Example #1
0
def minimize(problem, algorithm, termination=None, **kwargs):
    """

    Minimization of function of one or more variables, objectives and constraints.

    This is used as a convenience function to execute several algorithms with default settings which turned
    out to work for a test single. However, evolutionary computations utilizes the idea of customizing a
    meta-algorithm. Customizing the algorithm using the object oriented interface is recommended to improve the
    convergence.

    Parameters
    ----------

    problem : pymoo.problem
        A problem object which is defined using pymoo.

    algorithm : :class:`~pymoo.model.algorithm.Algorithm`
        The algorithm object that should be used for the optimization.

    termination : class or tuple
        The termination criterion that is used to stop the algorithm.


    Returns
    -------
    res : :class:`~pymoo.model.result.Result`
        The optimization result represented as an object.

    """

    # create a copy of the algorithm object to ensure no side-effects
    algorithm = copy.deepcopy(algorithm)

    # set the termination criterion and store it in the algorithm object
    if termination is None:
        termination = None
    elif not isinstance(termination, Termination):
        if isinstance(termination, str):
            termination = get_termination(termination)
        else:
            termination = get_termination(*termination)

    # initialize the method given a problem
    algorithm.initialize(problem, termination=termination, **kwargs)

    if algorithm.termination is None:
        if problem.n_obj > 1:
            algorithm.termination = MultiObjectiveDefaultTermination()
        else:
            algorithm.termination = SingleObjectiveDefaultTermination()

    # actually execute the algorithm
    res = algorithm.solve()

    # store the copied algorithm in the result object
    res.algorithm = algorithm

    return res
Example #2
0
def termination_from_tuple(termination):
    from pymoo.model.termination import Termination

    # get the termination if provided as a tuple - create an object
    if termination is not None and not isinstance(termination, Termination):
        from pymoo.factory import get_termination
        if isinstance(termination, str):
            termination = get_termination(termination)
        else:
            termination = get_termination(*termination)

    return termination
Example #3
0
    def test_against_scipy(self):
        problem = get_problem("rosenbrock")
        problem.xl = None
        problem.xu = None
        x0 = np.array([0.5, 0.5])

        hist_scipy = []

        def fun(x):
            hist_scipy.append(x)
            return problem.evaluate(x)

        scipy_minimize(fun, x0, method='Nelder-Mead')
        hist_scipy = np.array(hist_scipy)

        hist = []

        def callback(x):
            if x.shape == 2:
                hist.extend(x)
            else:
                hist.append(x)

        problem.callback = callback
        minimize(
            problem,
            nelder_mead(x0=x0,
                        max_restarts=0,
                        termination=get_termination("n_eval",
                                                    len(hist_scipy))))
        hist = np.row_stack(hist)[:len(hist_scipy)]

        self.assertTrue(np.all(hist - hist_scipy < 1e-7))
Example #4
0
    def pymoo_cube(objective, n_trials, method_name, n_dim, with_count, ref_dirs=None):

        class ObjectiveProblem(Problem):

            def __init__(self):
                super().__init__(n_var=n_dim, n_obj=1, n_constr=0, xl=0.0, xu=1.0)
                self.feval_count = 0

            def _evaluate(self, x, out, *args, **kwargs):
                """ vectorized  """
                self.feval_count = self.feval_count + len(x)
                out["F"] = np.array([objective(u) for u in x])

        try:
            algorithm = get_algorithm(method_name, ref_dirs=ref_dirs)
        except ValueError:
            algorithm = get_algorithm(method_name)
        termination = get_termination("n_eval", n_trials)
        problem = ObjectiveProblem()

        result = minimize(problem=problem,
                          algorithm=algorithm,
                          termination=termination,
                          seed=None,
                          verbose=False,
                          display=None,
                          callback=None,
                          return_least_infeasible=False,
                          save_history=False
                          )
        best_val = result.F[0]
        best_x = result.X.tolist()
        return (best_val, best_x, problem.feval_count) if with_count else (best_val, best_x)
Example #5
0
def set_optimization(no_obj):
    """
    Set the selected optimization technique.

