def test_slice_density(): # RamsesOutput ro = RamsesOutput("/data/Aquarius/output/", 193) # AMR data source amr = ro.amr_source(["rho"]) # Defining a Camera object cam = Camera(center=[0.5, 0.5, 0.5], line_of_sight_axis='z', region_size=[1., 1.], up_vector='y', map_max_size=100, log_sensitive=True) # Density field access operator rho_op = ScalarOperator(lambda dset: dset["rho"]) # Slice map computation map = SliceMap(amr, cam, rho_op, z=0.4) # create a density slice map at z=0.4 depth position map = apply_log_scale(map) #h5f = tables.openFile("./long_tests/slice_density.h5", mode='w') #h5f.createArray("/", "map", map) #h5f.close() h5f = tables.openFile("./long_tests/slice_density.h5", mode='r') mapB = h5f.getNode("/map").read() h5f.close() #print map assert (map - mapB).all() < 10e-6
def test_fft_amr(): # Ramses data ioutput = 193 ro = RamsesOutput("/data/Aquarius/output/", ioutput) amr = ro.amr_source(["rho"]) # Map operator : mass-weighted density map up_func = lambda dset: (dset["rho"]**2 * dset.get_sizes()**3) down_func = lambda dset: (dset["rho"] * dset.get_sizes()**3) scal_func = FractionOperator(up_func, down_func) # Map region center = [0.567811, 0.586055, 0.559156] # Map processing mp = fft_projection.MapFFTProcessor(amr, ro.info) axname = "los" axis = [-0.172935, 0.977948, -0.117099] cam = Camera(center=center, line_of_sight_axis=axis, up_vector="z", region_size=[5.0E-1, 4.5E-1], \ distance=2.0E-1, far_cut_depth=2.0E-1, map_max_size=100) map = mp.process(scal_func, cam, surf_qty=True) #h5f = tables.openFile("./long_tests/fft_amr.h5", mode='w') #h5f.createArray("/", "map", map) #h5f.close() h5f = tables.openFile("./long_tests/fft_amr.h5", mode='r') mapB = h5f.getNode("/map").read() h5f.close() #print map assert (map - mapB).all() < 10e-6
def test_cyl_profile(): # Galactic cylinder parameters gal_center = [0.567811, 0.586055, 0.559156] # in box units gal_radius = 0.00024132905460547268 # in box units gal_thickn = 0.00010238202316595811 # in box units gal_normal = [-0.172935, 0.977948, -0.117099] # Norm = 1 # RamsesOutput ro = RamsesOutput("/data/Aquarius/output", 193) # Prepare to read the density field only source = ro.amr_source(["rho"]) # Cylinder region cyl = Cylinder(gal_center, gal_normal, gal_radius, gal_thickn) # AMR density field point sampling numpy.random.seed(1652336) points = cyl.random_points(1.0e6) # 1M sampling points point_dset = sample_points(source, points) rho_weight_func = lambda dset: dset["rho"] r_bins = numpy.linspace(0.0, gal_radius, 200) # Profile computation rho_profile = bin_cylindrical(point_dset, gal_center, gal_normal, rho_weight_func, r_bins, divide_by_counts=True) # Plot # Geometrical midpoint of the bins length = ro.info["unit_length"].express(C.kpc) bins_centers = (r_bins[1:] + r_bins[:-1]) / 2. * length dens = ro.info["unit_density"].express(C.H_cc) #h5f = tables.openFile("./long_tests/cyl_profile.h5", mode='w') #h5f.createArray("/", "cyl_profile", rho_profile) #h5f.close() h5f = tables.openFile("./long_tests/cyl_profile.h5", mode='r') rho_profileB = h5f.getNode("/cyl_profile").read() h5f.close() print(rho_profile) assert sum(rho_profile - rho_profileB) < 10e-6
from pymses import RamsesOutput from pymses.filters import CellsToPoints import matplotlib.pyplot as plt import numpy as np import sys # Parse Arguments if len(sys.argv) == 1: iout = 1 elif len(sys.argv) == 2: iout = int(sys.argv[1]) # Prepare Output output = RamsesOutput(".", iout) source = output.amr_source(["rho"]) # Convert Leaf-Cells to Points cell_source = CellsToPoints(source) cells = cell_source.flatten() # Get Density & Cell Size rho = cells["rho"] dx = output.info["boxlen"] * cells.get_sizes() dV = dx**output.info["ndim"] # Print Stuff # print cells["rho"] # contains densities # print rho # contains densities # print cells.points # contains coordinates # print dx
