def example_3D(): import pkg_resources DATA_PATH = pkg_resources.resource_filename('pynufft', './src/data/') image = numpy.load(DATA_PATH + 'phantom_3D_128_128_128.npz')['arr_0'][0::2, 0::2, 0::2] pyplot.imshow(numpy.abs(image[:, :, 32]), label='original signal', cmap=gray) pyplot.show() Nd = (64, 64, 64) # time grid, tuple Kd = (64, 64, 64) # frequency grid, tuple Jd = (1, 1, 1) # interpolator # om= numpy.load(DATA_PATH+'om3D.npz')['arr_0'] om = numpy.random.randn(15120, 3) print(om.shape) from pynufft import NUFFT_cpu, NUFFT_hsa NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) kspace = NufftObj.forward(image) restore_image = NufftObj.solve(kspace, 'cg', maxiter=200) # restore_image1 = NufftObj.solve(kspace,'L1TVLAD', maxiter=200,rho=0.1) # restore_image2 = NufftObj.solve(kspace, 'L1TVOLS', maxiter=200, rho=0.1) pyplot.subplot(2, 2, 1) pyplot.imshow(numpy.abs(image[:, :, 32]), label='original signal', cmap=gray) pyplot.title('original') # pyplot.subplot(2,2,2) # pyplot.imshow(numpy.abs(restore_image1[:,:,32]), label='L1TVLAD',cmap=gray) # pyplot.title('L1TVLAD') pyplot.subplot(2, 2, 3) pyplot.imshow(numpy.abs(restore_image2[:, :, 32]), label='L1TVOLS', cmap=gray) pyplot.title('L1TVOLS') pyplot.subplot(2, 2, 4) pyplot.imshow(numpy.abs(restore_image[:, :, 32]), label='CG', cmap=gray) pyplot.title('CG') # pyplot.legend([im1, im im4]) pyplot.show()
def example_1D(): om = numpy.random.randn(1512, 1) # print(om) # print(om.shape) # pyplot.hist(om) # pyplot.show() Nd = (256, ) # time grid, tuple Kd = (512, ) # frequency grid, tuple Jd = (7, ) # interpolator from pynufft import NUFFT_cpu, NUFFT_hsa NufftObj = NUFFT_cpu() batch = 4 NufftObj.plan(om, Nd, Kd, Jd, batch=batch) time_data = numpy.zeros((256, batch)) time_data[64:192, :] = 1.0 pyplot.plot(time_data) pyplot.ylim(-1, 2) pyplot.show() nufft_freq_data = NufftObj.forward(time_data) print('shape of y = ', nufft_freq_data.shape) x2 = NufftObj.adjoint(nufft_freq_data) restore_time = NufftObj.solve(nufft_freq_data, 'cg', maxiter=30) restore_time1 = NufftObj.solve(nufft_freq_data, 'L1TVOLS', maxiter=30, rho=1) # # restore_time2 = NufftObj.solve(nufft_freq_data,'L1TVOLS', maxiter=30,rho=1) # # im1,=pyplot.plot(numpy.abs(time_data),'r',label='original signal') # im3,=pyplot.plot(numpy.abs(restore_time2),'k--',label='L1TVOLS') # im4,=pyplot.plot(numpy.abs(restore_time),'r:',label='conjugate_gradient_method') # pyplot.legend([im1, im2, im3,im4]) for slice in range(0, batch): pyplot.plot(numpy.abs(x2[:, slice])) pyplot.plot(numpy.abs(restore_time[:, slice])) pyplot.show()
def spiral_recon(data_path, ktraj, N, plot=0): ## # Load the raw data ## dat = sio.loadmat(data_path + 'rawdata_spiral')['dat'] ## # Acq parameters ## Npoints = ktraj.shape[0] Nshots = ktraj.shape[1] Nchannels = dat.shape[-1] if len(dat.shape) < 4: Nslices = 1 dat = dat.reshape(Npoints, Nshots, 1, Nchannels) else: Nslices = dat.shape[-2] if dat.shape[0] != ktraj.shape[0] or dat.shape[1] != ktraj.shape[1]: raise ValueError('Raw data and k-space trajectory do not match!') ## # Arrange data for pyNUFFT ## om = np.zeros((Npoints * Nshots, 2)) om[:, 0] = np.real(ktraj).flatten() om[:, 1] = np.imag(ktraj).flatten() NufftObj = NUFFT_cpu() # Create a pynufft object Nd = (N, N) # image size Kd = (2 * N, 2 * N) # k-space size Jd = (6, 6) # interpolation size NufftObj.plan(om, Nd, Kd, Jd) ## # Recon ## im = np.zeros((N, N, Nslices, Nchannels), dtype=complex) for ch in range(Nchannels): for sl in range(Nslices): im[:, :, sl, ch] = NufftObj.solve(dat[:, :, sl, ch].flatten(), solver='cg', maxiter=50) sos = np.sum(np.abs(im), 2) sos = np.divide(sos, np.max(sos)) if plot: plt.imshow(np.rot90(np.abs(sos[:, :, 0]), -1), cmap='gray') plt.axis('off') plt.title('Uncorrected Image') plt.show() return