    Args:
        n_obj (int): Number of objectives.

    Returns:
        algorithm (): Optization algorithm object.
        termination (): Termination object.
    """
    setup = settings["optimization"]

    # Get optimization algorithm
    alg = set_algorithm(setup["algorithm"], no_obj, setup)

    # Get termination criterion
    termination = setup["termination"]

    if termination == "default":
        terimnation = "f_tol"
        setup_term = [0.001, 5, 5, 150, None]
        term = default_termination(no_obj, setup_term)
    else:
        term = get_termination(termination, *setup["termination_val"])

    return alg, term
Example #6
0
async def optimize(evaluate, configs):
    # config
    # D = 8  decision space dimension
    # N0 = 100  initial population
    # Ng = 100  total generation
    # seed = None  random seed
    D, Ng, N0, seed = itemgetter('D', 'Ng', 'N0', 'seed')(configs)

    problem = Evaluator(evaluate, D)
    algorithm = NSGA2(pop_size=N0,
                      n_offsprings=N0,
                      sampling=get_sampling('real_random'),
                      crossover=get_crossover('real_sbx', prob=0.9, eta=15),
                      mutation=get_mutation('real_pm', eta=20),
                      eliminate_duplicates=True)
    termination = get_termination('n_gen', Ng)
    await asyncio.sleep(0)
    res = minimize(problem,
                   algorithm,
                   termination,
                   seed=seed,
                   save_history=True,
                   verbose=False)
    gbest = (res.X, res.F)

    return gbest
Example #7
0
def test_against_scipy():
    problem = get_problem("rosenbrock")
    problem.xl = None
    problem.xu = None
    x0 = np.array([0.5, 0.5])

    hist_scipy = []

    def fun(x):
        hist_scipy.append(x)
        return problem.evaluate(x)

    scipy_minimize(fun, x0, method='Nelder-Mead')
    hist_scipy = np.array(hist_scipy)

    hist = []

    def callback(x, _):
        if x.shape == 2:
            hist.extend(x)
        else:
            hist.append(x)

    problem.callback = callback
    minimize(
        problem,
        NelderMead(x0=x0,
                   max_restarts=0,
                   termination=get_termination("n_eval", len(hist_scipy))))
    hist = np.row_stack(hist)[:len(hist_scipy)]

    np.testing.assert_allclose(hist, hist_scipy, rtol=1e-04)
Example #8
0
def pymoo_cube(objective, scale, n_trials, method_name, ref_dirs=None):
    class ObjectiveProblem(Problem):

        def __init__(self):
            super().__init__(n_var=3, n_obj=1, n_constr=0, xl=-scale, xu=scale)

        def _evaluate(self, x, out, *args, **kwargs):
            out["F"] = np.array([objective(u)[0] for u in x])

    try:
        algorithm = get_algorithm(method_name, ref_dirs=ref_dirs)
    except ValueError:
        algorithm = get_algorithm(method_name)
    termination = get_termination("n_eval", n_trials)
    problem = ObjectiveProblem()

    result = minimize(problem=problem,
                      algorithm=algorithm,
                      termination=termination,
                      seed=None,
                      verbose=False,
                      display=None,
                      callback=None,
                      return_least_infeasible=False,
                      save_history=False
                      )
    f_min = result.F[0]
    return f_min
Example #9
0
    def test_multiObjOptimization(self):
        algorithm = NSGA2(pop_size=10,
                          n_offsprings=10,
                          sampling=get_sampling("real_random"),
                          crossover=get_crossover("real_sbx", prob=0.9,
                                                  eta=15),
                          mutation=get_mutation("real_pm", eta=20),
                          eliminate_duplicates=True)
        termination = get_termination("n_gen", 5)
        bayer = self.datasetUtils.readCFAImages()
        twoComplement = self.datasetUtils.twoComplementMatrix(bayer)
        twoComplement = twoComplement.astype("float32")
        problem = MyProblem(twoComplement)
        res = minimize(problem,
                       algorithm,
                       termination,
                       save_history=True,
                       verbose=True)

