Example #1
0
 def action_merge_low_rank_operators(self, ops):
     low_rank = []
     not_low_rank = []
     for op, coeff in zip(ops, self.coefficients):
         if isinstance(op, LowRankOperator):
             low_rank.append((op, coeff))
         else:
             not_low_rank.append((op, coeff))
     inverted = [op.inverted for op, _ in low_rank]
     if len(inverted) >= 2 and any(inverted) and any(not _ for _ in inverted):
         return None
     inverted = inverted[0]
     left = cat_arrays([op.left for op, _ in low_rank])
     right = cat_arrays([op.right for op, _ in low_rank])
     core = []
     for op, coeff in low_rank:
         core.append(op.core)
         if inverted:
             core[-1] /= coeff
         else:
             core[-1] *= coeff
     core = spla.block_diag(*core)
     new_low_rank_op = LowRankOperator(left, core, right, inverted=inverted)
     if len(not_low_rank) == 0:
         return new_low_rank_op
     else:
         new_ops, new_coeffs = zip(*not_low_rank)
         return assemble_lincomb(chain(new_ops, [new_low_rank_op]), chain(new_coeffs, [1]),
                                 solver_options=self.solver_options, name=self.name)
Example #2
0
def create_cl_fom(Re=110, level=2, palpha=1e-3, control='bc'):
    """Create model which is used to evaluate the H2-Gap norm."""
    setup_str = 'lvl_' + str(level) + ('_' + control if control is not None else '') \
                + '_re_' + str(Re) + ('_palpha_' + str(palpha) if control == 'bc' else '')

    fom = load_fom(Re, level, palpha, control)

    Bra = fom.B.as_range_array()
    Cva = fom.C.as_source_array()

    Z = solve_ricc_lrcf(fom.A, fom.E, Bra, Cva, trans=False)
    K = fom.E.apply(Z).lincomb(Z.dot(Cva).T)

    KC = LowRankOperator(K, np.eye(len(K)), Cva)
    mKB = cat_arrays([-K, Bra]).to_numpy().T
    mKBop = NumpyMatrixOperator(mKB)

    mKBop_proj = LerayProjectedOperator(mKBop,
                                        fom.A.source.G,
                                        fom.A.source.E,
                                        projection_space='range')

    cl_fom = LTIModel(fom.A - KC, mKBop_proj, fom.C, None, fom.E)

    with open(setup_str + '/cl_fom', 'wb') as cl_fom_file:
        pickle.dump({'cl_fom': cl_fom}, cl_fom_file)
Example #3
0
def projection_shifts(A, E, V, prev_shifts):
    """Find further shift parameters for low-rank ADI iteration using
    Galerkin projection on spaces spanned by LR-ADI iterates.

    See [PK16]_, pp. 92-95.

    Parameters
    ----------
    A
        The |Operator| A from the corresponding Lyapunov equation.
    E
        The |Operator| E from the corresponding Lyapunov equation.
    V
        A |VectorArray| representing the currently computed iterate.
    prev_shifts
        A |NumPy array| containing the set of all previously used shift
        parameters.

    Returns
    -------
    shifts
        A |NumPy array| containing a set of stable shift parameters.
    """
    if prev_shifts[-1].imag != 0:
        Q = gram_schmidt(cat_arrays([V.real, V.imag]), atol=0, rtol=0)
    else:
        Q = gram_schmidt(V, atol=0, rtol=0)

    Ap = A.apply2(Q, Q)
    Ep = E.apply2(Q, Q)

    shifts = spla.eigvals(Ap, Ep)
    shifts.imag[abs(shifts.imag) < np.finfo(float).eps] = 0
    shifts = shifts[np.real(shifts) < 0]
    if shifts.size == 0:
        return prev_shifts
    else:
        if np.any(shifts.imag != 0):
            shifts = shifts[np.abs(shifts).argsort()]
        else:
            shifts.sort()
        return shifts
Example #4
0
File: lradi.py Project: pymor/pymor
def projection_shifts(A, E, V, prev_shifts):
    """Find further shift parameters for low-rank ADI iteration using
    Galerkin projection on spaces spanned by LR-ADI iterates.

    See [PK16]_, pp. 92-95.

    Parameters
    ----------
    A
        The |Operator| A from the corresponding Lyapunov equation.
    E
        The |Operator| E from the corresponding Lyapunov equation.
    V
        A |VectorArray| representing the currently computed iterate.
    prev_shifts
        A |NumPy array| containing the set of all previously used shift
        parameters.

    Returns
    -------
    shifts
        A |NumPy array| containing a set of stable shift parameters.
    """
    if prev_shifts[-1].imag != 0:
        Q = gram_schmidt(cat_arrays([V.real, V.imag]), atol=0, rtol=0)
    else:
        Q = gram_schmidt(V, atol=0, rtol=0)

    Ap = A.apply2(Q, Q)
    Ep = E.apply2(Q, Q)

    shifts = spla.eigvals(Ap, Ep)
    shifts.imag[abs(shifts.imag) < np.finfo(float).eps] = 0
    shifts = shifts[np.real(shifts) < 0]
    if shifts.size == 0:
        return prev_shifts
    else:
        if np.any(shifts.imag != 0):
            shifts = shifts[np.abs(shifts).argsort()]
        else:
            shifts.sort()
        return shifts
Example #5
0
def solve_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None):
    """Compute an approximate low-rank solution of a Riccati equation.

    See :func:`pymor.algorithms.riccati.solve_ricc_lrcf` for a
    general description.

    This function is an implementation of Algorithm 2 in [BBKS18]_.