def example_1D(): om = numpy.random.randn(1512,1) # print(om) # print(om.shape) # pyplot.hist(om) # pyplot.show() Nd = (256,) # time grid, tuple Kd = (512,) # frequency grid, tuple Jd = (7,) # interpolator from pynufft import NUFFT_cpu, NUFFT_hsa NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) time_data = numpy.zeros(256, ) time_data[64:192] = 1.0 pyplot.plot(time_data) pyplot.ylim(-1,2) pyplot.show() nufft_freq_data =NufftObj.forward(time_data) restore_time = NufftObj.solve(nufft_freq_data,'cg', maxiter=30) restore_time2 = NufftObj.solve(nufft_freq_data,'L1TVOLS', maxiter=30,rho=1) im1,=pyplot.plot(numpy.abs(time_data),'r',label='original signal') # im2,=pyplot.plot(numpy.abs(restore_time1),'b:',label='L1TVLAD') im3,=pyplot.plot(numpy.abs(restore_time2),'k--',label='L1TVOLS') im4,=pyplot.plot(numpy.abs(restore_time),'r:',label='conjugate_gradient_method') pyplot.legend([im1, im3,im4]) pyplot.show()
def non_uniform_fft(pos_stack,pos_wavefun,solver,interp_size): assert len(pos_wavefun.shape) == 2 NufftObj = NUFFT_cpu() om = pos_stack Nd = (len(pos_stack[0]),len(pos_stack[1])) Kd = Nd Jd = (interp_size,interp_size) NufftObj.plan(om,Nd,Kd,Jd) y = NufftObj.forward(pos_wavefun) mom_wavefun_1 = NufftObj.solve(y,solver=solver ) #mom_wavefun_2 = NufftObj.adjoint(y) return mom_wavefun_1 #, mom_wavefun_2
image = scipy.misc.ascent() image = scipy.misc.imresize(image, (256, 256)) image = image * 1.0 / numpy.max(image[...]) print('loading image...') matplotlib.pyplot.imshow(image.real, cmap=matplotlib.cm.gray) matplotlib.pyplot.show() y = NufftObj.forward(image) print('setting non-uniform data') print('y is an (M,) list', type(y), y.shape) matplotlib.pyplot.subplot(2, 2, 1) image0 = NufftObj.solve(y, solver='cg', maxiter=50) matplotlib.pyplot.title('Restored image (cg)') matplotlib.pyplot.imshow(image0.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.subplot(2, 2, 2) image2 = NufftObj.adjoint(y) matplotlib.pyplot.imshow(image2.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=5)) matplotlib.pyplot.title('Adjoint transform') matplotlib.pyplot.subplot(2, 2, 3) image3 = NufftObj.solve(y, solver='L1TVOLS', maxiter=50, rho=0.1) matplotlib.pyplot.title('L1TV OLS')
def test_2D(): import pkg_resources DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import numpy import matplotlib.pyplot from pynufft import NUFFT_cpu # load example image # image = numpy.loadtxt(DATA_PATH +'phantom_256_256.txt') image = scipy.misc.ascent()[::2, ::2] image = image.astype(numpy.float) / numpy.max(image[...]) #numpy.save('phantom_256_256',image) matplotlib.pyplot.imshow(image, cmap=matplotlib.cm.gray) matplotlib.pyplot.show() print('loading image...') Nd = (256, 256) # image size print('setting image dimension Nd...', Nd) Kd = (512, 512) # k-space size print('setting spectrum dimension Kd...', Kd) Jd = (6, 6) # interpolation size print('setting interpolation size Jd...', Jd) # load k-space points # om = numpy.loadtxt(DATA_PATH+'om.txt') om = numpy.load(DATA_PATH + 'om2D.npz')['arr_0'] print('setting non-uniform coordinates...') matplotlib.pyplot.plot(om[::10, 0], om[::10, 1], 'o') matplotlib.pyplot.title('non-uniform coordinates') matplotlib.pyplot.xlabel('axis 0') matplotlib.pyplot.ylabel('axis 1') matplotlib.pyplot.show() NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) y = NufftObj.forward(image) print('setting non-uniform data') print('y is an (M,) list', type(y), y.shape) # kspectrum = NufftObj.xx2k( NufftObj.solve(y,solver='bicgstab',maxiter = 100)) image_restore = NufftObj.solve(y, solver='cg', maxiter=10) shifted_kspectrum = numpy.fft.fftshift( numpy.fft.fftn(numpy.fft.fftshift(image_restore))) print('getting the k-space spectrum, shape =', shifted_kspectrum.shape) print('Showing the shifted k-space spectrum') matplotlib.pyplot.imshow(shifted_kspectrum.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=-100, vmax=100)) matplotlib.pyplot.title('shifted k-space spectrum') matplotlib.pyplot.show() image4 = NufftObj.solve(y, 'L1TVOLS', maxiter=100, rho=1) image2 = NufftObj.solve(y, 'dc', maxiter=25) image3 = NufftObj.solve(y, 'cg', maxiter=25) matplotlib.pyplot.subplot(1, 3, 1) matplotlib.pyplot.imshow(image2.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.title('dc') matplotlib.pyplot.subplot(1, 3, 2) matplotlib.pyplot.imshow(image3.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.title('cg') matplotlib.pyplot.subplot(1, 3, 3) matplotlib.pyplot.imshow(image4.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.title('L1TVOLS') matplotlib.pyplot.show() # matplotlib.pyplot.imshow(image2.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) # matplotlib.pyplot.show() maxiter = 25 counter = 1 for solver in ('dc', 'bicg', 'bicgstab', 'cg', 'gmres', 'lgmres', 'lsqr'): print(counter, solver) if 'lsqr' == solver: image2 = NufftObj.solve(y, solver, iter_lim=maxiter) else: image2 = NufftObj.solve(y, solver, maxiter=maxiter) # image2 = NufftObj.solve(y, solver='bicgstab',maxiter=30) matplotlib.pyplot.subplot(2, 4, counter) matplotlib.pyplot.imshow(image2.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) matplotlib.pyplot.title(solver) # print(counter, solver) counter += 1 matplotlib.pyplot.show()
def test_cuda(): import numpy import matplotlib.pyplot # load example image import pkg_resources ## Define the source of data DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import scipy image = scipy.misc.ascent() image = scipy.misc.imresize(image, (256, 256)) image = image.astype(numpy.float) / numpy.max(image[...]) Nd = (256, 256) # image space size Kd = (512, 512) # k-space size Jd = (6, 6) # interpolation size # load k-space points as M * 2 array om = numpy.load(DATA_PATH + 'om2D.npz')['arr_0'] # Show the shape of om print('the shape of om = ', om.shape) # initiating NUFFT_cpu object nfft = NUFFT_cpu() # CPU NUFFT class # Plan the nfft object nfft.plan(om, Nd, Kd, Jd) # initiating NUFFT_hsa object NufftObj = NUFFT_hsa('cuda', 0, 0) # Plan the NufftObj (similar to NUFFT_cpu) NufftObj.plan(om, Nd, Kd, Jd) import time t0 = time.time() for pp in range(0, 10): y = nfft.forward(image) t_cpu = (time.time() - t0) / 10.0 ## Moving image to gpu ## gx is an gpu array, dtype = complex64 gx = NufftObj.to_device(image) t0 = time.time() for pp in range(0, 100): gy = NufftObj.forward(gx) t_cu = (time.time() - t0) / 100 print('t_cpu = ', t_cpu) print('t_cuda =, ', t_cu) print('gy close? = ', numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y) * 1e-3)) print("acceleration=", t_cpu / t_cu) maxiter = 100 import time t0 = time.time() x_cpu_cg = nfft.solve(y, 'cg', maxiter=maxiter) # x2 = nfft.solve(y2, 'L1TVLAD',maxiter=maxiter, rho = 2) t1 = time.time() - t0 # gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2)) t0 = time.time() x_cuda_cg = NufftObj.solve(gy, 'cg', maxiter=maxiter) # x = NufftObj.solve(gy,'L1TVLAD', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) print('acceleration of cg=', t1 / t2) t0 = time.time() x_cpu_TV = nfft.solve(y, 'L1TVOLS', maxiter=maxiter, rho=2) t1 = time.time() - t0 t0 = time.time() x_cuda_TV = NufftObj.solve(gy, 'L1TVOLS', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) print('acceleration of TV=', t1 / t2) matplotlib.pyplot.subplot(2, 2, 1) matplotlib.pyplot.imshow(x_cpu_cg.real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('CG_cpu') matplotlib.pyplot.subplot(2, 2, 2) matplotlib.pyplot.imshow(x_cuda_cg.get().real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('CG_cuda') matplotlib.pyplot.subplot(2, 2, 3) matplotlib.pyplot.imshow(x_cpu_TV.real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('TV_cpu') matplotlib.pyplot.subplot(2, 2, 4) matplotlib.pyplot.imshow(x_cuda_TV.get().real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('TV_cuda') matplotlib.pyplot.show() NufftObj.release() del NufftObj
Jd = (7, ) # interpolator NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) time_data = numpy.zeros(256, ) time_data[64:192] = 1.0 pyplot.plot(time_data) pyplot.ylim(-1, 2) pyplot.show() nufft_freq_data = NufftObj.forward(time_data) pyplot.plot(om, nufft_freq_data.real, '.', label='real') pyplot.plot(om, nufft_freq_data.imag, 'r.', label='imag') pyplot.legend() pyplot.show() restore_time = NufftObj.solve(nufft_freq_data, 'cg', maxiter=30) restore_time1 = NufftObj.solve(nufft_freq_data, 'L1TVLAD', maxiter=30, rho=1) restore_time2 = NufftObj.solve(nufft_freq_data, 'L1TVOLS', maxiter=30, rho=1) im1, = pyplot.plot(numpy.abs(time_data), 'r', label='original signal') im2, = pyplot.plot(numpy.abs(restore_time1), 'b:', label='L1TVLAD') im3, = pyplot.plot(numpy.abs(restore_time2), 'k--', label='L1TVOLS') im4, = pyplot.plot(numpy.abs(restore_time), 'r:', label='conjugate_gradient_method') pyplot.legend([im1, im2, im3, im4]) pyplot.show()
om[512 * index:512 * (index + 1), 1] = spoke_y #plt.plot(om[:,0], om[:,1],'.') #plt.title("Radial Kspace Trajectory") #plt.show() numProjections = kspace.shape[1] numReadouts = kspace.shape[0] print('Number of Projections = ', numProjections) print('Number of Readout Values = ', numReadouts) myNufft = NUFFT_cpu() myNufft.plan(om=om, Nd=(256, 256), Kd=(numReadouts, numReadouts), Jd=(2, 2)) y = kspace.flatten(order='C') image = myNufft.adjoint(y) #y = myNufft.forward(image) #ipdb.set_trace() plt.subplot(2, 2, 1) image0 = myNufft.solve(y, solver='cg', maxiter=50) #img = image0.real/image0.real.max() plt.title('Restored image (cg)') plt.imshow(image0.real, cmap=matplotlib.cm.gray, norm=matplotlib.colors.Normalize(vmin=0.0, vmax=1)) plt.show()