        # Objective Space
        res.F = 1 / res.F
        plot = Scatter(title="Objective Space")
        plot.add(res.F)
        plot.show()
        print("Best filter{}".format(np.reshape(res.opt[-1].X, [2, 2])))
Example #10
0
def get_termination_for_final_tuning(time: str = '06:00:00'):
    """
  Returns the termination criteria for the final tuning blackbox optimization problem
  """

    termination = get_termination('time', time)

    return termination
Example #11
0
def run(countryname, capacity):
    problem = ScheduleProblem(country_name=countryname, critical_capacity=capacity, record_all=True)


    algorithm = NSGA2(
        pop_size=100,
        n_offsprings=100,
        sampling=get_sampling("int_random"),
        crossover=get_crossover("int_sbx", prob=0.9, eta=15),
        mutation=get_mutation("int_pm", eta=20),
        eliminate_duplicates=True
    )

    termination = get_termination("n_gen", 100)
    res = minimize(problem,
                algorithm,
                termination,
                seed=1,
                pf=problem.pareto_front(use_cache=False),
                save_history=True,
                verbose=True)

    # create the performance indicator object with reference point (4,4)
    metric = Hypervolume(ref_point=np.array([1.0, 1.0]))

    # collect the population in each generation
    pop_each_gen = [a.pop for a in res.history]

    with open("./experiments/ga_{}_lastpop.json".format(countryname), 'w') as f:
        json.dump( {"df":[e.to_dict() for e in problem.last[0]],"x":problem.last[1].tolist()}, f)

    with open("./experiments/ga_{}_lastobj.json".format(countryname), 'w') as f:
        json.dump( {"deaths": problem.last_objectives[0].tolist(), "activity":problem.last_objectives[1].tolist()} , f)

    # Objective Space
    fig = plt.figure()
    plot = Scatter(title = "Objective Space")
    plot.add(res.F)
    plt.savefig("./experiments/ga_{}_objective.png".format(countryname))

    # receive the population in each generation
    obj_and_feasible_each_gen = [pop[pop.get("feasible")[:,0]].get("F") for pop in pop_each_gen]

    # calculate for each generation the HV metric
    hv = [metric.calc(f) for f in obj_and_feasible_each_gen]

    # function evaluations at each snapshot
    n_evals = np.array([a.evaluator.n_eval for a in res.history])

    # visualize the convergence curve
    fig = plt.figure()
    plt.plot(n_evals, hv, '-o')
    plt.title("Convergence")
    plt.xlabel("Function Evaluations")
    plt.ylabel("Hypervolume")
    plt.savefig("./experiments/ga_{}_hypervolume.png".format(countryname))
    plt.show()
Example #12
0
def FI_minimize(problem,
                feas_algo,
                infeas_algo,
                termination,
                feas_mask=None,
                infeas_mask=None,
                **kwargs):

    # create a copy of the algorithm object to ensure no side-effects
    # algorithm = copy.deepcopy(algorithm)

    # set the termination criterion and store it in the algorithm object
    if termination is None:
        termination = None
    elif not isinstance(termination, Termination):
        if isinstance(termination, str):
            termination = get_termination(termination)
        else:
            termination = get_termination(*termination)

    # initialize the method given a problem
    feas_algo.initialize(problem, feas_mask, termination=termination, **kwargs)

    infeas_algo.initialize(problem,
                           infeas_mask,
                           termination=termination,
                           **kwargs)

    #create feasible-infeasible algorithm
    f_if = FI_Algo()
    #initialize it
    # print('termination', termination)
    # print(kwargs)
    f_if.initialize(feas_algo,
                    infeas_algo,
                    problem=problem,
                    termination=termination,
                    **kwargs)
    # print(f_if.termination)
    #run solver
    res = f_if.solve()
    res.algorithm = f_if

    return res
Example #13
0
 def set_algorithm(self):
     self.algorithm = NSGA2(pop_size=self.pop_size,
                            n_offsprings=self.n_offsprings,
                            sampling=get_sampling("real_lhs"),
                            crossover=get_crossover("real_sbx",
                                                    prob=0.9,
                                                    eta=15),
                            mutation=get_mutation("real_pm", eta=20),
                            eliminate_duplicates=True)
     self.termination = get_termination("n_gen", self.n_gen)
Example #14
0
def optim(pop_size=10, n_gen=10, batch_size=10000,
          img_size=[28, 28], solution=[], modelName=None, dataName=None):

