil.copytree(baseDir, ctryBaseDir)
                except:
                    logger.info('%s already exists' % baseDir)
                EA = getParameter(fileIn = os.path.join(baseDir, 'input/parameters.in'), varIn = 'EA',
                                     regexIn = 'bar-separated')
                EB = getParameter(fileIn = os.path.join(baseDir, 'input/parameters.in'), varIn = 'EB',
                                     regexIn = 'bar-separated')
                sigmaA = getParameter(fileIn = os.path.join(baseDir, 'input/parameters.in'), varIn = 'sigmaA',
                                     regexIn = 'bar-separated')
                sigmaB = getParameter(fileIn = os.path.join(baseDir, 'input/parameters.in'), varIn = 'sigmaB',
                                     regexIn = 'bar-separated')
                # Pass ctry information to nlc
                analyzeResults = anaOne4eachPair
                nlc = nlcOne4eachPair(gdpTable = gdpTable, ctryPair = [Ctry1, Ctry2], domain = domain, logFile = os.path.join(path_to_stage_dir, 'nlc.log'))
                combOverviews = combineOverviews.combineOverviews(overviewSimuFile = 'overviewSimu', tableName = 'agTable', sortKeys = ['normDev'])
                plot3dTable    = combineOverviews.plotTable(tablePath =os.path.join(path_to_stage_dir, 'agTable'), savePath = os.path.join(path_to_stage_dir, 'scatter3d'))
                plot3dTable.columnNames = ['EA', 'sigmaA', 'normDev']

                executable = os.path.basename(self.params.executable)
                kwargs = extra.copy()
                kwargs['output_dir'] = path_to_stage_dir

                # yield job
                yield (jobname, gParaSearchDriver,
                       [ self.params.executable, path_to_stage_dir, self.params.architecture,
                         ctryBaseDir, self.params.xVars, self.params.initialPop,
                         self.params.nPopulation, domain, self.params.solverVerb, self.params.problemType,
                         self.params.pathEmpirical, self.params.itermax, self.params.xConvCrit, self.params.yConvCrit,
                         self.params.makePlots, self.params.optStrategy, self.params.fWeight, self.params.fCritical, self.params.countryList,
                         analyzeResults, nlc, plot3dTable, combOverviews
                       ], kwargs)

        elif self.params.problemType == 'one4eachCtry':
            gdpTable = tableDict.fromTextFile(fileIn = os.path.join(self.params.pathEmpirical, 'outputInput/momentTable/Gdp/gdpMoments.csv'),
                                              delim = ',', width = 20)

            if len(countryList) > len(self.params.xVars.split()) / 2 and len(xVars.split()) == 2:
                if self.params.xVars[-1:] != " ":
                    xVars = ( self.params.xVars + ' ' ) * len(countryList)
                    xVars = xVars[:-1]
                else:
                    xVars = self.params.xVars * len(countryList)
                if self.params.xVarsDom[-1:] != " ":
                    xVarsDom = ( self.params.xVarsDom + ' ' ) * len(countryList)
                    xVarsDom = xVarsDom[:-1].split()
                else:
                    xVarsDom = self.params.xVarsDom * len(countryList)
                    xVarsDom = xVarsDom.split()
            else:
                xVars = self.params.xVars
                xVarsDom = self.params.xVarsDom[:-1].split()
            jobname = 'one4eachCtry'

            lowerBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 0], dtype = 'float64')
            upperBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 1], dtype = 'float64')
            domain = zip(lowerBds, upperBds)

            norm = self.params.norm
            try:
                norm = int(norm)
            except ValueError:
                if norm == "np.inf" or norm == "inf":
                    norm = np.inf
                else:
                    pass # in particular custom norms

            logger.info('using norm %s' % (norm))

            path_to_stage_dir = os.getcwd()
            executable = os.path.basename(self.params.executable)
            analyzeResults = anaOne4eachCtry(countryList, len(list(ctryIndices)), norm = norm)
            nlc            = nlcOne4eachCtry(gdpTable = gdpTable, ctryList = countryList, domain = domain, logFile = os.path.join(path_to_stage_dir, 'nlc.log'))
            combOverviews  = combineOverviews.combineOverviews(overviewSimuFile = 'eSigmaTable', tableName = 'ag_eSigmaTable', sortKeys = ['norm'])
            deKenPrice.plotPopulation = plotPopOne4eachCtry(countryList)


##            # Set solver variables
##            nXvars = len(xVars.split())
##            deKenPrice.I_NP         = int(self.params.nPopulation)
##            deKenPrice.F_weight     = float(self.params.fWeight)
##            deKenPrice.F_CR         = float(self.params.fCritical)
##            deKenPrice.I_D          = int(nXvars)
##            deKenPrice.lowerBds     = np.array([ element[0] for element in domain ], dtype = 'float64')
##            deKenPrice.upperBds     = np.array([ element[1] for element in domain ], dtype = 'float64')
##            deKenPrice.I_itermax    = int(self.params.itermax)
##            deKenPrice.F_VTR        = float(self.params.yConvCrit)
##            deKenPrice.I_strategy   = int(self.params.optStrategy)
##            deKenPrice.I_plotting   = int(self.params.makePlots)
##            deKenPrice.xConvCrit    = float(self.params.xConvCrit)
##            deKenPrice.workingDir   = path_to_stage_dir
##            deKenPrice.verbosity    = self.params.solverVerb