pyplot.show() Nd = (64, 64, 64) # time grid, tuple Kd = (64, 64, 64) # frequency grid, tuple Jd = (1, 1, 1) # interpolator # om= numpy.load(DATA_PATH+'om3D.npz')['arr_0'] om = numpy.random.randn(151200, 3) * 2 print(om.shape) from pynufft import NUFFT_cpu, NUFFT_hsa NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) kspace = NufftObj.forward(image) restore_image = NufftObj.solve(kspace, 'cg', maxiter=500) restore_image1 = NufftObj.solve(kspace, 'L1TVLAD', maxiter=500, rho=0.1) # restore_image2 = NufftObj.solve(kspace, 'L1TVOLS', maxiter=500, rho=0.1) pyplot.subplot(2, 2, 1) pyplot.imshow(numpy.real(image[:, :, 32]), label='original signal', cmap=gray) pyplot.title('original') pyplot.subplot(2, 2, 2) pyplot.imshow(numpy.real(restore_image1[:, :, 32]), label='L1TVLAD', cmap=gray) pyplot.title('L1TVLAD') pyplot.subplot(2, 2, 3) pyplot.imshow(numpy.real(restore_image2[:, :, 32]), label='L1TVOLS', cmap=gray) pyplot.title('L1TVOLS')
Jd = (7, ) # interpolator NufftObj = NUFFT_cpu() NufftObj.plan(om, Nd, Kd, Jd) time_data = numpy.zeros(256, ) time_data[64:192] = 1.0 pyplot.plot(time_data) pyplot.ylim(-1, 2) pyplot.show() nufft_freq_data = NufftObj.forward(time_data) pyplot.plot(om, nufft_freq_data.real, '.', label='real') pyplot.plot(om, nufft_freq_data.imag, 'r.', label='imag') pyplot.legend() pyplot.show() restore_time = NufftObj.solve(nufft_freq_data, 'cg', maxiter=30) #restore_time1 = NufftObj.solve(nufft_freq_data, 'L1TVLAD', maxiter=30, rho=1) #restore_time2 = NufftObj.solve(nufft_freq_data, 'L1TVOLS', maxiter=30, rho=1) im1, = pyplot.plot(numpy.abs(time_data), 'r', label='original signal') #im2, = pyplot.plot(numpy.abs(restore_time1), 'b:', label='L1TVLAD') #im3, = pyplot.plot(numpy.abs(restore_time2), 'k--', label='L1TVOLS') im4, = pyplot.plot(numpy.abs(restore_time), 'r:', label='conjugate_gradient_method') #pyplot.legend([im1, im2, im3, im4]) pyplot.show()
def test_opencl_multicoils(): import numpy import matplotlib.pyplot # load example image import pkg_resources ## Define the source of data DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import scipy image = scipy.misc.ascent()[::2, ::2] image = image.astype(numpy.float) / numpy.max(image[...]) Nd = (256, 256) # image space size Kd = (512, 512) # k-space size Jd = (6, 6) # interpolation size # load k-space points as M * 2 array om = numpy.load(DATA_PATH + 'om2D.npz')['arr_0'] # Show the shape of om print('the shape of om = ', om.shape) batch = 8 # initiating NUFFT_cpu object nfft = NUFFT_cpu() # CPU NUFFT class # Plan the nfft object nfft.plan(om, Nd, Kd, Jd, batch=batch) # initiating NUFFT_hsa object try: NufftObj = NUFFT_hsa('cuda', 0, 0) except: try: NufftObj = NUFFT_hsa('ocl', 1, 0) except: NufftObj = NUFFT_hsa('ocl', 0, 0) # Plan the NufftObj (similar to NUFFT_cpu) NufftObj.plan(om, Nd, Kd, Jd, batch=batch, radix=2) coil_sense = numpy.ones(Nd + (batch, ), dtype=numpy.complex64) for cc in range(0, batch, 2): coil_sense[int(256 / batch) * cc:int(256 / batch) * (cc + 1), :, cc].real *= 0.1 coil_sense[:, int(256 / batch) * cc:int(256 / batch) * (cc + 1), cc].imag *= -0.1 NufftObj.set_sense(coil_sense) nfft.set_sense(coil_sense) y = nfft.forward_one2many(image) import time t0 = time.time() for pp in range(0, 2): xx = nfft.adjoint_many2one(y) t_cpu = (time.time() - t0) / 2 ## Moving image to gpu ## gx is an gpu array, dtype = complex64 gx = NufftObj.to_device(image) gy = NufftObj.forward_one2many(gx) t0 = time.time() for pp in range(0, 10): gxx = NufftObj.adjoint_many2one(gy) t_cu = (time.time() - t0) / 10 print(y.shape, gy.get().shape) print('t_cpu = ', t_cpu) print('t_cuda =, ', t_cu) print('gy close? = ', numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y) * 1e-6)) print('gy error = ', numpy.linalg.norm(y - gy.get()) / numpy.linalg.norm(y)) print('gxx close? = ', numpy.allclose(xx, gxx.get(), atol=numpy.linalg.norm(xx) * 1e-6)) print('gxx error = ', numpy.linalg.norm(xx - gxx.get()) / numpy.linalg.norm(xx)) # for bb in range(0, batch): matplotlib.pyplot.subplot(1, 2, 1) matplotlib.pyplot.imshow(xx[...].real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('Adjoint_cpu_coil') matplotlib.pyplot.subplot(1, 2, 2) matplotlib.pyplot.imshow(gxx.get()[...].real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('Adjoint_hsa_coil') # matplotlib.pyplot.subplot(2, 2, 3) # matplotlib.pyplot.imshow( x_cpu_TV.real, cmap= matplotlib.cm.gray) # matplotlib.pyplot.title('TV_cpu')# x_cuda_TV = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2) # matplotlib.pyplot.subplot(2, 2, 4) # matplotlib.pyplot.imshow(x_cuda_TV.get().real, cmap= matplotlib.cm.gray) # matplotlib.pyplot.title('TV_cuda') matplotlib.pyplot.show(block=False) matplotlib.pyplot.pause(1) matplotlib.pyplot.close() print("acceleration=", t_cpu / t_cu) maxiter = 100 import time t0 = time.time() x_cpu_cg = nfft.solve(y, 'cg', maxiter=maxiter) # x2 = nfft.solve(y2, 'L1TVLAD',maxiter=maxiter, rho = 2) t1 = time.time() - t0 # gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2)) t0 = time.time() x_cuda_cg = NufftObj.solve(gy, 'cg', maxiter=maxiter) # x = NufftObj.solve(gy,'L1TVLAD', maxiter=maxiter, rho=2) print('shape of cg = ', x_cuda_cg.get().shape, x_cpu_cg.shape) t2 = time.time() - t0 print(t1, t2) print('acceleration of cg=', t1 / t2) t0 = time.time() # x_cpu_TV = nfft.solve(y, 'L1TVOLS',maxiter=maxiter, rho = 2) t1 = time.time() - t0 t0 = time.time() # x_cuda_TV = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) # print('acceleration of TV=', t1/t2 ) # try: for bb in range(0, batch): matplotlib.pyplot.subplot(2, batch, 1 + bb) matplotlib.pyplot.imshow(x_cpu_cg[..., bb].real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('CG_cpu_coil_' + str(bb)) matplotlib.pyplot.subplot(2, batch, 1 + batch + bb) matplotlib.pyplot.imshow(x_cuda_cg.get()[..., bb].real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('CG_hsa_coil_' + str(bb)) # matplotlib.pyplot.subplot(2, 2, 3) # matplotlib.pyplot.imshow( x_cpu_TV.real, cmap= matplotlib.cm.gray) # matplotlib.pyplot.title('TV_cpu')# x_cuda_TV = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2) # matplotlib.pyplot.subplot(2, 2, 4) # matplotlib.pyplot.imshow(x_cuda_TV.get().real, cmap= matplotlib.cm.gray) # matplotlib.pyplot.title('TV_cuda') matplotlib.pyplot.show() # except: # print('no matplotlib') NufftObj.release() del NufftObj
def test_init(): # cm = matplotlib.cm.gray # load example image import pkg_resources DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import numpy # import matplotlib.pyplot import scipy image = scipy.misc.ascent()[::2,::2] image=image.astype(numpy.float)/numpy.max(image[...]) Nd = (256, 256) # image space size Kd = (512, 512) # k-space size Jd = (6,6) # interpolation size # load k-space points om = numpy.load(DATA_PATH+'om2D.npz')['arr_0'] nfft = NUFFT_cpu() # CPU nfft.plan(om, Nd, Kd, Jd) try: NufftObj = NUFFT_hsa('cuda',0,0) except: NufftObj = NUFFT_hsa('ocl',0,0) # NufftObj2 = NUFFT_hsa('cuda',0,0) NufftObj.debug = 1 NufftObj.plan(om, Nd, Kd, Jd, radix=2) # NufftObj2.plan(om, Nd, Kd, Jd) # NufftObj.offload(API = 'cuda', platform_number = 0, device_number = 0) # NufftObj2.offload(API = 'cuda', platform_number = 0, device_number = 0) # NufftObj2.offload('cuda') # NufftObj.offload(API = 'cuda', platform_number = 0, device_number = 0) # print('api=', NufftObj.thr.api_name()) # NufftObj.offload(API = 'ocl', platform_number = 0, device_number = 0) y = nfft.k2y(nfft.xx2k(nfft.x2xx(image))) NufftObj.x_Nd = NufftObj.thr.to_device( image.astype(dtype)) gx = NufftObj.thr.copy_array(NufftObj.x_Nd) print('x close? = ', numpy.allclose(image, gx.get() , atol=1e-4)) gxx = NufftObj.x2xx(gx) print('xx close? = ', numpy.allclose(nfft.x2xx(image), gxx.get() , atol=1e-4)) gk = NufftObj.xx2k(gxx) k = nfft.xx2k(nfft.x2xx(image)) print('k close? = ', numpy.allclose(nfft.xx2k(nfft.x2xx(image)), gk.get(), atol=1e-3*numpy.linalg.norm(k))) gy = NufftObj.k2y(gk) k2 = NufftObj.y2k(gy) print('y close? = ', numpy.allclose(y, gy.get() , atol=1e-3*numpy.linalg.norm(y)), numpy.linalg.norm((y - gy.get())/numpy.linalg.norm(y))) y2 = y print('k2 close? = ', numpy.allclose(nfft.y2k(y2), k2.get(), atol=1e-3*numpy.linalg.norm(nfft.y2k(y2)) ), numpy.linalg.norm(( nfft.y2k(y2)- k2.get())/numpy.linalg.norm(nfft.y2k(y2)))) gxx2 = NufftObj.k2xx(k2) # print('xx close? = ', numpy.allclose(nfft.k2xx(nfft.y2k(y2)), NufftObj.xx_Nd.get(queue=NufftObj.queue, async=False) , atol=0.1)) gx2 = NufftObj.xx2x(gxx2) print('x close? = ', numpy.allclose(nfft.adjoint(y2), gx2.get() , atol=1e-3*numpy.linalg.norm(nfft.adjoint(y2)))) image3 = gx2.get() import time t0 = time.time() # k = nfft.xx2k(nfft.x2xx(image)) for pp in range(0,50): # y = nfft.k2y(nfft.xx2k(nfft.x2xx(image))) y = nfft.forward(image) # y = nfft.k2y(k) # k = nfft.y2k(y) # x = nfft.adjoint(y) # y = nfft.forward(image) # y2 = NufftObj.y.get( NufftObj.queue, async=False) t_cpu = (time.time() - t0)/50.0 print(t_cpu) # del nfft gy2=NufftObj.forward(gx) # gk = NufftObj.xx2k(NufftObj.x2xx(gx)) t0= time.time() for pp in range(0,20): # pass gy2 = NufftObj.forward(gx) # gy2 = NufftObj.k2y(gk) # gx2 = NufftObj.adjoint(gy2) # gk2 = NufftObj.y2k(gy2) # del gy2 # c = gx2.get() # gy=NufftObj.forward(gx) NufftObj.thr.synchronize() t_cl = (time.time() - t0)/20 print(t_cl) print('gy close? = ', numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y)*1e-3)) print("acceleration=", t_cpu/t_cl) maxiter =100 import time t0= time.time() # x2 = nfft.solve(y2, 'cg',maxiter=maxiter) x2 = nfft.solve(y2, 'L1TVOLS',maxiter=maxiter, rho = 2) t1 = time.time()-t0 # gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2)) t0= time.time() # x = NufftObj.solve(gy,'cg', maxiter=maxiter) x = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) print('acceleration=', t1/t2 ) # k = x.get() # x = nfft.k2xx(k)/nfft.st['sn'] # return try: import matplotlib.pyplot matplotlib.pyplot.subplot(1, 2, 1) matplotlib.pyplot.imshow( x.get().real, cmap= matplotlib.cm.gray, vmin = 0, vmax = 1) matplotlib.pyplot.title("HSA reconstruction") matplotlib.pyplot.subplot(1, 2,2) matplotlib.pyplot.imshow(x2.real, cmap= matplotlib.cm.gray) matplotlib.pyplot.title("CPU reconstruction") matplotlib.pyplot.show(block = False) matplotlib.pyplot.pause(3) matplotlib.pyplot.close() # del NufftObj.thr # del NufftObj except: print("no graphics")