    datasets = {'mnist': mnsitDataset, 'cifar': cifarDataset, 'digits': digitsDataset}
    model = {'cnn': cnn, 'cnn2': cnn2, 'cnn3': cnn3, 'fnn2': fnn2, 'fnn3': fnn3}
    train_ds = datasets[dataName]
    myProblem = MyProblem(model[modelName], train_ds, batch_size, img_size)
    termination = get_termination("n_gen", n_gen)
    algorithm = NSGA2(pop_size=pop_size, sampling=Initing(solution))
    print('\nThe first step of optimization is in progress...')
    res = minimize(myProblem, algorithm, termination, seed=1, save_history=True, display=MyDisplay(), verbose=True)
    return res.X, res.pop.get("X"), res.F, precisions, recalls, accuracies, entropys, hvs
def test_surrogate_optimize_with_all_selection_and_infill_methods(
        infill, surrogate_select_method):
    # Define original problem
    try:
        problem = benchmarks.zdt3()

        # Sample
        randomSample = sampling.rand(problem, 15)

        # Define surrogate ensemble

        # Define Optimizer
        optimizer = NSGA2(pop_size=20,
                          n_offsprings=10,
                          sampling=get_sampling("real_random"),
                          crossover=get_crossover("real_sbx", prob=0.9,
                                                  eta=15),
                          mutation=get_mutation("real_pm", eta=20),
                          eliminate_duplicates=True)

        # Define termination criteria

        termination = get_termination("n_gen", 10)

        # Define infill criteria

        infill_method = infill

        # Define surrogate selection

        surrogate_selection_function = surrogate_select_method
        # Optimize

        samples = copy.deepcopy(randomSample)
        surrogate_ensemble = [
            LinearRegression(),
            KNeighborsRegressor(),
            DecisionTreeRegressor(),
        ]
        res = surrogate_optimization.optimize(problem,
                                              optimizer,
                                              termination,
                                              surrogate_ensemble,
                                              samples,
                                              infill_method,
                                              surrogate_selection_function,
                                              n_infill=2,
                                              max_samples=20)
    except Exception as e:
        raise pytest.fail(
            "infill: {0} /n and surrogate_selection: {1}/n raise a error: {2}".
            format(infill, surrogate_select_method, e))
Example #16
0
        def run(self):
            t_s = time.time()

            self.problem.logger.info("pymoo: {}".format(type(self.options["algorithm"]).__name__))

            moo_algorithm = self.options["algorithm"]
            moo_problem = MooProblem(self.problem, self, moo_algorithm)

            termination = get_termination("n_gen", self.options["n_iterations"])

            moo_algorithm.setup(moo_problem,
                                termination,
                                seed=1,
                                save_history=True,
                                verbose=self.options["verbose_level"] > 0)

            # until the algorithm has no terminated
            while moo_algorithm.has_next():
                # do the next iteration
                moo_algorithm.next()

                # do same more things, printing, logging, storing or even modifying the algorithm object
                # print(moo_algorithm.n_gen, moo_algorithm.evaluator.n_eval)

            # obtain the result objective from the algorithm
            res = moo_algorithm.result()

            t = time.time() - t_s
            self.problem.logger.info("NLopt: elapsed time: {} s".format(t))

            # create last population
            if res.X.ndim == 2:
                for x, f in zip(res.X, res.F):
                    individual = Individual(list(x))
                    individual.costs = list(f)

                    # append to problem
                    self.problem.individuals.append(individual)
                    # add to population
                    individual.population_id = moo_algorithm.n_gen + 1
            else:
                individual = Individual(list(res.X))
                individual.costs = list(res.F)

                # append to problem
                self.problem.individuals.append(individual)
                # add to population
                individual.population_id = moo_algorithm.n_gen + 1