            plot3dTable    = emptyFun
#            plot3dTable    = combineOverviews.plotTable(tablePath =os.path.join(path_to_stage_dir, 'ag_eSigmaTable'), savePath = os.path.join(path_to_stage_dir, 'scatter3d'))
#            plot3dTable.columnNames = ['E', 'sigma', 'norm']
            for ctryIndex in ctryIndices:
                Ctry1 = countryList[ctryIndex[0]]
                Ctry2 = countryList[ctryIndex[1]]
                # Set Ctry information for this run.
                update_parameter_in_file(os.path.join(baseDir, 'input/markovA.in'), 'Ctry',
                                          0,  Ctry1,  'space-separated')
                update_parameter_in_file(os.path.join(baseDir, 'input/markovB.in'), 'Ctry',
                                          0,  Ctry2,  'space-separated')
                # Get the correct Ctry Paras into base dir.
                self.getCtryParas(baseDir, Ctry1, Ctry2)
                # Copy base dir
                ctryBaseDir = os.path.join(path_to_stage_dir, 'base' + Ctry1 + Ctry2)
                try:
                    shutil.copytree(baseDir, ctryBaseDir)
                except:
                    logger.info('%s already exists' % baseDir)

            kwargs = extra.copy()
            kwargs['output_dir'] = path_to_stage_dir

            # yield job

            yield (jobname, gParaSearchDriver,
                   [ self.params.executable, path_to_stage_dir, self.params.architecture,
                     baseDir, xVars, self.params.initialPop,
                     self.params.nPopulation, domain, self.params.solverVerb, self.params.problemType,
                     self.params.pathEmpirical, self.params.itermax, self.params.xConvCrit, self.params.yConvCrit,
                     self.params.makePlots, self.params.optStrategy, self.params.fWeight, self.params.fCritical, self.params.countryList,
                     analyzeResults, nlc, plot3dTable, combOverviews
                   ], kwargs)

        # Set solver variables
        nXvars = len(xVars.split())
        deKenPrice.I_NP         = int(self.params.nPopulation)
        deKenPrice.F_weight     = float(self.params.fWeight)
        deKenPrice.F_CR         = float(self.params.fCritical)
        deKenPrice.I_D          = int(nXvars)
        if self.params.problemType == 'one4eachCtry':
            deKenPrice.lowerBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 0], dtype = 'float64')
            deKenPrice.upperBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 1], dtype = 'float64')
        else:
            deKenPrice.lowerBds     = np.array([ element[0] for element in domain ], dtype = 'float64')
            deKenPrice.upperBds     = np.array([ element[1] for element in domain ], dtype = 'float64')
        deKenPrice.I_itermax    = int(self.params.itermax)
        deKenPrice.F_VTR        = float(self.params.yConvCrit)
        deKenPrice.I_strategy   = int(self.params.optStrategy)
        deKenPrice.I_plotting   = int(self.params.makePlots)
        deKenPrice.xConvCrit    = float(self.params.xConvCrit)
        deKenPrice.workingDir   = path_to_stage_dir
        deKenPrice.verbosity    = self.params.solverVerb

        logger.info('done with new_tasks')
Example #12
0
def momentPlots(baseName, path, xVar, overlay, conditions = {}, xVarRange = None, figureFile = None, type = 'presentation'):
  
  if os.path.isdir(path):
#  if not tableFile:
    tableFile = os.path.join(path, 'overviewSimu')
  elif os.path.isfile(path):
    tableFile = path
  else: 
    logger.critical('path is not a directory or a table file.')
  
  logger.info('\nCreating plot for path %s with conditions %s' % (path, conditions))
   
  # make sure xVar is not conditioned upon -> we want to use it for xaxis.  
  if xVar in conditions.keys():
    conditions.pop(xVar)
  
  # create a file name for emerging plots
  moments = ['EP', 'e_rs', 'e_rb', 'sigma_rs', 'sigma_rb']
  if not figureFile:
    paraMoments = moments + conditions.keys()
  #  paraMomentVals   = map(str, [EP, e_rs, e_rb, sigma_rs, sigma_rb] + conditions.values())
    paraMomentVals   = map(str, overlay.values() + conditions.values())
    paraString = '_'.join(map(''.join, zip(paraMoments, paraMomentVals)))
    fileName = baseName + 'xVar' + xVar + '__' + paraString
    fileName = fileName.replace('.', '') # kill all dots for latex
    figureFile = os.path.join('/mnt/resultsLarge/idRisk/plots', fileName + '.eps')
  
  # create table if not existent already
  if not os.path.isfile(tableFile) or not os.path.getsize(tableFile):
    tablePath = os.path.dirname(tableFile)
    createOverviewTable(tablePath)
    
  # read and adjust table
  overviewTab = tableDict.fromTextFile(tableFile, None, 20, 5)
  logger.debug('Read the following table: ')

  # Rename variables
  logger.debug(overviewTab)
  overviewTab.rename('eR_a', 'e_rs')
  overviewTab.rename('std_R_a(quar)', 'sigma_rs')
  overviewTab.rename('eR_b', 'e_rb')
  overviewTab.rename('std_R_b(quar)', 'sigma_rb')
  overviewTab.rename('rP_ana', 'EP')
  
  # Scale to yearly values
  overviewTab['e_rs'] = overviewTab['e_rs'] ** 4
  overviewTab['e_rb'] = overviewTab['e_rb'] ** 4
  overviewTab['EP'] = overviewTab['e_rs'] - overviewTab['e_rb']
  overviewTab['sigma_rs'] = overviewTab['sigma_rs'] * 2
  overviewTab['sigma_rb'] = overviewTab['sigma_rb'] * 2
  
  # make consistency check
  if not xVar in overviewTab.cols:
    print 'xVar %s not found in table' % xVar
    sys.exit()
  
  overviewTab.order([xVar] + conditions.keys() + moments)
  overviewTab.sort(conditions.keys() + [xVar])
    
  logger.debug('table after order and sort')
  logger.debug(overviewTab)

