def test_surprise_shutdown_remove_core_with_data(pyocf_ctx):
    io_offset = mngmt_op_surprise_shutdown_test_io_offset
    core_device = RamVolume(S.from_MiB(10))
    core = Core.using_device(core_device, name="core1")

    def prepare_func(cache):
        cache.add_core(core)
        vol = CoreVolume(core, open=True)
        ocf_write(vol, cache.get_default_queue(), 0xAA, io_offset)

    def tested_func(cache):
        cache.flush()
        cache.remove_core(core)

    def check_func(cache, error_triggered):
        stats = cache.get_stats()
        if stats["conf"]["core_count"] == 0:
            assert core_device.get_bytes()[io_offset] == 0xAA
        else:
            core = cache.get_core_by_name("core1")
            vol = CoreVolume(core, open=True)
            assert ocf_read(vol, cache.get_default_queue(), io_offset) == 0xAA

    mngmt_op_surprise_shutdown_test(pyocf_ctx, tested_func, prepare_func, check_func)
Example #2
0
def test_change_to_nhit_and_back_io_in_flight(pyocf_ctx):
    """
    Try switching promotion policy during io, no io's should return with error

    1. Create core/cache pair with promotion policy ALWAYS
    2. Issue IOs without waiting for completion
    3. Change promotion policy to NHIT
    4. Wait for IO completions
        * no IOs should fail
    5. Issue IOs without waiting for completion
    6. Change promotion policy to ALWAYS
    7. Wait for IO completions
        * no IOs should fail
    """

    # Step 1
    cache_device = Volume(Size.from_MiB(30))
    core_device = Volume(Size.from_MiB(30))

    cache = Cache.start_on_device(cache_device)
    core = Core.using_device(core_device)

    cache.add_core(core)

    # Step 2
    completions = []
    for i in range(2000):
        comp = OcfCompletion([("error", c_int)])
        write_data = Data(4096)
        io = core.new_io(cache.get_default_queue(), i * 4096, write_data.size,
                         IoDir.WRITE, 0, 0)
        completions += [comp]
        io.set_data(write_data)
        io.callback = comp.callback
        io.submit()

    # Step 3
    cache.set_promotion_policy(PromotionPolicy.NHIT)

    # Step 4
    for c in completions:
        c.wait()
        assert not c.results[
            "error"], "No IO's should fail when turning NHIT policy on"

    # Step 5
    completions = []
    for i in range(2000):
        comp = OcfCompletion([("error", c_int)])
        write_data = Data(4096)
        io = core.new_io(cache.get_default_queue(), i * 4096, write_data.size,
                         IoDir.WRITE, 0, 0)
        completions += [comp]
        io.set_data(write_data)
        io.callback = comp.callback
        io.submit()

    # Step 6
    cache.set_promotion_policy(PromotionPolicy.ALWAYS)

    # Step 7
    for c in completions:
        c.wait()
        assert not c.results[
            "error"], "No IO's should fail when turning NHIT policy off"
Example #3
0
def test_promoted_after_hits_various_thresholds(pyocf_ctx, insertion_threshold,
                                                fill_percentage):
    """
    Check promotion policy behavior with various set thresholds

    1. Create core/cache pair with promotion policy NHIT
    2. Set TRIGGER_THRESHOLD/INSERTION_THRESHOLD to predefined values
    3. Fill cache from the beggining until occupancy reaches TRIGGER_THRESHOLD%
    4. Issue INSERTION_THRESHOLD - 1 requests to core line not inserted to cache
        * occupancy should not change
    5. Issue one request to LBA from step 4
        * occupancy should rise by one cache line
    """

    # Step 1
    cache_device = Volume(Size.from_MiB(30))
    core_device = Volume(Size.from_MiB(30))

    cache = Cache.start_on_device(cache_device,
                                  promotion_policy=PromotionPolicy.NHIT)
    core = Core.using_device(core_device)
    cache.add_core(core)

    # Step 2
    cache.set_promotion_policy_param(PromotionPolicy.NHIT,
                                     NhitParams.TRIGGER_THRESHOLD,
                                     fill_percentage)
    cache.set_promotion_policy_param(PromotionPolicy.NHIT,
                                     NhitParams.INSERTION_THRESHOLD,
                                     insertion_threshold)
    # Step 3
    fill_cache(cache, fill_percentage / 100)

    stats = cache.get_stats()
    cache_lines = stats["conf"]["size"]
    assert stats["usage"]["occupancy"]["fraction"] // 10 == fill_percentage * 10
    filled_occupancy = stats["usage"]["occupancy"]["value"]

