Example #1
0
def train(sepal_length, sepal_length_unit_mean_sd,
          sepal_width, sepal_width_unit_mean_sd,
          petal_length, petal_length_unit_mean_sd,
          petal_width, petal_width_unit_mean_sd,
          unique_species, species):
    # SpiNNaker setup
    sim.setup(timestep=1.0, min_delay=1.0, max_delay=10.0,
            spinnaker_hostname="192.168.1.1")

    # Calculate input rates
    input_rates = []
    calculate_stim_rates(sepal_length, sepal_length_unit_mean_sd, input_rates, MAX_FREQUENCY)
    calculate_stim_rates(sepal_width, sepal_width_unit_mean_sd, input_rates, MAX_FREQUENCY)
    calculate_stim_rates(petal_length, petal_length_unit_mean_sd, input_rates, MAX_FREQUENCY)
    calculate_stim_rates(petal_width, petal_width_unit_mean_sd, input_rates, MAX_FREQUENCY)

    # Calculate class rates
    class_rates = []
    for u, _ in enumerate(unique_species):
        class_rates.append(list((species == u) * MAX_FREQUENCY))

    # Build basic network with orthogonal stimulation of both populations
    input_populations, class_populations = build_basic_network(input_rates, STIMULUS_TIME,
                                                               class_rates, STIMULUS_TIME,
                                                               False, 0.0, True, sim)
    # Create BCPNN model with weights disabled
    bcpnn_synapse = bcpnn.BCPNNSynapse(
            tau_zi=BCPNN_TAU_PRIMARY,
            tau_zj=BCPNN_TAU_PRIMARY,
            tau_p=BCPNN_TAU_ELIGIBILITY,
            f_max=MAX_FREQUENCY,
            w_max=BCPNN_MAX_WEIGHT,
            weights_enabled=False,
            plasticity_enabled=True,
            weight=0.0)

    # Create all-to-all connector to connect inputs to classes
    input_class_connector = sim.AllToAllConnector()

    # Loop through all pairs of input populations and classes
    plastic_connections = []
    for (i, c) in itertools.product(input_populations, class_populations):
        # Connect input to class with all-to-all plastic synapse
        connection = sim.Projection(i, c, input_class_connector, bcpnn_synapse,
                                    receptor_type="excitatory", label="%s-%s" % (i.label, c.label))
        plastic_connections.append(connection)

    # Run simulation
    sim.run(STIMULUS_TIME * len(sepal_length))

    # Read biases
    # **HACK** investigate where out by 1000 comes from!
    learnt_biases = [c.get_data().segments[0].filter(name="bias")[0][-1,:] * 0.001
                    for c in class_populations]

    # Read plastic weights
    learnt_weights = [p.get("weight", format="array") for p in plastic_connections]

    return learnt_biases, learnt_weights
def test(learnt_weights, learnt_biases):
    # SpiNNaker setup
    sim.setup(timestep=1.0,
              min_delay=1.0,
              max_delay=10.0,
              spinnaker_hostname="192.168.1.1")

    # Generate testing stimuli patters
    testing_stimuli_rates = [
        [MAX_FREQUENCY, MIN_FREQUENCY, MAX_FREQUENCY, MIN_FREQUENCY],
        [MIN_FREQUENCY, MAX_FREQUENCY, MAX_FREQUENCY, MIN_FREQUENCY],
    ]

    # Generate uncertain class stimuli pattern
    uncertain_stimuli_rates = [
        [MAX_FREQUENCY * 0.5],
        [MAX_FREQUENCY * 0.5],
    ]

    # Build basic network
    input_populations, class_populations = build_basic_network(
        testing_stimuli_rates, TESTING_STIMULUS_TIME, uncertain_stimuli_rates,
        TESTING_TIME, True, learnt_biases, False, sim)

    # Create BCPNN model with weights disabled
    bcpnn_synapse = bcpnn.BCPNNSynapse(tau_zi=BCPNN_TAU_PRIMARY,
                                       tau_zj=BCPNN_TAU_PRIMARY,
                                       tau_p=BCPNN_TAU_ELIGIBILITY,
                                       f_max=MAX_FREQUENCY,
                                       w_max=BCPNN_MAX_WEIGHT,
                                       weights_enabled=True,
                                       plasticity_enabled=False)

    for ((i, c),
         w) in zip(itertools.product(input_populations, class_populations),
                   learnt_weights):
        # Convert learnt weight matrix into a connection list
        connections = convert_weights_to_list(w, 1.0, 7.0)