  # Copy table and impose conditions
  overviewTabSub = copy.deepcopy(overviewTab)

  logger.debug('keep only relevant variables')
  varsToKeep = ['EP', 'e_rs', 'e_rb', 'sigma_rs', 'sigma_rb']
  if not varsToKeep.count(xVar): varsToKeep.insert(0, xVar)
  overviewTabSub.keep(varsToKeep)
  
  # Subset y series
  for cond in conditions:
    overviewTabSub = overviewTabSub.getSubset( (overviewTabSub[cond] == conditions[cond] ))
  # Subset x range
  if xVarRange:
    overviewTabSub.subset( (overviewTabSub[xVar] >= xVarRange[0]) & (overviewTabSub[xVar] <= xVarRange[1]) )
  # make sure the table is not empty
  if len(overviewTabSub) == 0:
    logger.critical('table empty. Returning')
    return 1

  logger.info('table after imposing conditions:')
  logger.info(overviewTabSub)
  x = overviewTabSub[xVar]
  
  # Scale variables to percentage points
  overviewTabSub['EP'] = overviewTabSub['EP'] * 100
  overviewTabSub['e_rs'] = (overviewTabSub['e_rs'] -1 ) * 100
  overviewTabSub['e_rb'] = (overviewTabSub['e_rb'] -1 ) * 100
  overviewTabSub['sigma_rs'] = overviewTabSub['sigma_rs']  * 100
  overviewTabSub['sigma_rb'] = overviewTabSub['sigma_rb']  * 100
  
  logger.info('Final plot data')
  logger.info(overviewTabSub)

  # make plot
  fig = plt.figure()
  ax = fig.add_subplot(111)
  
  # set formatting for plots
  if type == 'presentation':
    colors = {'EP': 'k', 'e_rs': 'b', 'e_rb': 'g', 'sigma_rs': 'r', 'sigma_rb': 'c'}
    linewidths = { 'EP': 3, 'e_rs': 3, 'e_rb': 3, 'sigma_rs': 3, 'sigma_rb': 3 }
    linestyles = { 'EP': '-', 'e_rs': '-', 'e_rb': '-', 'sigma_rs': '-', 'sigma_rb': '-' }
    
  elif type == 'paper':
    colors = {'EP': 'k', 'e_rs': 'b', 'e_rb': 'g', 'sigma_rs': 'r', 'sigma_rb': 'c'}
    linewidths = { 'EP': 3, 'e_rs': 3, 'e_rb': 3, 'sigma_rs': 3, 'sigma_rb': 3 }
    linestyles = { 'EP': '-', 'e_rs': '-', 'e_rb': '-', 'sigma_rs': '-', 'sigma_rb': '-' }
  else: 
    logger.critical('unknown plot type to create. ')
    
  labels = { 'EP': '$E(R_m-R_f)$', 'e_rs': '$E(R_m)$', 'e_rb': '$E(R_f)$', 'sigma_rs': '$\sigma(R_m)$', 'sigma_rb': '$\sigma(R_f)$' }
  
  yVars = list(varsToKeep)
  yVars.remove(xVar)
  for yvar in yVars:
    ax.plot(x, overviewTabSub[yvar], linewidth = linewidths[yvar], linestyle = linestyles[yvar], color = colors[yvar], antialiased = True, label = labels[yvar])
  
##  if overlay['EP']:
##    ax.plot(x, overviewTabSub['EP'] * 100           , linewidths = 3, linestyle = '-', color = 'k', antialiased = True, label = '$E(R_m-R_f)$')
##  if overlay['e_rs']:  
##    ax.plot(x, (overviewTabSub['e_rs'] -1 ) * 100   , linewidth = 3, linestyle = '-', color = 'b', antialiased = True, label = '$E(R_m)$')
##  if overlay['e_rb']:
##    ax.plot(x, (overviewTabSub['e_rb'] -1 ) * 100   , linewidth = 3, linestyle = '-', color = 'g', antialiased = True, label = '$E(R_f)$')
##  if overlay['sigma_rs']:  
##    ax.plot(x, overviewTabSub['sigma_rs'] * 100     , linewidth = 3, linestyle = '-', color = 'r', antialiased = True, label = '$\sigma(R_m)$')
##  if overlay['sigma_rb']:
##    ax.plot(x, overviewTabSub['sigma_rb'] * 100     , linewidth = 3, linestyle = '-', marker = '', color = 'c', antialiased = True, label = '$\sigma(R_f)$')
##  #ax.plot(x, overviewTabSub['iBar_Shock0Agent0'] * 10     , linewidth = 3, linestyle = '-', marker = '', color = 'c', antialiased = True, label = 'iBar_Shock0Agent0')    
    
  if type == 'presentation':
    ax.legend(loc = 'lower left')
    if xVar == 'dy':
      ax.set_xlabel('$\Delta y$', fontsize = 18)
    else:
      ax.set_xlabel(xVar, fontsize = 18)
    ax.set_ylabel(r'%', fontsize = 18)
  elif type == 'paper':
    ax.legend(loc = 'lower left')
    if xVar == 'dy':
      ax.set_xlabel('$\Delta y$', fontsize = 10)
    else:
      ax.set_xlabel(xVar, fontsize = 10)
    ax.set_ylabel(r'%', fontsize = 10)
  else: 
    logger.critical('unknown plot type to create. ')
  
  fig.savefig(figureFile)
  os.system('chmod 660 ' + figureFile)
  
  logger.info('figure saved to %s' % figureFile)
Example #13
0
from plotAggregate import makeAggregatePlot
from pymods.classes.tableDict import tableDict

path2Pymods = os.path.join('../')
if not sys.path.count(path2Pymods):
    sys.path.append(path2Pymods)
from pymods.support.support import getParameter