axe = [N.sin(angle), 0, N.cos(angle)] center = center_init + (zoom_focus - center_init) * (i * 1. / nbImgRot) region_size = region_size_init * ((1. / zoom_factor - 1) / nbImgRot * i + 1) distance = distance_init * ((1. / zoom_factor - 1) / nbImgRot * i + 1) far_cut_depth = far_cut_depth_init * ( (1. / zoom_factor - 1) / nbImgRot * i + 1) cam = Camera(center=center, line_of_sight_axis=axe, up_vector="y", region_size=region_size, distance=distance, far_cut_depth=far_cut_depth, map_max_size=mms) # Octree source creation : source = ro.amr_source(["rho"]) # We need to add an extension to the octree box loaded in memory, # or not (if min(distance,far_cut_depth) > max(region_size)) # as the rotation is around the "y" axis, # to allow rotation without empty starting point ray bugs esize = 0.5**(ro.info["levelmin"] + 1) + max(region_size) camOctSource = cam.copy() fullOctreeDataSource = CameraOctreeDatasource(camOctSource, esize, source, ngrid_max=ngrid_max, include_split_cells=True).dset OctreeRT = OctreeRayTracer(fullOctreeDataSource) t0 = time() map, levelmax_map = OctreeRT.process(op, cam, rgb=False, use_openCL=use_openCL)
def main(): # Defaults iout = 1 npsample = ['128', '128', '64'] npbin = ['32', '32'] # Parse Arguments if len(sys.argv) == 4: npbin = re.split(',', sys.argv[3]) if len(sys.argv) >= 3: npsample = re.split(',', sys.argv[2]) if len(sys.argv) >= 2: iout = int(sys.argv[1]) # Compute Requested Outputs if iout < 0: iouts = range(1, abs(iout) + 1) else: iouts = range(iout, iout + 1) # Define Region of Interest (Box Units) center = 0.5 radius = 0.4 thickness = 0.2 # Sample Points nr = int(npsample[0]) nphi = int(npsample[1]) nz = int(npsample[2]) # Binning Points nrbins = int(npbin[0]) nzbins = int(npbin[1]) # Give Feedback print "Computing RZ Profile(s) for Output(s) %s." % iouts print "Sampling Grid with %ix%ix%i = %i Points." % ( nr, nphi, nz, nr * nphi * nz ) print "" # Generate Sampling Points x, y, z = mkpoints_rpz(center, radius, thickness, nr, nphi, nz) # Make Sampling Vectors, Reshape Them xx, yy, zz = mkvec(x, y, z) points = np.zeros((xx.shape[0], 3)) for ii in range(xx.shape[0]): points[ii,:] = np.array([xx[ii], yy[ii], zz[ii]]) # Loop Desired Outputs for iiout in iouts: # Link AMR Data output = RamsesOutput(".", iiout) source = output.amr_source(["rho"]) # Sample AMR Data point_dset = sample_points(source, points) # Shift Origin, Convert to RZ Coordinates points_xyz = points points_xyz0 = points_xyz - 0.5 points_r0 = np.sqrt(points_xyz0[:,0]**2. + points_xyz0[:,1]**2.) points_z0 = points_xyz0[:,2] print "" print "Binning onto (RxZ) = (%ix%i) Grid." % ( nrbins, nzbins ) # Prepare Bins rbins = np.linspace(0.0, radius, nrbins + 1) zbins = np.linspace(-thickness/2., thickness/2., nzbins + 1) # Binning Routine rhoRZ, rbins, zbins = prof2d(points_r0, points_z0, point_dset["rho"], rbins, zbins) # Compute Extent ext = np.array([rbins.min(), rbins.max(), -thickness/2., thickness/2.]) # Save Binned Data fname = 'rhoRZ_%i.npz' % iiout print "" print "Saving Data to File %s..." % fname # Save Binned Data np.savez(fname,\ rhoRZ=rhoRZ, rbins=rbins, zbins=zbins,\ iout=iiout,\ boxlen=output.info["boxlen"],\ tout=output.info["time"],\ ext=ext, center=center, radius=radius, thickness=thickness,\ nr=nr, nphi=nphi, nz=nz,\ nrbins=nrbins, nzbins=nzbins) print "Done."