        # Create projections
        sim.Projection(i,
                       c,
                       sim.FromListConnector(connections),
                       bcpnn_synapse,
                       receptor_type="excitatory",
                       label="%s-%s" % (i.label, c.label))

    # Run simulation
    sim.run(TESTING_TIME)

    # Read spikes from input and class populations
    input_data = [i.get_data() for i in input_populations]
    class_data = [c.get_data() for c in class_populations]

    # End simulation on SpiNNaker
    sim.end()

    # Return spikes
    return input_data, class_data
def test_discrete(connection_weight_filenames, hcu_biases,
                  ampa_gain, nmda_gain, tau_ca2, i_alpha,
                  stim_minicolumns, testing_simtime, delay_model,
                  num_hcu, num_mcu_per_hcu, num_mcu_neurons, record_membrane, **setup_kwargs):

    assert len(hcu_biases) == num_hcu, "An array of biases must be provided for each HCU"
    assert len(connection_weight_filenames) == (num_hcu ** 2), "A tuple of weight matrix filenames must be provided for each HCU->HCU product"

    # Scale parameters to obtain HCU size and synaptic stringth
    num_excitatory, num_inhibitory, JE, JI = scale_parameters(num_mcu_per_hcu, num_mcu_neurons)

    # Setup simulator and seed RNG
    sim.setup(timestep=dt, min_delay=dt, max_delay=7.0 * dt, **setup_kwargs)
    rng = NumpyRNG(seed=1)

    # Calculate mean firing rate
    e_cell_mean_firing_rate = (num_mcu_neurons / num_excitatory) * 20.0

    # Build HCUs configured for testing
    hcus = [HCU.testing_adaptive(name="%u" % i, sim=sim, rng=rng,
                                 num_excitatory=num_excitatory, num_inhibitory=num_inhibitory, JE=JE, JI=JI,
                                 bias=bias, tau_ca2=tau_ca2, i_alpha=i_alpha,
                                 e_cell_mean_firing_rate=e_cell_mean_firing_rate,
                                 simtime=testing_simtime, record_membrane=record_membrane,
                                 stim_spike_times=generate_discrete_hcu_stimuli(stim_minicolumns, num_excitatory, num_mcu_per_hcu)) for i, bias in enumerate(hcu_biases)]

    # **HACK** not actually plastic - just used to force signed weights
    bcpnn_synapse = bcpnn.BCPNNSynapse(
        tau_zi=tau_syn_ampa_gaba,
        tau_zj=tau_syn_ampa_gaba,
        tau_p=1000.0,
        f_max=20.0,
        w_max=JE,
        weights_enabled=True,
        plasticity_enabled=False)

    # Loop through all hcu products and their corresponding connection weight
    for connection_weight_filename, ((i_pre, hcu_pre), (i_post, hcu_post)) in zip(connection_weight_filenames, itertools.product(enumerate(hcus), repeat=2)):
        # Use delay model to calculate delay
        hcu_delay = delay_model(i_pre, i_post)

        logger.info("Connecting HCU %u->%u with delay %ums" % (i_pre, i_post, hcu_delay))

        # Build connections
        HCUConnection.testing(
            sim=sim,
            pre_hcu=hcu_pre, post_hcu=hcu_post,
            ampa_gain=ampa_gain, nmda_gain=nmda_gain,
            ampa_synapse=bcpnn_synapse, nmda_synapse=bcpnn_synapse,
            connection_weight_filename=connection_weight_filename, delay=hcu_delay)

    # Run simulation
    sim.run(testing_simtime)

    # Read results from HCUs
    results = [hcu.read_results() for hcu in hcus]

    return results, sim.end
Example #4
0
def test(sepal_length, sepal_length_unit_mean_sd,
         sepal_width, sepal_width_unit_mean_sd,
         petal_length, petal_length_unit_mean_sd,
         petal_width, petal_width_unit_mean_sd,
         num_species,
         learnt_biases, learnt_weights):
    # SpiNNaker setup
    sim.setup(timestep=1.0, min_delay=1.0, max_delay=10.0,
              spinnaker_hostname="192.168.1.1")