output_dir = '/home/jonen/workspace/housingproj/model/results/newMchain/finePsi/DE/para_ctry=de_psi=0.0380000000_R_UL=1.0600000000_updateCtryParametersFile=1/output'
aggregateOut = os.path.join(output_dir, 'aggregate.out')
empOwnershipFile = os.path.join(os.path.split(output_dir)[0], 'input', 'SOEP' + 'OwnershipProfilealleduc.out')
ownershipTableFile = os.path.join(output_dir, 'ownershipTable.out')
if os.path.exists(aggregateOut):
    # make plot of predicted vs empirical ownership profile
    aggregateOutTable = tableDict.fromTextFile(aggregateOut, width = 20, prec = 10)
    aggregateOutTable.keep(['age', 'owner'])
    aggregateOutTable.rename('owner', 'thOwnership')
    empOwnershipTable = tableDict.fromTextFile(empOwnershipFile, width = 20, prec = 10)
    empOwnershipTable.rename('PrOwnership', 'empOwnership')
    print empOwnershipTable
#    print empOwnershipTable.cellFormat

    ownershipTable = aggregateOutTable.merged(empOwnershipTable, 'age')
    print ownershipTable
#    print ownershipTable.cellFormat

    yVars = ['thOwnership', 'empOwnership']
    # add the individual simulations
    for profile in [ '1', '2', '3' ]:
        profileOwnershipFile = os.path.join(output_dir, 'simulation_' + profile + '.out')
Example #14
0
from pymods.classes.tableDict import tableDict

path2Pymods = os.path.join('../')
if not sys.path.count(path2Pymods):
    sys.path.append(path2Pymods)
from pymods.support.support import getParameter

output_dir = '/home/jonen/workspace/housingproj/model/results/newMchain/finePsi/DE/para_ctry=de_psi=0.0380000000_R_UL=1.0600000000_updateCtryParametersFile=1/output'
aggregateOut = os.path.join(output_dir, 'aggregate.out')
empOwnershipFile = os.path.join(
    os.path.split(output_dir)[0], 'input',
    'SOEP' + 'OwnershipProfilealleduc.out')
ownershipTableFile = os.path.join(output_dir, 'ownershipTable.out')
if os.path.exists(aggregateOut):
    # make plot of predicted vs empirical ownership profile
    aggregateOutTable = tableDict.fromTextFile(aggregateOut, width=20, prec=10)
    aggregateOutTable.keep(['age', 'owner'])
    aggregateOutTable.rename('owner', 'thOwnership')
    empOwnershipTable = tableDict.fromTextFile(empOwnershipFile,
                                               width=20,
                                               prec=10)
    empOwnershipTable.rename('PrOwnership', 'empOwnership')
    print empOwnershipTable
    #    print empOwnershipTable.cellFormat

    ownershipTable = aggregateOutTable.merged(empOwnershipTable, 'age')
    print ownershipTable
    #    print ownershipTable.cellFormat

    yVars = ['thOwnership', 'empOwnership']
    # add the individual simulations
Example #15
0
        print 'cannot find linspace in string'
        os._exit()


if __name__ == '__main__':
    logger.info('Starting: \n%s' % ' '.join(sys.argv))
    idRiskParaSearchScript().run()
    logger.debug('combine resulting tables')
    tableList = [
        os.path.join(os.getcwd(), folder, 'optimalRun')
        for folder in os.listdir(os.getcwd())
        if os.path.isdir(folder) and not folder == 'localBaseDir'
        and not folder == 'idRiskParaSearch.jobs'
    ]
    tableDicts = [
        tableDict.fromTextFile(table, width=20, prec=10) for table in tableList
        if os.path.isfile(table)
    ]
    if tableDicts:
        optimalRuns = tableDicts[0]
        for ixTable, table in enumerate(tableDicts):
            if ixTable == 0: continue
            optimalRuns = optimalRuns.getAppended(table)
        #optimalRuns.order(['dy', 'wBarLower'])
        #optimalRuns.sort(['dy'])
        logger.info(optimalRuns)
        f = open(os.path.join(os.getcwd(), 'optimalRuns'), 'w')
        print >> f, optimalRuns
        f.flush()
    #logger.info('Generating plot')
    #baseName = 'moments'
Example #16
0
        (linSpacePart, strIn) = re.match('(\s*linspace\(.*?\)\s*)[,\s*]*(.*)', strIn).groups()
        args = re.match('linspace\(([(0-9\.\s-]+),([0-9\.\s-]+),([0-9\.\s-]+)\)', linSpacePart).groups()
        args = [ float(arg) for arg in args] # assume we always want float for linspace
        linSpaceVec = np.linspace(args[0], args[1], args[2])
        return linSpaceVec
    else: 
        print 'cannot find linspace in string'
        os._exit()


if __name__ == '__main__':
    logger.info('Starting: \n%s' % ' '.join(sys.argv))
    idRiskParaSearchScript().run()
    logger.debug('combine resulting tables')    
    tableList = [ os.path.join(os.getcwd(), folder, 'optimalRun') for folder in os.listdir(os.getcwd()) if os.path.isdir(folder) and not folder == 'localBaseDir' and not folder == 'idRiskParaSearch.jobs' ]
    tableDicts = [ tableDict.fromTextFile(table, width = 20, prec = 10) for table in tableList if os.path.isfile(table)]
    if tableDicts:
        optimalRuns = tableDicts[0]
        for ixTable, table in enumerate(tableDicts):
            if ixTable == 0: continue
            optimalRuns = optimalRuns.getAppended(table)
        #optimalRuns.order(['dy', 'wBarLower'])
        #optimalRuns.sort(['dy'])
        logger.info(optimalRuns)
        f = open(os.path.join(os.getcwd(), 'optimalRuns'), 'w')  
        print >> f, optimalRuns
        f.flush()
    #logger.info('Generating plot')
    #baseName = 'moments'
    #path = os.getcwd()
    # conditions = {}
Example #17
0
    def new_tasks(self, extra):

        logger.info('entering new_tasks')