def test_amr2cube_cartesian_rt(): # backuped referenced data : cubeB = numpy.array( [[[0.08186216, 0.03206611, 0.05075889, 0.21691999, 0.08395087], [0.11306132, 0.05707518, 0.03212786, 0.33522855, 0.13602483], [0.05632005, 0.04249893, 0.09034388, 0.1588526, 0.2080538], [0.06852026, 0.03090859, 0.04515618, 0.17721034, 0.23618275], [0.07367933, 0.11752801, 0.03341876, 0.2254721, 0.39768221]], [[0.05193184, 0.03975904, 0.05116311, 0.14412791, 0.21599674], [0.08652996, 0.07561322, 0.06104241, 0.09306177, 0.06347754], [0.03311921, 0.03681144, 0.04637034, 0.10137452, 0.02770789], [0.06000543, 0.0630374, 0.07050136, 0.08983026, 0.06849894], [0.11372988, 0.17594275, 0.09902632, 0.07525623, 0.10831208]], [[0.10366187, 0.12453692, 0.18768945, 0.16773106, 0.11033484], [0.1043405, 0.13150752, 0.06345165, 0.02748383, 0.05059519], [0.06553906, 0.07011834, 0.06567988, 0.04461206, 0.0677126], [0.19513314, 0.10922475, 0.04116418, 0.09346056, 0.07560843], [0.1156556, 0.11896267, 0.42504693, 0.14856789, 0.08862464]], [[0.0683512, 0.10387651, 0.08278252, 0.05064939, 0.11547664], [0.08297042, 0.08370349, 0.03658147, 0.02292432, 0.05400176], [0.14583478, 0.10265131, 0.10521284, 0.03336809, 0.05561544], [0.10904973, 0.05832567, 0.04876777, 0.10397124, 0.14783567], [0.21239959, 0.06806608, 0.28383805, 0.26950828, 0.46882107]], [[0.39340254, 0.21568631, 0.11401807, 0.09364021, 0.11969451], [0.17342993, 0.0847922, 0.02964273, 0.07289768, 0.2268799], [0.06048485, 0.09604769, 0.06068367, 0.06307055, 0.37759786], [0.09158091, 0.05048944, 0.03639829, 0.25110933, 0.32988721], [0.3167426, 0.17177987, 0.23479188, 0.42511884, 0.10431827]]]) mapB = numpy.array([ 0.46555802, 0.67351774, 0.55606925, 0.55797812, 0.84778041, 0.50297864, 0.37972491, 0.24538341, 0.35187338, 0.57226726, 0.69395413, 0.37737869, 0.31366193, 0.51459106, 0.89685772, 0.42113625, 0.28018146, 0.44268245, 0.46795008, 1.30263307, 0.93644163, 0.58764244, 0.65788461, 0.75946518, 1.25275146 ]) # Ramses data ioutput = 193 ro = RamsesOutput("/data/Aquarius/output/", ioutput) cam = Camera(center=[0.5, 0.5, 0.5], line_of_sight_axis=[0.1, 0.1, 0.9], up_vector="y", region_size=[5.0E-1, 5.0E-1], distance=2.5E-1, far_cut_depth=2.5E-1, map_max_size=3) bb = cam.get_bounding_box() source = ro.amr_source(["rho"]) from pymses.utils import misc misc.NUMBER_OF_PROCESSES_LIMIT = 1 # amr2cube no multiprocessing test cube = amr2cube(source, "rho", bb.min_coords, bb.max_coords, cam.get_required_resolution()) print("cube", cube) print("cubeB", cubeB) assert ((cube - cubeB) < 10e-8).all() misc.NUMBER_OF_PROCESSES_LIMIT = 8 # amr2cube with multiprocessing test cube = amr2cube(source, "rho", bb.min_coords, bb.max_coords, cam.get_required_resolution()) print("cube", cube) assert ((cube - cubeB) < 10e-8).all() # ray_trace_cartesian test cube_size = numpy.min(cube.shape) cam = Camera(center=[0.5, 0.5, 0.5], line_of_sight_axis=[0.1, 0.1, 0.9], up_vector="y", region_size=[5.0E-1, 5.0E-1], distance=2.5E-1, far_cut_depth=2.5E-1, map_max_size=cube_size) (ray_vectors, ray_origins, ray_lengths) = cam.get_rays() map = raytracing.ray_trace.ray_trace_cartesian(cube, ray_origins, ray_vectors, ray_lengths, bb, cube_size) print("map", map) print("mapB", mapB) assert ((map - mapB) < 10e-8).all()