    # Calculate input rates
    input_rates = []
    calculate_stim_rates(sepal_length, sepal_length_unit_mean_sd, input_rates, MAX_FREQUENCY)
    calculate_stim_rates(sepal_width, sepal_width_unit_mean_sd, input_rates, MAX_FREQUENCY)
    calculate_stim_rates(petal_length, petal_length_unit_mean_sd, input_rates, MAX_FREQUENCY)
    calculate_stim_rates(petal_width, petal_width_unit_mean_sd, input_rates, MAX_FREQUENCY)

    # Generate uncertain class pattern
    uncertain_class_rates = [[MAX_FREQUENCY * (1.0 / num_species)]
                             for s in range(num_species)]

    # Build basic network
    testing_time = STIMULUS_TIME * len(sepal_length)
    input_populations, class_populations = build_basic_network(input_rates, STIMULUS_TIME,
                                                               uncertain_class_rates, testing_time,
                                                               True, learnt_biases, False, sim)

    # Create BCPNN model with weights disabled
    bcpnn_synapse = bcpnn.BCPNNSynapse(
            tau_zi=BCPNN_TAU_PRIMARY,
            tau_zj=BCPNN_TAU_PRIMARY,
            tau_p=BCPNN_TAU_ELIGIBILITY,
            f_max=MAX_FREQUENCY,
            w_max=BCPNN_MAX_WEIGHT,
            weights_enabled=True,
            plasticity_enabled=False)

    for ((i, c), w) in zip(itertools.product(input_populations, class_populations), learnt_weights):
        # Convert learnt weight matrix into a connection list
        connections = convert_weights_to_list(w, 1.0, 7.0 * (30.0 / float(CLASS_POP_SIZE)))

        # Create projections
        sim.Projection(i, c, sim.FromListConnector(connections), bcpnn_synapse,
                       receptor_type="excitatory", label="%s-%s" % (i.label, c.label))

    # Run simulation
    sim.run(testing_time)

    # Read spikes from input and class populations
    input_data = [i.get_data() for i in input_populations]
    class_data = [c.get_data() for c in class_populations]

    # End simulation on SpiNNaker
    sim.end()

    # Return spikes
    return input_data, class_data
def train_discrete(ampa_tau_zi, ampa_tau_zj, nmda_tau_zi, nmda_tau_zj, tau_p,
                   stim_minicolumns, training_simtime, delay_model,
                   num_hcu, num_mcu_per_hcu, num_mcu_neurons, **setup_kwargs):

    # Scale parameters to obtain HCU size and synaptic stringth
    num_excitatory, num_inhibitory, JE, JI = scale_parameters(num_mcu_per_hcu, num_mcu_neurons)

    # Setup simulator and seed RNG
    sim.setup(timestep=dt, min_delay=dt, max_delay=7.0 * dt, **setup_kwargs)
    rng = NumpyRNG(seed=1)

    # Calculate mean firing rate
    e_cell_mean_firing_rate = 4.0#(float(num_mcu_neurons) / float(num_excitatory)) * 20.0

    # Build HCUs configured for training
    hcus = [HCU.training(name="%u" % h, sim=sim, rng=rng, simtime=training_simtime,
                         num_excitatory=num_excitatory, num_inhibitory=num_inhibitory, JE=JE, JI=JI,
                         intrinsic_tau_z=ampa_tau_zj, intrinsic_tau_p=tau_p,
                         e_cell_mean_firing_rate=e_cell_mean_firing_rate,
                         stim_spike_times=generate_discrete_hcu_stimuli(stim_minicolumns, num_excitatory, num_mcu_per_hcu)) for h in range(num_hcu)]

    # Loop through all hcu products
    connections = []
    for (i_pre, hcu_pre), (i_post, hcu_post) in itertools.product(enumerate(hcus), repeat=2):
        # Use delay model to calculate delay
        hcu_delay = delay_model(i_pre, i_post)