        # Adjust logging level for stream handler. Could be extracted into a general function.
        for handler in logger.handlers:
            if not isinstance(handler, logbook.FileHandler):
                logger.handlers.remove(handler)
        mySH = logbook.StreamHandler(stream = sys.stdout, level = self.params.solverVerb.upper(), format_string = '{record.message}', bubble = True)
        logger.handlers.append(mySH)

        baseDir = self.params.initial
        xVars    = self.params.xVars

        countryList = self.params.countryList.split()

        ctryIndices = getIndex(base = [len(countryList), len(countryList)], restr = 'lowerTr')
        for ctryIndex in ctryIndices:
            logger.info(countryList[ctryIndex[0]] + countryList[ctryIndex[1]])


        # Compute domain
        xVarsDom = self.params.xVarsDom.split()
        lowerBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 0], dtype = 'float64')
        upperBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 1], dtype = 'float64')
        domain = zip(lowerBds, upperBds)


        # Make problem type specific adjustments.
        if self.params.problemType == 'one4all':
            gdpTable = tableDict.fromTextFile(fileIn = os.path.join(self.params.pathEmpirical, 'outputInput/momentTable/Gdp/gdpMoments.csv'),
                                              delim = ',', width = 20)

            jobname = 'one4all'

            logger.info('%s' % self.params.norm)
            norm = self.params.norm
            try:
                norm = int(norm)
            except ValueError:
                if norm == "np.inf" or norm == "inf":
                    norm = np.inf
                else:
                    pass # in particular custom norms

            logger.info('using norm %s' % (norm))


            path_to_stage_dir = os.getcwd()
            executable = os.path.basename(self.params.executable)
            analyzeResults = anaOne4all(len(list(ctryIndices)), norm = norm)
            nlc            = nlcOne4all(gdpTable = gdpTable, ctryList = countryList, domain = domain, logFile = os.path.join(path_to_stage_dir, 'nlc.log'))
            combOverviews  = combineOverviews.combineOverviews(overviewSimuFile = 'eSigmaTable', tableName = 'ag_eSigmaTable', sortKeys = ['norm'])
            plot3dTable    = combineOverviews.plotTable(tablePath =os.path.join(path_to_stage_dir, 'ag_eSigmaTable'), savePath = os.path.join(path_to_stage_dir, 'scatter3d'))
            plot3dTable.columnNames = ['E', 'sigma', 'norm']
            for ctryIndex in ctryIndices:
                Ctry1 = countryList[ctryIndex[0]]
                Ctry2 = countryList[ctryIndex[1]]
                # Set Ctry information for this run.
                update_parameter_in_file(os.path.join(baseDir, 'input/markovA.in'), 'Ctry',
                                          0,  Ctry1,  'space-separated')
                update_parameter_in_file(os.path.join(baseDir, 'input/markovB.in'), 'Ctry',
                                          0,  Ctry2,  'space-separated')
                # Get the correct Ctry Paras into base dir.
                self.getCtryParas(baseDir, Ctry1, Ctry2)
                # Copy base dir
                ctryBaseDir = os.path.join(path_to_stage_dir, 'base' + Ctry1 + Ctry2)
                try:
                    shutil.copytree(baseDir, ctryBaseDir)
                except:
                    logger.info('%s already exists' % baseDir)

            kwargs = extra.copy()
            kwargs['output_dir'] = path_to_stage_dir

            # yield job
            yield (jobname, gParaSearchDriver,
                   [ self.params.executable, path_to_stage_dir, self.params.architecture,
                     baseDir, self.params.xVars, self.params.initialPop,
                     self.params.nPopulation, domain, self.params.solverVerb, self.params.problemType,
                     self.params.pathEmpirical, self.params.itermax, self.params.xConvCrit, self.params.yConvCrit,
                     self.params.makePlots, self.params.optStrategy, self.params.fWeight, self.params.fCritical, self.params.countryList,
                     analyzeResults, nlc, plot3dTable, combOverviews
                   ], kwargs)



        elif self.params.problemType == 'one4eachPair':
            for ctryIndex in ctryIndices:
                Ctry1 = countryList[ctryIndex[0]]
                Ctry2 = countryList[ctryIndex[1]]
                logger.info(Ctry1 + Ctry2)
                jobname = Ctry1 + '-' + Ctry2
                # set stage dir.
                path_to_stage_dir = self.make_directory_path(self.params.output, jobname)
                gc3libs.utils.mkdir(path_to_stage_dir)
                #path_to_stage_dir = os.path.join(iterationFolder, jobname)
                # Get moments table from empirical analysis
                gdpTable = tableDict.fromTextFile(fileIn = os.path.join(self.params.pathEmpirical, 'outputInput/momentTable/Gdp/gdpMoments.csv'),
                                                  delim = ',', width = 20)