    # Step 4
    last_core_line = int(core_device.size) - cache_lines.line_size
    completions = []
    for i in range(insertion_threshold - 1):
        comp = OcfCompletion([("error", c_int)])
        write_data = Data(cache_lines.line_size)
        io = core.new_io(
            cache.get_default_queue(),
            last_core_line,
            write_data.size,
            IoDir.WRITE,
            0,
            0,
        )
        completions += [comp]
        io.set_data(write_data)
        io.callback = comp.callback
        io.submit()

    for c in completions:
        c.wait()

    stats = cache.get_stats()
    threshold_reached_occupancy = stats["usage"]["occupancy"]["value"]
    assert threshold_reached_occupancy == filled_occupancy, (
        "No insertion should occur while NHIT is triggered and core line ",
        "didn't reach INSERTION_THRESHOLD",
    )

    # Step 5
    comp = OcfCompletion([("error", c_int)])
    write_data = Data(cache_lines.line_size)
    io = core.new_io(cache.get_default_queue(), last_core_line,
                     write_data.size, IoDir.WRITE, 0, 0)
    io.set_data(write_data)
    io.callback = comp.callback
    io.submit()

    comp.wait()

    assert (threshold_reached_occupancy ==
            cache.get_stats()["usage"]["occupancy"]["value"] -
            1), "Previous request should be promoted and occupancy should rise"
Example #4
0
def test_secure_erase_simple_io_read_misses(cache_mode):
    """
        Perform simple IO which will trigger read misses, which in turn should
        trigger backfill. Track all the data locked/copied for backfill and make
        sure OCF calls secure erase and unlock on them.
    """
    ctx = OcfCtx(
        OcfLib.getInstance(),
        b"Security tests ctx",
        DefaultLogger(LogLevel.WARN),
        DataCopyTracer,
        Cleaner,
    )

    ctx.register_volume_type(RamVolume)

    cache_device = RamVolume(S.from_MiB(50))
    cache = Cache.start_on_device(cache_device, cache_mode=cache_mode)

    core_device = RamVolume(S.from_MiB(50))
    core = Core.using_device(core_device)
    cache.add_core(core)
    vol = CoreVolume(core, open=True)
    queue = cache.get_default_queue()

    write_data = DataCopyTracer(S.from_sector(1))
    io = vol.new_io(
        queue,
        S.from_sector(1).B,
        write_data.size,
        IoDir.WRITE,
        0,
        0,
    )
    io.set_data(write_data)

    cmpl = OcfCompletion([("err", c_int)])
    io.callback = cmpl.callback
    io.submit()
    cmpl.wait()

    cmpls = []
    for i in range(100):
        read_data = DataCopyTracer(S.from_sector(1))
        io = vol.new_io(
            queue,
            i * S.from_sector(1).B,
            read_data.size,
            IoDir.READ,
            0,
            0,
        )
        io.set_data(read_data)

        cmpl = OcfCompletion([("err", c_int)])
        io.callback = cmpl.callback
        cmpls.append(cmpl)
        io.submit()

    for c in cmpls:
        c.wait()

    write_data = DataCopyTracer.from_string("TEST DATA" * 100)
    io = vol.new_io(queue, S.from_sector(1), write_data.size, IoDir.WRITE, 0,
                    0)
    io.set_data(write_data)

    cmpl = OcfCompletion([("err", c_int)])
    io.callback = cmpl.callback
    io.submit()
    cmpl.wait()

    stats = cache.get_stats()

    ctx.exit()

    assert (len(DataCopyTracer.needs_erase) == 0
            ), "Not all locked Data instances were secure erased!"
    assert (len(DataCopyTracer.locked_instances) == 0
            ), "Not all locked Data instances were unlocked!"
    assert (stats["req"]["rd_partial_misses"]["value"] +
            stats["req"]["rd_full_misses"]["value"]) > 0
Example #5
0
def test_wo_read_data_consistency(pyocf_ctx):
    # start sector for each region
    region_start = [0, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
    # possible start sectors for test iteration
    start_sec = [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
    # possible end sectors for test iteration
    end_sec = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 23]