            # sync changed individual informations
            self.problem.data_store.sync_all()
def calculate_pareto_front(
    state_space_equation,
    tau,
    y_measured,
    x0,
    xl: Union[np.ndarray, None],
    xu: Union[np.ndarray, None],
    n_var: int,
    n_obj: int,
    normalize_quaternions: bool,
    n_constr=0,
    pop_size=100,
    n_max_gen=1000,
    verbose=True,
    display=MyDisplay(),
) -> Result:

    # calculate pareto frontier
    problem = UUVParameterProblem(
        state_space_equation,
        tau,
        y_measured,
        x0,
        n_var=n_var,
        n_obj=n_obj,
        n_constr=n_constr,
        xl=xl,
        xu=xu,
        normalize_quaternions=normalize_quaternions,
    )
    algorithm = NSGA2(
        pop_size=pop_size,
        # n_offsprings=int(pop_size / 2),
        crossover=SimulatedBinaryCrossover(eta=15, prob=0.9),
        mutation=PolynomialMutation(prob=None, eta=15),
    )
    termination_default = MultiObjectiveDefaultTermination(n_max_gen=n_max_gen)
    termination_design_space = DesignSpaceToleranceTermination(n_max_gen=n_max_gen)
    termination_generations = get_termination("n_gen", 100)

    res = minimize(
        problem,
        algorithm,
        termination_default,
        verbose=verbose,
        display=display,
    )

    return res
def solve_optimization_problem(problem: AdaptationProblem):
    # defining algorithm
    algorithm = NSGA2(pop_size=100, n_offsprings=10, eliminate_duplicates=True)

    # defining termination
    termination = get_termination('n_gen', 500)

    # solving problem and getting the results
    res = minimize(problem,
                   algorithm,
                   termination,
                   seed=1,
                   save_history=True,
                   verbose=True)

    # you can find objectives in res.F and variables in res.X
    return res.F, res.X
Example #19
0
def optimize(
    evaluator: FitnessEvaluator,
    free_parameters_range: "OrderedDict[str, Tuple[int, int]]",
    metrics: List[Metric],
    execution_time: Optional[str],
    power_of_2: Optional[List[str]],
) -> float:
    problem = MyProblem(evaluator, free_parameters_range, metrics)

    algorithm = NSGA2(
        repair=MyRepair(power_of_2) if power_of_2 else None,
        pop_size=10 * len(free_parameters_range.keys()),
        n_offsprings=10 * len(free_parameters_range.keys()),
        sampling=get_sampling("int_random"),
        crossover=get_crossover("int_sbx", prob=0.9, eta=15),
        mutation=get_mutation("int_pm", eta=20),
        eliminate_duplicates=True,
    )

    if execution_time:
        termination = get_termination("time", execution_time)
        res = minimize(
            problem,
            algorithm,
            termination,
            seed=1,
            save_history=True,
            verbose=True,
        )
    else:
        res = minimize(
            problem,
            algorithm,
            seed=1,
            save_history=True,
            verbose=True,
        )
    # TODO take this out and write file
    design_space_path = "dovado_work/design_space.csv"
    objective_space_path = "dovado_work/objective_space.csv"
    Path(design_space_path).open("w")
    Path(objective_space_path).open("w")
    np.savetxt(design_space_path, res.X, delimiter=",")
    np.savetxt(objective_space_path, res.F, delimiter=",")
    return res.exec_time
Example #20
0
def minimize(problem,
             method,
             termination,
             **kwargs):
    """

    Minimization of function of one or more variables, objectives and constraints.

    This is used as a convenience function to execute several algorithms with default settings which turned
    out to work for a test problems. However, evolutionary computations utilizes the idea of customizing a
    meta-algorithm. Customizing the algorithm using the object oriented interface is recommended to improve the
    convergence.

    Parameters
    ----------

    problem : pymop.problem
        A problem object defined using the pymop framework. Either existing test problems or custom problems
        can be provided. please have a look at the documentation.

    method : :class:`~pymoo.model.algorithm.Algorithm`
        The algorithm object that should be used for the optimization.

    termination : tuple
        The termination criterium that is used to stop the algorithm when the result is satisfying.