                # Set Ctry information for this run.
                update_parameter_in_file(os.path.join(baseDir, 'input/markovA.in'), 'Ctry',
                                          0,  Ctry1,  'space-separated')
                update_parameter_in_file(os.path.join(baseDir, 'input/markovB.in'), 'Ctry',
                                          0,  Ctry2,  'space-separated')
                # Get the correct Ctry Paras into base dir.
                self.getCtryParas(baseDir, Ctry1, Ctry2)
                # Copy base dir
                ctryBaseDir = os.path.join(path_to_stage_dir, 'base')
                try:
                    shutil.copytree(baseDir, ctryBaseDir)
                except:
                    logger.info('%s already exists' % baseDir)
                EA = getParameter(fileIn = os.path.join(baseDir, 'input/parameters.in'), varIn = 'EA',
                                     regexIn = 'bar-separated')
                EB = getParameter(fileIn = os.path.join(baseDir, 'input/parameters.in'), varIn = 'EB',
                                     regexIn = 'bar-separated')
                sigmaA = getParameter(fileIn = os.path.join(baseDir, 'input/parameters.in'), varIn = 'sigmaA',
                                     regexIn = 'bar-separated')
                sigmaB = getParameter(fileIn = os.path.join(baseDir, 'input/parameters.in'), varIn = 'sigmaB',
                                     regexIn = 'bar-separated')
                # Pass ctry information to nlc
                analyzeResults = anaOne4eachPair
                nlc = nlcOne4eachPair(gdpTable = gdpTable, ctryPair = [Ctry1, Ctry2], domain = domain, logFile = os.path.join(path_to_stage_dir, 'nlc.log'))
                combOverviews = combineOverviews.combineOverviews(overviewSimuFile = 'overviewSimu', tableName = 'agTable', sortKeys = ['normDev'])
                plot3dTable    = combineOverviews.plotTable(tablePath =os.path.join(path_to_stage_dir, 'agTable'), savePath = os.path.join(path_to_stage_dir, 'scatter3d'))
                plot3dTable.columnNames = ['EA', 'sigmaA', 'normDev']

                executable = os.path.basename(self.params.executable)
                kwargs = extra.copy()
                kwargs['output_dir'] = path_to_stage_dir

                # yield job
                yield (jobname, gParaSearchDriver,
                       [ self.params.executable, path_to_stage_dir, self.params.architecture,
                         ctryBaseDir, self.params.xVars, self.params.initialPop,
                         self.params.nPopulation, domain, self.params.solverVerb, self.params.problemType,
                         self.params.pathEmpirical, self.params.itermax, self.params.xConvCrit, self.params.yConvCrit,
                         self.params.makePlots, self.params.optStrategy, self.params.fWeight, self.params.fCritical, self.params.countryList,
                         analyzeResults, nlc, plot3dTable, combOverviews
                       ], kwargs)

        elif self.params.problemType == 'one4eachCtry':
            gdpTable = tableDict.fromTextFile(fileIn = os.path.join(self.params.pathEmpirical, 'outputInput/momentTable/Gdp/gdpMoments.csv'),
                                              delim = ',', width = 20)

            if len(countryList) > len(self.params.xVars.split()) / 2 and len(xVars.split()) == 2:
                if self.params.xVars[-1:] != " ":
                    xVars = ( self.params.xVars + ' ' ) * len(countryList)
                    xVars = xVars[:-1]
                else:
                    xVars = self.params.xVars * len(countryList)
                if self.params.xVarsDom[-1:] != " ":
                    xVarsDom = ( self.params.xVarsDom + ' ' ) * len(countryList)
                    xVarsDom = xVarsDom[:-1].split()
                else:
                    xVarsDom = self.params.xVarsDom * len(countryList)
                    xVarsDom = xVarsDom.split()
            else:
                xVars = self.params.xVars
                xVarsDom = self.params.xVarsDom[:-1].split()
            jobname = 'one4eachCtry'

            lowerBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 0], dtype = 'float64')
            upperBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 1], dtype = 'float64')
            domain = zip(lowerBds, upperBds)

            norm = self.params.norm
            try:
                norm = int(norm)
            except ValueError:
                if norm == "np.inf" or norm == "inf":
                    norm = np.inf
                else:
                    pass # in particular custom norms

            logger.info('using norm %s' % (norm))

            path_to_stage_dir = os.getcwd()
            executable = os.path.basename(self.params.executable)
            analyzeResults = anaOne4eachCtry(countryList, len(list(ctryIndices)), norm = norm)
            nlc            = nlcOne4eachCtry(gdpTable = gdpTable, ctryList = countryList, domain = domain, logFile = os.path.join(path_to_stage_dir, 'nlc.log'))
            combOverviews  = combineOverviews.combineOverviews(overviewSimuFile = 'eSigmaTable', tableName = 'ag_eSigmaTable', sortKeys = ['norm'])
            deKenPrice.plotPopulation = plotPopOne4eachCtry(countryList)


##            # Set solver variables
##            nXvars = len(xVars.split())
##            deKenPrice.I_NP         = int(self.params.nPopulation)
##            deKenPrice.F_weight     = float(self.params.fWeight)
##            deKenPrice.F_CR         = float(self.params.fCritical)
##            deKenPrice.I_D          = int(nXvars)
##            deKenPrice.lowerBds     = np.array([ element[0] for element in domain ], dtype = 'float64')
##            deKenPrice.upperBds     = np.array([ element[1] for element in domain ], dtype = 'float64')
##            deKenPrice.I_itermax    = int(self.params.itermax)
##            deKenPrice.F_VTR        = float(self.params.yConvCrit)
##            deKenPrice.I_strategy   = int(self.params.optStrategy)
##            deKenPrice.I_plotting   = int(self.params.makePlots)
##            deKenPrice.xConvCrit    = float(self.params.xConvCrit)
##            deKenPrice.workingDir   = path_to_stage_dir
##            deKenPrice.verbosity    = self.params.solverVerb