if not (svar in svars): print "Invalid Variable. Terminating." sys.exit() sscales = ("lin", "log") if not (sscale in sscales): print "Invalid Scaling (log, lin). Terminating." sys.exit() # Give Feedback print "Creating Cuts for Output %i." % iout print "" # Link AMR Data output = RamsesOutput(".", iout) source = output.amr_source([svar]) # Define Cameras camZ = Camera( center=[0.5, 0.5, 0.5], line_of_sight_axis="z", region_size=[1.0, 1.0], up_vector="y", map_max_size=512, log_sensitive=True, ) camY = Camera( center=[0.5, 0.5, 0.5], line_of_sight_axis="y", region_size=[1.0, 1.0], up_vector="z",
def main(): # Set Defaults iout = 1 npsample = ['128', '128', '64'] # Parse Arguments if len(sys.argv) == 3: npsample = re.split(',', sys.argv[2]) if len(sys.argv) >= 2: iout = int(sys.argv[1]) # Compute Requested Outputs if iout < 0: iouts = range(1, abs(iout) + 1) else: iouts = range(iout, iout + 1) # Define Region of Interest (Box Units) center = 0.5 radius = 0.4 thickness = 0.2 # Sample Points nx = int(npsample[0]) ny = int(npsample[1]) nz = int(npsample[2]) # Generate Sampling Points x, y, z = mkpoints_xyz(center, radius, thickness, nx, ny, nz) # Some Reshaping zz, yy, xx = mkvec(z, y, x) points = np.zeros((xx.shape[0], 3)) for ii in range(xx.shape[0]): points[ii,:] = np.array([xx[ii], yy[ii], zz[ii]]) # Loop Over Outputs for iiout in iouts: # Open Ramses Output output = RamsesOutput(".", iiout) source = output.amr_source(["P"]) # Fetch Ramses Data points_dset = sample_points(source, points) # Allocate Memory for Output Array PXY = np.zeros((nx, ny)) # Integrate Along Z (Simpson's Rule) print "(%s UTC) Integrating..." % strftime("%H:%M:%S", gmtime()) idx_lo = 0 for ix in range(nx): for iy in range(ny): idx_hi = idx_lo + nz PXY[ix,iy] = simps(points_dset["P"][idx_lo:idx_hi], z) idx_lo = idx_hi print "(%s UTC) Done Integrating." % strftime("%H:%M:%S", gmtime()) # Compute Limits, Centre, Rescale ext = np.array([x.min(), x.max(), y.min(), y.max()]) ext = ( ext - 0.5 ) * output.info["boxlen"] # Save 2D Pressure Map np.savez('PXY_%i.npz' % iiout, \ PXY=PXY,\ x=x, y=y, z=z,\ boxlen=output.info["boxlen"],\ ext=ext,\ tout=output.info["time"])
from numpy import array import pylab from pymses.analysis.visualization import * from pymses import RamsesOutput from pymses.utils import constants as C # Ramses data ioutput = 4 ro = RamsesOutput("Data/Sedov3d/output", ioutput) amr = ro.amr_source(["rho", "P"]) # Map region ## center = [ 0.567811, 0.586055, 0.559156 ] center = [ 0.5, 0.5, 0.5 ] # Map processin#g #cam = Camera() cam = Camera(center=center, line_of_sight_axis='z', up_vector="y", region_size=(1.0, 1.0), far_cut_depth=0.2, map_max_size=64, distance=0., log_sensitive=True) from pymses.analysis.visualization import SliceMap, ScalarOperator op = ScalarOperator(lambda dset: dset["rho"]) map = SliceMap(amr, cam, op, z=0.3) # create a density slice map at z=0.4 depth position #factor = ro.info["unit_density"].express(C.H_cc) #scale = ro.info["unit_length"].express(C.kpc) # imshow(map) pylab.imshow(map) # Save map into HDF5 file #mapname = "sedov3d%5.5i"%ioutput #h5fname = save_map_HDF5(map, cam, map_name=mapname) # Plot map into Matplotlib figure/PIL Image #fig = save_HDF5_to_plot(h5fname, map_unit=("H/cc",factor), axis_unit=("kpc", scale), cmap="jet") # pil_img = save_HDF5_to_img(h5fname, cmap="jet") # Save into PNG image file # save_HDF5_to_plot(h5fname, map_unit=("H/cc",factor), axis_unit=("Mpc", scale), img_path="./", # save_HDF5_to_img(h5fname, img_path="./", cmap="jet")