    Returns
    -------
    res : :class:`~pymoo.model.result.Result`
        The optimization result represented as an object.

    """

    # create an evaluator defined by the termination criterium
    if not isinstance(termination, Termination):
        termination = get_termination(*termination)

    # set a random random seed if not provided
    if 'seed' not in kwargs:
        kwargs['seed'] = random.randint(1, 10000)

    res = method.solve(problem, termination, **kwargs)

    return res
Example #21
0
def run_nsga(s):
    # Define range for decision variables
    algorithm = NSGA2(pop_size=100,
                      sampling=get_sampling("bin_random"),
                      crossover=get_crossover("real_sbx",
                                              prob=0.9,
                                              prob_per_variable=1.0),
                      mutation=get_mutation("real_pm", prob=0.8),
                      eliminate_duplicates=True)
    termination = get_termination("n_gen", 100)
    problem = FunctionalProblem(1, my_objs, xl=np.array([0]), xu=np.array([1]))
    result = minimize(problem,
                      algorithm,
                      termination,
                      seed=int(s),
                      save_history=True,
                      verbose=True)
    print("function:" + str(result.F))
    print("x:" + str(result.X))
Example #22
0
    def _nsga_optimize(self, models):
        """NSGA-II optimization with categorical domains"""
        from pymoo.algorithms.nsga2 import NSGA2
        from pymoo.optimize import minimize
        from pymoo.factory import get_termination

        optimizer = NSGA2(pop_size=self.pop_size)
        problem = TSEMOInternalWrapper(models, self.domain)
        termination = get_termination("n_gen", self.generations)
        self.internal_res = minimize(problem,
                                     optimizer,
                                     termination,
                                     seed=1,
                                     verbose=False)

        X = np.atleast_2d(self.internal_res.X).tolist()
        y = np.atleast_2d(self.internal_res.F).tolist()
        X = DataSet(X, columns=problem.X_columns)
        y = DataSet(y, columns=[v.name for v in self.domain.output_variables])
        return X, y
def run_alg():

    termination = get_termination("n_gen", constants.generations)

    algorithm = NSGA2(pop_size=constants.popsize,
                      sampling=MySampling(),
                      crossover=MyCrossover(),
                      mutation=MyMutation(),
                      display=MyDisplay(),
                      eliminate_duplicates=MyDuplicateElimination())

    result = minimize(
        MyProblem(),
        algorithm,
        termination,
        # seed=constants.seed_no,
        save_history=True,
        verbose=True)

    return result
def run(cross=0.7, ag=None, mut=0.01):
    algorithm = GA(
        pop_size=100,
        sampling=get_sampling("real_random"),
        crossover=get_crossover("real_one_point", prob=cross),
        mutation=get_mutation("real_pm", eta=20, prob=mut),  #bin_bitflip
        n_offsprings=ag,  #ag=1 -> steady-state, ag=None -> geracional
        eliminate_duplicates=True)

    X, F = problem.evaluate(np.random.rand(100, 1),
                            return_values_of=["X", "F"])

    termination = get_termination("n_eval", 25000)

    res = minimize(
        problem,
        algorithm,
        ('n_gen', 200),
        termination,
        seed=10,  # elitismo
        verbose=False)
    return X, F, res
Example #25
0
    def _nsga_optimize_mixed(self, models):
        """NSGA-II optimization with mixed continuous-categorical domains"""
        from pymoo.algorithms.nsga2 import NSGA2
        from pymoo.optimize import minimize
        from pymoo.factory import get_termination

        combos = self.categorical_combos
        transformed_combos = self._transform_categorical(combos)

        X_list, y_list = [], []

        # Loop through all combinations of categoricals and run optimization
        bar = progress_bar(transformed_combos.iterrows(),
                           total=transformed_combos.shape[0])
        for _, combo in bar:
            # bar.comment = "NSGA Mixed Optimization"
            optimizer = NSGA2(pop_size=self.pop_size)
            problem = TSEMOInternalWrapper(models,
                                           self.domain,
                                           fixed_variables=combo.to_dict())
            termination = get_termination("n_gen", self.generations)
            self.internal_res = minimize(problem,
                                         optimizer,
                                         termination,
                                         seed=1,
                                         verbose=False)

