Example #1
0
def scatter_pymoo(data, name, label=None, **kwargs):
    """
    Plot either a scatter, curve or surface plot.

    Arguments:
        data (np.array): Data to plot.
        name (str): Visualization type.
        label (str): Variable name for label.

    Notes:
        Surface plot not used.
    """
    # Add data to plot
    plot_args = get_plot_args(data, label)

    angles = 4 if data.shape[1] == 3 else 1

    for angle in range(angles):
        plot_args["angle"] = (30, -135 + angle * 90)

        plot = get_visualization("scatter", **plot_args)
        plot.add(data, plot_type=None, color="k", **kwargs)
        plot.do()
        ##        plot.apply(lambda ax: ax.set_xlim([0,1]))

        # Save figure
        save_figure(name + f"_{angle+1}", plot)
Example #2
0
def surface_pymoo(data, iteration):
    """
    A surface plot using Pymoo.

    Args:
        data (np.array): Data to plot.
        iteration (int): Iteration number.
    """
    # Add data to plot
    plot_args = get_plot_args(data, "x")

    angles = 4 if data.shape[1] == 3 and iteration else 1

    for angle in range(angles):
        plot_args["angle"] = (30, -135 + angle * 90)

        plot = get_visualization("scatter", **plot_args)
        kwargs = {
            "cmap": get_blackblue_cmap()
        } if data.shape[1] == 3 else {
            "color": "k"
        }
        plot.add(data, plot_type="surface", **kwargs)
        plot.do()

        # Save figure
        if iteration:
            save_figure(f"iteration_{iteration}_response_{angle}", plot)
        else:
            plot.show()
Example #3
0
def heatmap(correlation):
    """
    A heatmap plot.

    Args:
        correlation (np.array): Correlation matrix.
    """
    newmap = get_blackblue_cmap()

    plot = get_visualization("heatmap", labels="x", cmap=newmap, reverse=False)
    plot.add(correlation, vmin=-1, vmax=1)
    save_figure("heatmap", plot)
Example #4
0
def pcp(data, name):
    """
    A parallel component plot.

    Args:
        data (np.array): Data to plot.
        name (str): Filename.
    """
    plot = get_visualization("pcp", labels="f")
    plot.set_axis_style(color="C0")
    plot.add(data, color="k")
    plot.do()

    save_figure(name, plot)
Example #5
0
from pymoo.algorithms.moead import MOEAD
from pymoo.factory import get_problem, get_visualization, get_reference_directions
from pymoo.optimize import minimize

problem = get_problem("dtlz2")

algorithm = MOEAD(get_reference_directions("das-dennis", 3, n_partitions=12),
                  n_neighbors=15,
                  decomposition="pbi",
                  prob_neighbor_mating=0.7)

res = minimize(problem, algorithm, termination=('n_gen', 200))

get_visualization("scatter").add(res.F).show()
Example #6
0
plt.xlabel("Function Evaluations")
plt.ylabel("Hypervolume")
# fig.savefig(LATEX_DIR + 'convergence.eps', format='eps')
plt.show()

from pymoo.factory import get_visualization, get_decomposition

F = res.F
weights = np.array([0.01, 0.99])
decomp = get_decomposition("asf")

# We apply the decomposition and retrieve the best value (here minimum):
I = get_decomposition("asf").do(F, weights).argmin()
print("Best regarding decomposition: Point %s - %s" % (I, F[I]))

plot = get_visualization("scatter")
plot.add(F, color="blue", alpha=0.5, s=30)
plot.add(F[I], color="red", s=40)
plot.do()
# plot.apply(lambda ax: ax.arrow(0, 0, F[I][0], F[I][1], color='black',
# 	head_width=0.001, head_length=0.001, alpha=0.4))
plot.show()

## Parallel Coordinate Plots
from pymoo.visualization.pcp import PCP
plotPCP = PCP().add(res.F).add(res.F[I], color='r').show()

print(
    f'A solução ideal é encontrada para a deformação {res.F[I][0]:.4f}m e massa {res.F[I][0]:.4f}kg com os parametros a {res.X[I][0]:.4f} b {res.X[I][1]:.4f} e h {res.X[I][2]:.4f}'
)