def run(self, x, cpu_core): """ In this method, the NUFFT_hsa are created and executed on a fixed CPU core. """ pid= os.getpid() print('pid=', pid) os.system("taskset -p -c %d %d" % (cpu_core, pid)) """ Control the CPU affinity. Otherwise the process on one core can be switched to another core. """ # create NUFFT NUFFT = NUFFT_hsa(self.API, self.device_number,0) # plan the NUFFT NUFFT.plan(self.om, self.Nd, self.Kd, self.Jd) # send the image to device gx = NUFFT.to_device(x) # carry out 10000 forward transform for pp in range(0, 100): gy = NUFFT.forward(gx) # return the object return gy.get()
def test_cuda(): import numpy import matplotlib.pyplot # load example image import pkg_resources ## Define the source of data DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import scipy image = scipy.misc.ascent() image = scipy.misc.imresize(image, (256, 256)) image = image.astype(numpy.float) / numpy.max(image[...]) Nd = (256, 256) # image space size Kd = (512, 512) # k-space size Jd = (6, 6) # interpolation size # load k-space points as M * 2 array om = numpy.load(DATA_PATH + 'om2D.npz')['arr_0'] # Show the shape of om print('the shape of om = ', om.shape) # initiating NUFFT_cpu object nfft = NUFFT_cpu() # CPU NUFFT class # Plan the nfft object nfft.plan(om, Nd, Kd, Jd) # initiating NUFFT_hsa object NufftObj = NUFFT_hsa('cuda', 0, 0) # Plan the NufftObj (similar to NUFFT_cpu) NufftObj.plan(om, Nd, Kd, Jd) import time t0 = time.time() for pp in range(0, 10): y = nfft.forward(image) t_cpu = (time.time() - t0) / 10.0 ## Moving image to gpu ## gx is an gpu array, dtype = complex64 gx = NufftObj.to_device(image) t0 = time.time() for pp in range(0, 100): gy = NufftObj.forward(gx) t_cu = (time.time() - t0) / 100 print('t_cpu = ', t_cpu) print('t_cuda =, ', t_cu) print('gy close? = ', numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y) * 1e-3)) print("acceleration=", t_cpu / t_cu) maxiter = 100 import time t0 = time.time() x_cpu_cg = nfft.solve(y, 'cg', maxiter=maxiter) # x2 = nfft.solve(y2, 'L1TVLAD',maxiter=maxiter, rho = 2) t1 = time.time() - t0 # gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2)) t0 = time.time() x_cuda_cg = NufftObj.solve(gy, 'cg', maxiter=maxiter) # x = NufftObj.solve(gy,'L1TVLAD', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) print('acceleration of cg=', t1 / t2) t0 = time.time() x_cpu_TV = nfft.solve(y, 'L1TVOLS', maxiter=maxiter, rho=2) t1 = time.time() - t0 t0 = time.time() x_cuda_TV = NufftObj.solve(gy, 'L1TVOLS', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) print('acceleration of TV=', t1 / t2) matplotlib.pyplot.subplot(2, 2, 1) matplotlib.pyplot.imshow(x_cpu_cg.real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('CG_cpu') matplotlib.pyplot.subplot(2, 2, 2) matplotlib.pyplot.imshow(x_cuda_cg.get().real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('CG_cuda') matplotlib.pyplot.subplot(2, 2, 3) matplotlib.pyplot.imshow(x_cpu_TV.real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('TV_cpu') matplotlib.pyplot.subplot(2, 2, 4) matplotlib.pyplot.imshow(x_cuda_TV.get().real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('TV_cuda') matplotlib.pyplot.show() NufftObj.release() del NufftObj
def test_opencl_multicoils(): import numpy import matplotlib.pyplot # load example image import pkg_resources ## Define the source of data DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/') # PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt') import scipy image = scipy.misc.ascent()[::2, ::2] image = image.astype(numpy.float) / numpy.max(image[...]) Nd = (256, 256) # image space size Kd = (512, 512) # k-space size Jd = (6, 6) # interpolation size # load k-space points as M * 2 array om = numpy.load(DATA_PATH + 'om2D.npz')['arr_0'] # Show the shape of om print('the shape of om = ', om.shape) batch = 8 # initiating NUFFT_cpu object nfft = NUFFT_cpu() # CPU NUFFT class # Plan the nfft object nfft.plan(om, Nd, Kd, Jd, batch=batch) # initiating NUFFT_hsa object try: NufftObj = NUFFT_hsa('cuda', 0, 0) except: try: NufftObj = NUFFT_hsa('ocl', 1, 0) except: NufftObj = NUFFT_hsa('ocl', 0, 0) # Plan the NufftObj (similar to NUFFT_cpu) NufftObj.plan(om, Nd, Kd, Jd, batch=batch, radix=2) coil_sense = numpy.ones(Nd + (batch, ), dtype=numpy.complex64) for cc in range(0, batch, 2): coil_sense[int(256 / batch) * cc:int(256 / batch) * (cc + 1), :, cc].real *= 0.1 coil_sense[:, int(256 / batch) * cc:int(256 / batch) * (cc + 1), cc].imag *= -0.1 NufftObj.set_sense(coil_sense) nfft.set_sense(coil_sense) y = nfft.forward_one2many(image) import time t0 = time.time() for pp in range(0, 2): xx = nfft.adjoint_many2one(y) t_cpu = (time.time() - t0) / 2 ## Moving image to gpu ## gx is an gpu array, dtype = complex64 gx = NufftObj.to_device(image) gy = NufftObj.forward_one2many(gx) t0 = time.time() for pp in range(0, 10): gxx = NufftObj.adjoint_many2one(gy) t_cu = (time.time() - t0) / 10 print(y.shape, gy.get().shape) print('t_cpu = ', t_cpu) print('t_cuda =, ', t_cu) print('gy close? = ', numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y) * 1e-6)) print('gy error = ', numpy.linalg.norm(y - gy.get()) / numpy.linalg.norm(y)) print('gxx close? = ', numpy.allclose(xx, gxx.get(), atol=numpy.linalg.norm(xx) * 1e-6)) print('gxx error = ', numpy.linalg.norm(xx - gxx.get()) / numpy.linalg.norm(xx)) # for bb in range(0, batch): matplotlib.pyplot.subplot(1, 2, 1) matplotlib.pyplot.imshow(xx[...].real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('Adjoint_cpu_coil') matplotlib.pyplot.subplot(1, 2, 2) matplotlib.pyplot.imshow(gxx.get()[...].real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('Adjoint_hsa_coil') # matplotlib.pyplot.subplot(2, 2, 3) # matplotlib.pyplot.imshow( x_cpu_TV.real, cmap= matplotlib.cm.gray) # matplotlib.pyplot.title('TV_cpu')# x_cuda_TV = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2) # matplotlib.pyplot.subplot(2, 2, 4) # matplotlib.pyplot.imshow(x_cuda_TV.get().real, cmap= matplotlib.cm.gray) # matplotlib.pyplot.title('TV_cuda') matplotlib.pyplot.show(block=False) matplotlib.pyplot.pause(1) matplotlib.pyplot.close() print("acceleration=", t_cpu / t_cu) maxiter = 100 import time t0 = time.time() x_cpu_cg = nfft.solve(y, 'cg', maxiter=maxiter) # x2 = nfft.solve(y2, 'L1TVLAD',maxiter=maxiter, rho = 2) t1 = time.time() - t0 # gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2)) t0 = time.time() x_cuda_cg = NufftObj.solve(gy, 'cg', maxiter=maxiter) # x = NufftObj.solve(gy,'L1TVLAD', maxiter=maxiter, rho=2) print('shape of cg = ', x_cuda_cg.get().shape, x_cpu_cg.shape) t2 = time.time() - t0 print(t1, t2) print('acceleration of cg=', t1 / t2) t0 = time.time() # x_cpu_TV = nfft.solve(y, 'L1TVOLS',maxiter=maxiter, rho = 2) t1 = time.time() - t0 t0 = time.time() # x_cuda_TV = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2) t2 = time.time() - t0 print(t1, t2) # print('acceleration of TV=', t1/t2 ) # try: for bb in range(0, batch): matplotlib.pyplot.subplot(2, batch, 1 + bb) matplotlib.pyplot.imshow(x_cpu_cg[..., bb].real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('CG_cpu_coil_' + str(bb)) matplotlib.pyplot.subplot(2, batch, 1 + batch + bb) matplotlib.pyplot.imshow(x_cuda_cg.get()[..., bb].real, cmap=matplotlib.cm.gray) matplotlib.pyplot.title('CG_hsa_coil_' + str(bb)) # matplotlib.pyplot.subplot(2, 2, 3) # matplotlib.pyplot.imshow( x_cpu_TV.real, cmap= matplotlib.cm.gray) # matplotlib.pyplot.title('TV_cpu')# x_cuda_TV = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2) # matplotlib.pyplot.subplot(2, 2, 4) # matplotlib.pyplot.imshow(x_cuda_TV.get().real, cmap= matplotlib.cm.gray) # matplotlib.pyplot.title('TV_cuda') matplotlib.pyplot.show() # except: # print('no matplotlib') NufftObj.release() del NufftObj