def get_max_tp(cell, amp, x_dist_val,y): #square wave [t,i]=pdl.make_triphasic(mydelay,mydur,amp,mysimtime,mydt) sim = pdl.Simulation(cell,mydt,sim_time = mysimtime) sim.set_exstim([t,i],x_dist=x_dist_val,y_dist = y,rho = myrho) sim.go() _,som_rec,ax_rec = sim.get_recording() return som_rec,ax_rec
def get_max_tp(cell, triamp, x_dist_val): [t, i] = pdl.make_triphasic(mydelay, mydur, mydt, mysimtime, triamp) sim = pdl.Simulation(cell, mydt, sim_time=mysimtime) sim.set_exstim([t, i], x_dist=x_dist_val, y_dist=3, rho=myrho) sim.go() _, som_rec, _ = sim.get_recording() return som_rec
import matplotlib.pyplot as plt import sqlite3 as sqlite import pyneurlib as pdl import numpy as np cell = pdl.RGC_Neuron('fohlmeister_geo_params_light.csv',True,True) mydt = .01 mydur = .3 mysimtime = 500 mydelay = 100 bigv = [] reps = range(10) for i_amp in [.2e3, .4e3, .5e3, .7e3, 1e3, 1.2e3, 1.5e3, 2e3, 2.5e3]: #microamps smallv = [] for rep in reps: print i_amp triamp = i_amp [t,i]=pdl.make_triphasic(mydelay,mydur,mydt,mysimtime,triamp) i = i + .1*(np.random.rand(len(t))-0.5) sim = pdl.Simulation(cell,mydt) #sim.set_IClamp() myrho = 4e6 sim.set_exstim([t,i],x_dist=10,y_dist=7,rho = myrho) #this rho isn't the best! sim.go() smallv.append(sim.get_recording()[1]) bigv.append(smallv) # sim.show()
amp = 2000 y = y_soma_tp_rand_norm y = 30 x_soma = 0 #mydt = .1 cntlim = 30 mydelay = 0 mysimtime = 4 #mysimtime = 15 stim_params = [mydelay, dur, mysimtime, mydt, myrho] cell = pdl.RGC_Neuron('fohlmeister_geo_params_ultraultralight_minaxon_somaparams.csv',ex_flag = True, dendrite_flag = False) #cell = pdl.RGC_Neuron('fohlmeister_geo_params_ultraultralight_minaxon_somaparams.csv',ex_flag = True, dendrite_flag = True) [t,i] = pdl.make_triphasic(mydelay, dur, amp, mysimtime, mydt) sim = pdl.Simulation(cell,mydt,sim_time = mysimtime) sim.set_exstim([t,i],x_dist = x_soma, y_dist = y, rho = myrho) sim.go() sim.show(showAx = 0) #sim.show(showAx = 2) #plt.figure() #plt.plot(t,i) #thr = ptl.get_thresh(cell, 'tp', init_amp, init_step, x_soma, y, stim_params, cnt_lim = cntlim) #print thr #Jepson Analysis Extended - soma only ##because we're doing comparison between two conditions, all parameters are specified here elif TEST_TYPE == 21:
import pyneurlib as pdl import matplotlib.pyplot as plt plt.figure() t,x = pdl.make_triphasic(100, 150, 1.5, 450, .1) plt.plot(t,x-2) t,x = pdl.make_dppbal(100, 200, 50, 100, 1, 1.5, 500, .1) plt.plot(t,x+2) plt.ylabel('Amplitude (nA)') plt.xlabel('Time (us)') plt.title('Triphasic and Depolarizing Pre-Pulse Waveforms') plt.show() savefig('waveform_2.png') savefig('waveform_2.svg')