    Parameters
    ----------
    A
        The |Operator| A.
    E
        The |Operator| E or `None`.
    B
        The operator B as a |VectorArray| from `A.source`.
    C
        The operator C as a |VectorArray| from `A.source`.
    R
        The operator R as a 2D |NumPy array| or `None`.
    S
        The operator S as a |VectorArray| from `A.source` or `None`.
    trans
        Whether the first |Operator| in the Riccati equation is
        transposed.
    options
        The solver options to use. (see
        :func:`ricc_lrcf_solver_options`)

    Returns
    -------
    Z
        Low-rank Cholesky factor of the Riccati equation solution,
        |VectorArray| from `A.source`.
    """

    _solve_ricc_check_args(A, E, B, C, None, None, trans)
    options = _parse_options(options, ricc_lrcf_solver_options(), 'lrradi',
                             None, False)
    logger = getLogger('pymor.algorithms.lrradi.solve_ricc_lrcf')

    shift_options = options['shift_options'][options['shifts']]
    if shift_options['type'] == 'hamiltonian_shifts':
        init_shifts = hamiltonian_shifts_init
        iteration_shifts = hamiltonian_shifts
    else:
        raise ValueError('Unknown lrradi shift strategy.')

    if E is None:
        E = IdentityOperator(A.source)

    if S is not None:
        raise NotImplementedError

    if R is not None:
        Rc = spla.cholesky(R)  # R = Rc^T * Rc
        Rci = spla.solve_triangular(Rc, np.eye(
            Rc.shape[0]))  # R^{-1} = Rci * Rci^T
        if not trans:
            C = C.lincomb(Rci.T)  # C <- Rci^T * C = (C^T * Rci)^T
        else:
            B = B.lincomb(Rci.T)  # B <- B * Rci

    if not trans:
        B, C = C, B

    Z = A.source.empty(reserve=len(C) * options['maxiter'])
    Y = np.empty((0, 0))

    K = A.source.zeros(len(B))
    RF = C.copy()

    j = 0
    j_shift = 0
    shifts = init_shifts(A, E, B, C, shift_options)

    res = np.linalg.norm(RF.gramian(), ord=2)
    init_res = res
    Ctol = res * options['tol']

    while res > Ctol and j < options['maxiter']:
        if not trans:
            AsE = A + shifts[j_shift] * E
        else:
            AsE = A + np.conj(shifts[j_shift]) * E
        if j == 0:
            if not trans:
                V = AsE.apply_inverse(RF) * np.sqrt(-2 * shifts[j_shift].real)
            else:
                V = AsE.apply_inverse_adjoint(RF) * np.sqrt(
                    -2 * shifts[j_shift].real)
        else:
            if not trans:
                LN = AsE.apply_inverse(cat_arrays([RF, K]))
            else:
                LN = AsE.apply_inverse_adjoint(cat_arrays([RF, K]))
            L = LN[:len(RF)]
            N = LN[-len(K):]
            ImBN = np.eye(len(K)) - B.dot(N)
            ImBNKL = spla.solve(ImBN, B.dot(L))
            V = (L + N.lincomb(ImBNKL.T)) * np.sqrt(-2 * shifts[j_shift].real)

        if np.imag(shifts[j_shift]) == 0:
            Z.append(V)
            VB = V.dot(B)
            Yt = np.eye(len(C)) - (VB @ VB.T) / (2 * shifts[j_shift].real)
            Y = spla.block_diag(Y, Yt)
            if not trans:
                EVYt = E.apply(V).lincomb(np.linalg.inv(Yt))
            else:
                EVYt = E.apply_adjoint(V).lincomb(np.linalg.inv(Yt))
            RF.axpy(np.sqrt(-2 * shifts[j_shift].real), EVYt)
            K += EVYt.lincomb(VB.T)
            j += 1
        else:
            Z.append(V.real)
            Z.append(V.imag)
            Vr = V.real.dot(B)
            Vi = V.imag.dot(B)
            sa = np.abs(shifts[j_shift])
            F1 = np.vstack((-shifts[j_shift].real / sa * Vr -
                            shifts[j_shift].imag / sa * Vi,
                            shifts[j_shift].imag / sa * Vr -
                            shifts[j_shift].real / sa * Vi))
            F2 = np.vstack((Vr, Vi))
            F3 = np.vstack((shifts[j_shift].imag / sa * np.eye(len(C)),
                            shifts[j_shift].real / sa * np.eye(len(C))))
            Yt = spla.block_diag(np.eye(len(C)), 0.5 * np.eye(len(C))) \
                - (F1 @ F1.T) / (4 * shifts[j_shift].real)  \
                - (F2 @ F2.T) / (4 * shifts[j_shift].real)  \
                - (F3 @ F3.T) / 2
            Y = spla.block_diag(Y, Yt)
            EVYt = E.apply(cat_arrays([V.real,
                                       V.imag])).lincomb(np.linalg.inv(Yt))
            RF.axpy(np.sqrt(-2 * shifts[j_shift].real), EVYt[:len(C)])
            K += EVYt.lincomb(F2.T)
            j += 2
        j_shift += 1
        res = np.linalg.norm(RF.gramian(), ord=2)
        logger.info(f'Relative residual at step {j}: {res/init_res:.5e}')
        if j_shift >= shifts.size:
            shifts = iteration_shifts(A, E, B, RF, K, Z, shift_options)
            j_shift = 0
    # transform solution to lrcf
    cf = spla.cholesky(Y)
    Z_cf = Z.lincomb(spla.solve_triangular(cf, np.eye(len(Z))).T)
    return Z_cf