            X = np.atleast_2d(self.internal_res.X).tolist()
            y = np.atleast_2d(self.internal_res.F).tolist()
            X = DataSet(X, columns=problem.X_columns)
            y = DataSet(y,
                        columns=[v.name for v in self.domain.output_variables])
            # Add in categorical variables
            for key, value in combo.to_dict().items():
                X[key] = value
            X_list.append(X)
            y_list.append(y)

        return pd.concat(X_list, axis=0), pd.concat(y_list, axis=0)
Example #26
0
def pymoo_cube_sortof(n_trials=50):
    class SphereWithConstraint(Problem):
        def __init__(self):
            super().__init__(n_var=10, n_obj=1, n_constr=1, xl=0, xu=1)

        def _evaluate(self, x, out, *args, **kwargs):
            out["F"] = np.sum((x - 0.5)**2, axis=1)
            out["G"] = 0.1 - out["F"]

    algorithm = get_algorithm("nsga2")
    termination = get_termination("n_eval", n_trials)
    problem = SphereWithConstraint()

    result = minimize(problem=problem,
                      algorithm=algorithm,
                      termination=termination,
                      seed=None,
                      verbose=False,
                      display=None,
                      callback=None,
                      return_least_infeasible=False,
                      save_history=False)
    f_min = result.F[0]
    return f_min
Example #27
0
from pymoo.algorithms.nsga2 import NSGA2
from pymoo.factory import get_problem, get_termination
from pymoo.optimize import minimize
from pymoo.visualization.scatter import Scatter

problem = get_problem("zdt3")
algorithm = NSGA2(pop_size=100)
termination = get_termination("f_tol")

res = minimize(problem, algorithm, termination, pf=True, seed=1, verbose=True)

print(res.algorithm.n_gen)
plot = Scatter(title="ZDT3")
plot.add(problem.pareto_front(use_cache=False, flatten=False),
         plot_type="line",
         color="black")
plot.add(res.F, color="red", alpha=0.8, s=20)
plot.show()
from pymoo.algorithms.nsga2 import NSGA2
from pymoo.factory import get_problem, get_termination
from pymoo.operators.crossover.simulated_binary_crossover import SimulatedBinaryCrossover
from pymoo.operators.mutation.polynomial_mutation import PolynomialMutation
from pymoo.optimize import minimize
from pymoo.visualization.scatter import Scatter

problem = get_problem("welded_beam")
algorithm = NSGA2(
    pop_size=200,
    crossover=SimulatedBinaryCrossover(eta=20, prob=0.9),
    mutation=PolynomialMutation(prob=0.25, eta=40),
)
termination = get_termination("f_tol", n_last=60)

res = minimize(
    problem,
    algorithm,
    # ("n_gen", 800),
    pf=False,
    seed=10,
    verbose=True)

print(res.algorithm.n_gen)
Scatter().add(res.F, s=20).add(problem.pareto_front(),
                               plot_type="line",
                               color="black").show()
Example #29
0
from pymoo.algorithms.nsga2 import NSGA2
from pymoo.factory import get_problem, get_termination
from pymoo.optimize import minimize

problem = get_problem("zdt3")
algorithm = NSGA2(pop_size=100)
termination = get_termination("x_tol", tol=0.001, n_last=20, nth_gen=10)

res = minimize(problem,
               algorithm,
               termination,
               pf=problem.pareto_front(),
               seed=1,
               verbose=False)

print(res.algorithm.n_gen)
Example #30
0
from pymoo.algorithms.so_genetic_algorithm import GA
from pymoo.factory import get_problem, get_termination
from pymoo.optimize import minimize

problem = get_problem("rastrigin")
algorithm = GA(pop_size=100)
termination = get_termination("f_tol_s")

res = minimize(problem,
               algorithm,
               termination,
               pf=problem.pareto_front(),
               seed=1,
               verbose=True)

print(res.opt.get("F"))
print(res.algorithm.n_gen)