            plot3dTable    = emptyFun
#            plot3dTable    = combineOverviews.plotTable(tablePath =os.path.join(path_to_stage_dir, 'ag_eSigmaTable'), savePath = os.path.join(path_to_stage_dir, 'scatter3d'))
#            plot3dTable.columnNames = ['E', 'sigma', 'norm']
            for ctryIndex in ctryIndices:
                Ctry1 = countryList[ctryIndex[0]]
                Ctry2 = countryList[ctryIndex[1]]
                # Set Ctry information for this run.
                update_parameter_in_file(os.path.join(baseDir, 'input/markovA.in'), 'Ctry',
                                          0,  Ctry1,  'space-separated')
                update_parameter_in_file(os.path.join(baseDir, 'input/markovB.in'), 'Ctry',
                                          0,  Ctry2,  'space-separated')
                # Get the correct Ctry Paras into base dir.
                self.getCtryParas(baseDir, Ctry1, Ctry2)
                # Copy base dir
                ctryBaseDir = os.path.join(path_to_stage_dir, 'base' + Ctry1 + Ctry2)
                try:
                    shutil.copytree(baseDir, ctryBaseDir)
                except:
                    logger.info('%s already exists' % baseDir)

            kwargs = extra.copy()
            kwargs['output_dir'] = path_to_stage_dir

            # yield job

            yield (jobname, gParaSearchDriver,
                   [ self.params.executable, path_to_stage_dir, self.params.architecture,
                     baseDir, xVars, self.params.initialPop,
                     self.params.nPopulation, domain, self.params.solverVerb, self.params.problemType,
                     self.params.pathEmpirical, self.params.itermax, self.params.xConvCrit, self.params.yConvCrit,
                     self.params.makePlots, self.params.optStrategy, self.params.fWeight, self.params.fCritical, self.params.countryList,
                     analyzeResults, nlc, plot3dTable, combOverviews
                   ], kwargs)

        # Set solver variables
        nXvars = len(xVars.split())
        deKenPrice.I_NP         = int(self.params.nPopulation)
        deKenPrice.F_weight     = float(self.params.fWeight)
        deKenPrice.F_CR         = float(self.params.fCritical)
        deKenPrice.I_D          = int(nXvars)
        if self.params.problemType == 'one4eachCtry':
            deKenPrice.lowerBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 0], dtype = 'float64')
            deKenPrice.upperBds = np.array([xVarsDom[i] for i in range(len(xVarsDom)) if i % 2 == 1], dtype = 'float64')
        else:
            deKenPrice.lowerBds     = np.array([ element[0] for element in domain ], dtype = 'float64')
            deKenPrice.upperBds     = np.array([ element[1] for element in domain ], dtype = 'float64')
        deKenPrice.I_itermax    = int(self.params.itermax)
        deKenPrice.F_VTR        = float(self.params.yConvCrit)
        deKenPrice.I_strategy   = int(self.params.optStrategy)
        deKenPrice.I_plotting   = int(self.params.makePlots)
        deKenPrice.xConvCrit    = float(self.params.xConvCrit)
        deKenPrice.workingDir   = path_to_stage_dir
        deKenPrice.verbosity    = self.params.solverVerb

        logger.info('done with new_tasks')
Example #18
0
def momentPlots(baseName,
                path,
                xVar,
                overlay,
                conditions={},
                xVarRange=None,
                figureFile=None,
                type='presentation'):

    if os.path.isdir(path):
        #  if not tableFile:
        tableFile = os.path.join(path, 'overviewSimu')
    elif os.path.isfile(path):
        tableFile = path
    else:
        logger.critical('path is not a directory or a table file.')

    logger.info('\nCreating plot for path %s with conditions %s' %
                (path, conditions))

    # make sure xVar is not conditioned upon -> we want to use it for xaxis.
    if xVar in conditions.keys():
        conditions.pop(xVar)

    # create a file name for emerging plots
    moments = ['EP', 'e_rs', 'e_rb', 'sigma_rs', 'sigma_rb']
    if not figureFile:
        paraMoments = moments + conditions.keys()
        #  paraMomentVals   = map(str, [EP, e_rs, e_rb, sigma_rs, sigma_rb] + conditions.values())
        paraMomentVals = map(str, overlay.values() + conditions.values())
        paraString = '_'.join(map(''.join, zip(paraMoments, paraMomentVals)))
        fileName = baseName + 'xVar' + xVar + '__' + paraString
        fileName = fileName.replace('.', '')  # kill all dots for latex
        figureFile = os.path.join('/mnt/resultsLarge/idRisk/plots',
                                  fileName + '.eps')

    # create table if not existent already
    if not os.path.isfile(tableFile) or not os.path.getsize(tableFile):
        tablePath = os.path.dirname(tableFile)
        createOverviewTable(tablePath)

    # read and adjust table
    overviewTab = tableDict.fromTextFile(tableFile, None, 20, 5)
    logger.debug('Read the following table: ')

    # Rename variables
    logger.debug(overviewTab)
    overviewTab.rename('eR_a', 'e_rs')
    overviewTab.rename('std_R_a(quar)', 'sigma_rs')
    overviewTab.rename('eR_b', 'e_rb')
    overviewTab.rename('std_R_b(quar)', 'sigma_rb')
    overviewTab.rename('rP_ana', 'EP')

    # Scale to yearly values
    overviewTab['e_rs'] = overviewTab['e_rs']**4
    overviewTab['e_rb'] = overviewTab['e_rb']**4
    overviewTab['EP'] = overviewTab['e_rs'] - overviewTab['e_rb']
    overviewTab['sigma_rs'] = overviewTab['sigma_rs'] * 2
    overviewTab['sigma_rb'] = overviewTab['sigma_rb'] * 2

    # make consistency check
    if not xVar in overviewTab.cols:
        print 'xVar %s not found in table' % xVar
        sys.exit()

    overviewTab.order([xVar] + conditions.keys() + moments)
    overviewTab.sort(conditions.keys() + [xVar])

    logger.debug('table after order and sort')
    logger.debug(overviewTab)