         # Build BCPNN models
        ampa_synapse = bcpnn.BCPNNSynapse(
            tau_zi=ampa_tau_zi,
            tau_zj=ampa_tau_zj,
            tau_p=tau_p,
            f_max=20.0,
            w_max=JE,
            weights_enabled=False,
            plasticity_enabled=True,
            weight=0.0,
            delay=hcu_delay)

        nmda_synapse = bcpnn.BCPNNSynapse(
            tau_zi=nmda_tau_zi,
            tau_zj=nmda_tau_zj,
            tau_p=tau_p,
            f_max=20.0,
            w_max=JE,
            weights_enabled=False,
            plasticity_enabled=True,
            weight=0.0,
            delay=hcu_delay)

        logger.info("Connecting HCU %u->%u with delay %ums" % (i_pre, i_post, hcu_delay))
        connections.append(HCUConnection.training(
            sim=sim, pre_hcu=hcu_pre, post_hcu=hcu_post,
            ampa_synapse=ampa_synapse, nmda_synapse=nmda_synapse, rng=rng))

    # Run simulation
    sim.run(training_simtime)

    # Read results from HCUs
    hcu_results = [hcu.read_results() for hcu in hcus]

    # Read results from inter-hcu connections
    connection_results = [c.read_results() for c in connections]

    return hcu_results, connection_results, sim.end
Example #6
0
def train_discrete(ampa_tau_zi, ampa_tau_zj, nmda_tau_zi, nmda_tau_zj, tau_p,
                   minicolumn_indices, training_stim_time, training_interval_time,
                   delay_model, num_hcu, num_mcu_neurons, timer, **setup_kwargs):
    # Setup simulator and seed RNG
    sim.setup(timestep=dt, min_delay=dt, max_delay=7.0 * dt, **setup_kwargs)
    rng = sim.NativeRNG(host_rng=NumpyRNG(seed=1))

    # Determine length of each epoch
    epoch_duration = training_stim_time + training_interval_time

    # Stimulate minicolumns in sequence
    stim_minicolumns = [(m, float(i * epoch_duration), 20.0, training_stim_time)
                        for i, m in enumerate(minicolumn_indices)]

    # Calculate length of training required
    training_duration = float(len(stim_minicolumns)) * epoch_duration

    # Calculate mean firing rate
    e_cell_mean_firing_rate = (float(num_mcu_neurons) / float(NE)) * 20.0

    # Build HCUs configured for training
    hcus = [HCU.training(name="%u" % h, sim=sim, rng=rng, simtime=training_duration,
                         intrinsic_tau_z=ampa_tau_zj, intrinsic_tau_p=tau_p,
                         e_cell_mean_firing_rate=e_cell_mean_firing_rate,
                         stim_spike_times=generate_discrete_hcu_stimuli(stim_minicolumns, num_mcu_neurons)) for h in range(num_hcu)]

    # Loop through all hcu products
    connections = []
    for (i_pre, hcu_pre), (i_post, hcu_post) in itertools.product(enumerate(hcus), repeat=2):
        # Use delay model to calculate delay
        hcu_delay = delay_model(i_pre, i_post)

         # Build BCPNN models
        ampa_synapse = bcpnn.BCPNNSynapse(
            tau_zi=ampa_tau_zi,
            tau_zj=ampa_tau_zj,
            tau_p=tau_p,
            f_max=20.0,
            w_max=JE,
            weights_enabled=False,
            plasticity_enabled=True,
            weight=0.0,
            delay=hcu_delay)

        nmda_synapse = bcpnn.BCPNNSynapse(
            tau_zi=nmda_tau_zi,
            tau_zj=nmda_tau_zj,
            tau_p=tau_p,
            f_max=20.0,
            w_max=JE,
            weights_enabled=False,
            plasticity_enabled=True,
            weight=0.0,
            delay=hcu_delay)

        logger.info("Connecting HCU %u->%u with delay %ums" % (i_pre, i_post, hcu_delay))
        connections.append(HCUConnection.training(
            sim=sim, pre_hcu=hcu_pre, post_hcu=hcu_post,
            ampa_synapse=ampa_synapse, nmda_synapse=nmda_synapse, rng=rng))

    logger.info("Build time %gs", timer.diff())

    # Run simulation
    sim.run(training_duration)

    logger.info("Load and run time %gs", timer.diff())

    # Read results from HCUs
    hcu_results = [hcu.read_results() for hcu in hcus]

    # Read results from inter-hcu connections
    connection_results = [c.read_results() for c in connections]

    return hcu_results, connection_results, sim.end
def train():
    # SpiNNaker setup
    sim.setup(timestep=1.0,
              min_delay=1.0,
              max_delay=10.0,
              spinnaker_hostname="192.168.1.1")