def main(): # Set Defaults iout = 1 npsample = ['128', '128', '64'] # Parse Arguments if len(sys.argv) == 3: npsample = re.split(',', sys.argv[2]) if len(sys.argv) >= 2: iout = int(sys.argv[1]) # Compute Requested Outputs if iout < 0: iouts = range(1, abs(iout) + 1) else: iouts = range(iout, iout + 1) # Define Region of Interest (Box Units) center = 0.5 radius = 0.4 thickness = 0.2 # Sample Points nx = int(npsample[0]) ny = int(npsample[1]) nz = int(npsample[2]) # Generate Sampling Points x, y, z = mkpoints_xyz(center, radius, thickness, nx, ny, nz) # Some Reshaping zz, yy, xx = mkvec(z, y, x) points = np.zeros((xx.shape[0], 3)) for ii in range(xx.shape[0]): points[ii,:] = np.array([xx[ii], yy[ii], zz[ii]]) # Loop Over Outputs for iiout in iouts: # Open Ramses Output output = RamsesOutput(".", iiout) source = output.amr_source(["rho", "vel"]) # Fetch Ramses Data points_dset = sample_points(source, points) # Allocate Memory for Output Array OmegaXY = np.zeros((nx, ny)) # Average Along Z print "(%s UTC) Z-Averaging XY Velocity Field..." % strftime("%H:%M:%S", gmtime()) idx_lo = 0 for ix in range(nx): for iy in range(ny): idx_hi = idx_lo + nz v_x = points_dset["vel"][idx_lo:idx_hi,0] v_y = points_dset["vel"][idx_lo:idx_hi,1] v_xy = np.sqrt(v_x**2. + v_y**2.) rho_tot = np.sum(points_dset["rho"][idx_lo:idx_hi]) weight = points_dset["rho"][idx_lo:idx_hi] / rho_tot v_xy_avg = np.sum(v_xy * weight) / nz r = np.sqrt((x[ix] - 0.5)**2. + (y[iy]-0.5)**2.) * output.info["boxlen"] OmegaXY[ix,iy] = v_xy_avg / r idx_lo = idx_hi print "(%s UTC) Done Averaging." % strftime("%H:%M:%S", gmtime()) # Compute Limits, Centre, Rescale ext = np.array([x.min(), x.max(), y.min(), y.max()]) ext = ( ext - 0.5 ) * output.info["boxlen"] # Save Z-Averaged Planar Angular Velocity Map np.savez('OmegaXY_%i.npz' % iiout, \ OmegaXY=OmegaXY,\ x=x, y=y, z=z,\ boxlen=output.info["boxlen"],\ ext=ext,\ tout=output.info["time"])
try: fileDir = args[0] outNumber = int(args[1]) except: # "None" leads to an automatic look for # a RAMSES output in the current directory fileDir = None outNumber = None ro = RamsesOutput(fileDir, outNumber) outNumber = ro.iout ncpu = ro.info["ncpu"] if myrank == 0: print("levelmin =", ro.info["levelmin"],"levelmax =", ro.info["levelmax"]) cpu_full_list = list(range(1,ncpu+1)) cpu_node_list = chunks(cpu_full_list, MPI_process_number) ro.verbose = False rho = ro.amr_source([]) nbCells = 0 leaf_cells_level = {} t1 = time() if myrank < len(cpu_node_list): for icpu in cpu_node_list[myrank]: dset = rho.get_domain_dset(icpu) grid_mask = dset.get_active_mask() cell_lvl = repeat(dset.get_grid_levels(grid_mask)[:, newaxis], \ 8, axis=1).reshape((-1,)) lvlmax = dset.amr_struct["readlmax"] sons = dset.amr_struct["son_indices"][grid_mask, :].reshape((-1,)) leaf_mask = (sons < 0)+(cell_lvl == lvlmax) nbCells += leaf_mask.sum() if CELL_LEVEL_HISTOGRAM: for ilvl in range(lvlmax):
import sys # Parse Arguments if len(sys.argv) == 1: iout = 1 elif len(sys.argv) == 2: iout = int(sys.argv[1]) # Give Feedback print "Creating Cuts for Output %i." % iout print "" # Link AMR Data output = RamsesOutput(".", iout) source = output.amr_source(["rho", "vel", "P"]) # Define Cameras camZ = Camera(center=[0.5, 0.5, 0.5], line_of_sight_axis='z', region_size=[1., 1.], up_vector='y', map_max_size=512, log_sensitive=True) camX = Camera(center=[0.5, 0.5, 0.5], line_of_sight_axis='x', region_size=[1., 1.], up_vector='y', map_max_size=512, log_sensitive=True) # Functions to Get Data func_rho = lambda dset: dset["rho"] func_vel = lambda dset: (np.sqrt(np.sum(dset["vel"]**2, axis=1))) func_pre = lambda dset: dset["P"] # Operator to Get Data op_rho = ScalarOperator(func_rho) op_vel = ScalarOperator(func_vel)