    # Copy table and impose conditions
    overviewTabSub = copy.deepcopy(overviewTab)

    logger.debug('keep only relevant variables')
    varsToKeep = ['EP', 'e_rs', 'e_rb', 'sigma_rs', 'sigma_rb']
    if not varsToKeep.count(xVar): varsToKeep.insert(0, xVar)
    overviewTabSub.keep(varsToKeep)

    # Subset y series
    for cond in conditions:
        overviewTabSub = overviewTabSub.getSubset(
            (overviewTabSub[cond] == conditions[cond]))
    # Subset x range
    if xVarRange:
        overviewTabSub.subset((overviewTabSub[xVar] >= xVarRange[0])
                              & (overviewTabSub[xVar] <= xVarRange[1]))
    # make sure the table is not empty
    if len(overviewTabSub) == 0:
        logger.critical('table empty. Returning')
        return 1

    logger.info('table after imposing conditions:')
    logger.info(overviewTabSub)
    x = overviewTabSub[xVar]

    # Scale variables to percentage points
    overviewTabSub['EP'] = overviewTabSub['EP'] * 100
    overviewTabSub['e_rs'] = (overviewTabSub['e_rs'] - 1) * 100
    overviewTabSub['e_rb'] = (overviewTabSub['e_rb'] - 1) * 100
    overviewTabSub['sigma_rs'] = overviewTabSub['sigma_rs'] * 100
    overviewTabSub['sigma_rb'] = overviewTabSub['sigma_rb'] * 100

    logger.info('Final plot data')
    logger.info(overviewTabSub)

    # make plot
    fig = plt.figure()
    ax = fig.add_subplot(111)

    # set formatting for plots
    if type == 'presentation':
        colors = {
            'EP': 'k',
            'e_rs': 'b',
            'e_rb': 'g',
            'sigma_rs': 'r',
            'sigma_rb': 'c'
        }
        linewidths = {
            'EP': 3,
            'e_rs': 3,
            'e_rb': 3,
            'sigma_rs': 3,
            'sigma_rb': 3
        }
        linestyles = {
            'EP': '-',
            'e_rs': '-',
            'e_rb': '-',
            'sigma_rs': '-',
            'sigma_rb': '-'
        }

    elif type == 'paper':
        colors = {
            'EP': 'k',
            'e_rs': 'b',
            'e_rb': 'g',
            'sigma_rs': 'r',
            'sigma_rb': 'c'
        }
        linewidths = {
            'EP': 3,
            'e_rs': 3,
            'e_rb': 3,
            'sigma_rs': 3,
            'sigma_rb': 3
        }
        linestyles = {
            'EP': '-',
            'e_rs': '-',
            'e_rb': '-',
            'sigma_rs': '-',
            'sigma_rb': '-'
        }
    else:
        logger.critical('unknown plot type to create. ')

    labels = {
        'EP': '$E(R_m-R_f)$',
        'e_rs': '$E(R_m)$',
        'e_rb': '$E(R_f)$',
        'sigma_rs': '$\sigma(R_m)$',
        'sigma_rb': '$\sigma(R_f)$'
    }

    yVars = list(varsToKeep)
    yVars.remove(xVar)
    for yvar in yVars:
        ax.plot(x,
                overviewTabSub[yvar],
                linewidth=linewidths[yvar],
                linestyle=linestyles[yvar],
                color=colors[yvar],
                antialiased=True,
                label=labels[yvar])


##  if overlay['EP']:
##    ax.plot(x, overviewTabSub['EP'] * 100           , linewidths = 3, linestyle = '-', color = 'k', antialiased = True, label = '$E(R_m-R_f)$')
##  if overlay['e_rs']:
##    ax.plot(x, (overviewTabSub['e_rs'] -1 ) * 100   , linewidth = 3, linestyle = '-', color = 'b', antialiased = True, label = '$E(R_m)$')
##  if overlay['e_rb']:
##    ax.plot(x, (overviewTabSub['e_rb'] -1 ) * 100   , linewidth = 3, linestyle = '-', color = 'g', antialiased = True, label = '$E(R_f)$')
##  if overlay['sigma_rs']:
##    ax.plot(x, overviewTabSub['sigma_rs'] * 100     , linewidth = 3, linestyle = '-', color = 'r', antialiased = True, label = '$\sigma(R_m)$')
##  if overlay['sigma_rb']:
##    ax.plot(x, overviewTabSub['sigma_rb'] * 100     , linewidth = 3, linestyle = '-', marker = '', color = 'c', antialiased = True, label = '$\sigma(R_f)$')
##  #ax.plot(x, overviewTabSub['iBar_Shock0Agent0'] * 10     , linewidth = 3, linestyle = '-', marker = '', color = 'c', antialiased = True, label = 'iBar_Shock0Agent0')

    if type == 'presentation':
        ax.legend(loc='lower left')
        if xVar == 'dy':
            ax.set_xlabel('$\Delta y$', fontsize=18)
        else:
            ax.set_xlabel(xVar, fontsize=18)
        ax.set_ylabel(r'%', fontsize=18)
    elif type == 'paper':
        ax.legend(loc='lower left')
        if xVar == 'dy':
            ax.set_xlabel('$\Delta y$', fontsize=10)
        else:
            ax.set_xlabel(xVar, fontsize=10)
        ax.set_ylabel(r'%', fontsize=10)
    else:
        logger.critical('unknown plot type to create. ')

    fig.savefig(figureFile)
    os.system('chmod 660 ' + figureFile)

    logger.info('figure saved to %s' % figureFile)