    # Generate orthogonal input stimuli
    orthogonal_stimuli_rates = []
    num_inputs = len(INPUT_NAMES)
    for i in range(num_inputs):
        input_stimuli = []
        for s in range(TRAINING_TIME / TRAINING_STIMULUS_TIME):
            input_stimuli.append(MIN_FREQUENCY if (
                s % num_inputs) == i else MAX_FREQUENCY)
        orthogonal_stimuli_rates.append(input_stimuli)

    # Build basic network with orthogonal stimulation of both populations
    input_populations, class_populations = build_basic_network(
        orthogonal_stimuli_rates, TRAINING_STIMULUS_TIME,
        orthogonal_stimuli_rates, TRAINING_STIMULUS_TIME, False, 0.0, True,
        sim)

    # Create BCPNN model with weights disabled
    bcpnn_synapse = bcpnn.BCPNNSynapse(tau_zi=BCPNN_TAU_PRIMARY,
                                       tau_zj=BCPNN_TAU_PRIMARY,
                                       tau_p=BCPNN_TAU_ELIGIBILITY,
                                       f_max=MAX_FREQUENCY,
                                       w_max=BCPNN_MAX_WEIGHT,
                                       weights_enabled=False,
                                       plasticity_enabled=True,
                                       weight=0.0)

    # Create all-to-all conector to connect inputs to classes
    input_class_connector = sim.AllToAllConnector()

    # Loop through all pairs of input populations and classes
    plastic_connections = []
    for (i, c) in itertools.product(input_populations, class_populations):
        # Connect input to class with all-to-all plastic synapse
        connection = sim.Projection(i,
                                    c,
                                    input_class_connector,
                                    bcpnn_synapse,
                                    receptor_type="excitatory",
                                    label="%s-%s" % (i.label, c.label))
        plastic_connections.append(connection)

    # Run simulation
    sim.run(TRAINING_TIME)

    # Plot bias evolution
    num_classes = len(CLASS_NAMES)
    #bias_figure, bias_axes = pylab.subplots()

    # **HACK** Extract learnt biases from gsyn channel
    learnt_biases = []
    plotting_times = range(TRAINING_TIME)
    for i, c in enumerate(class_populations):
        # Read bias from class
        bias = c.get_data().segments[0].filter(name="bias")[0]
        '''
        # Loop through plotting times to get mean biases
        mean_pj = []
        for t in plotting_times:
            # Slice out the rows for all neurons at this time
            time_rows = gsyn[t::TRAINING_TIME]
            time_bias = zip(*time_rows)[2]
            mean_pj.append(numpy.average(numpy.exp(numpy.divide(time_bias,BCPNN_PHI))))
        
        bias_axes.plot(plotting_times, mean_pj, label=c.label)
        '''
        # Add final bias column to list
        # **HACK** investigate where out by 1000 comes from!
        learnt_biases.append(bias[-1, :] * 0.001)
    '''
    bias_axes.set_title("Mean final bias")
    bias_axes.set_ylim((0.0, 1.0))
    bias_axes.set_ylabel("Pj")
    bias_axes.set_xlabel("Time/ms")
    bias_axes.legend()
    '''
    # Plot weights
    weight_figure, weight_axes = pylab.subplots(num_inputs, num_classes)

    # Loop through plastic connections
    learnt_weights = []
    for i, c in enumerate(plastic_connections):
        # Extract weights and calculate mean
        weights = c.get("weight", format="array")
        mean_weight = numpy.average(weights)

        # Add weights to list
        learnt_weights.append(weights)

        # Plot mean weight in each panel
        axis = weight_axes[i % num_inputs][i / num_classes]
        axis.matshow([[mean_weight]], cmap=pylab.cm.gray)
        #axis.set_title("%s: %fuS" % (c.label, mean_weight))
        axis.set_title("%u->%u: %f" %
                       (i % num_inputs, i / num_classes, mean_weight))
        axis.get_xaxis().set_visible(False)
        axis.get_yaxis().set_visible(False)

    # Show figures
    pylab.show()

    # End simulation on SpiNNaker
    sim.end()

    # Return learnt weights
    return learnt_weights, learnt_biases