    CACHELINE_COUNT = 3
    CACHELINE_SIZE = 4096
    SECTOR_SIZE = Size.from_sector(1).B
    CLS = CACHELINE_SIZE // SECTOR_SIZE
    WORKSET_SIZE = CACHELINE_COUNT * CACHELINE_SIZE
    WORKSET_OFFSET = 1024 * CACHELINE_SIZE
    SECTOR_COUNT = int(WORKSET_SIZE / SECTOR_SIZE)
    ITRATION_COUNT = 200

    # fixed test cases
    fixed_combinations = [
        [I, I, D, D, D, D, D, D, D, D, I, I],
        [I, I, C, C, C, C, C, C, C, C, I, I],
        [I, I, D, D, D, I, D, D, D, D, I, I],
        [I, I, D, D, D, I, I, D, D, D, I, I],
        [I, I, I, I, D, I, I, D, C, D, I, I],
        [I, D, D, D, D, D, D, D, D, D, D, I],
        [C, C, I, D, D, I, D, D, D, D, D, I],
        [D, D, D, D, D, D, D, D, D, D, D, I],
    ]

    data = {}
    # memset n-th sector of core data with n
    data[SectorStatus.INVALID] = bytes(
        [x // SECTOR_SIZE for x in range(WORKSET_SIZE)])
    # memset n-th sector of clean data with n + 100
    data[SectorStatus.CLEAN] = bytes(
        [100 + x // SECTOR_SIZE for x in range(WORKSET_SIZE)])
    # memset n-th sector of dirty data with n + 200
    data[SectorStatus.DIRTY] = bytes(
        [200 + x // SECTOR_SIZE for x in range(WORKSET_SIZE)])

    result_b = bytes(WORKSET_SIZE)

    cache_device = Volume(Size.from_MiB(30))
    core_device = Volume(Size.from_MiB(30))

    cache = Cache.start_on_device(cache_device, cache_mode=CacheMode.WO)
    core = Core.using_device(core_device)

    cache.add_core(core)

    insert_order = [x for x in range(CACHELINE_COUNT)]

    # generate regions status combinations and shuffle it
    combinations = []
    state_combinations = product(SectorStatus, repeat=len(region_start))
    for S in state_combinations:
        combinations.append(S)
    random.shuffle(combinations)

    # add fixed test cases at the beginning
    combinations = fixed_combinations + combinations

    for S in combinations[:ITRATION_COUNT]:
        # write data to core and invalidate all CL
        cache.change_cache_mode(cache_mode=CacheMode.PT)
        io_to_exp_obj(core, WORKSET_OFFSET, len(data[SectorStatus.INVALID]),
                      data[SectorStatus.INVALID], 0, IoDir.WRITE)

        # randomize cacheline insertion order to exercise different
        # paths with regard to cache I/O physical addresses continuousness
        random.shuffle(insert_order)
        sectors = [
            insert_order[i // CLS] * CLS + (i % CLS)
            for i in range(SECTOR_COUNT)
        ]

        # insert clean sectors - iterate over cachelines in @insert_order order
        cache.change_cache_mode(cache_mode=CacheMode.WT)
        for sec in sectors:
            region = sector_to_region(sec, region_start)
            if S[region] != SectorStatus.INVALID:
                io_to_exp_obj(core, WORKSET_OFFSET + SECTOR_SIZE * sec,
                              SECTOR_SIZE, data[SectorStatus.CLEAN],
                              sec * SECTOR_SIZE, IoDir.WRITE)

        # write dirty sectors
        cache.change_cache_mode(cache_mode=CacheMode.WO)
        for sec in sectors:
            region = sector_to_region(sec, region_start)
            if S[region] == SectorStatus.DIRTY:
                io_to_exp_obj(core, WORKSET_OFFSET + SECTOR_SIZE * sec,
                              SECTOR_SIZE, data[SectorStatus.DIRTY],
                              sec * SECTOR_SIZE, IoDir.WRITE)

        core_device.reset_stats()

        for s in start_sec:
            for e in end_sec:
                if s > e:
                    continue

                # issue WO read
                START = s * SECTOR_SIZE
                END = e * SECTOR_SIZE
                size = (e - s + 1) * SECTOR_SIZE
                assert 0 == io_to_exp_obj(
                    core, WORKSET_OFFSET + START, size, result_b, START,
                    IoDir.READ
                ), "error reading in WO mode: S={}, start={}, end={}, insert_order={}".format(
                    S, s, e, insert_order)

                # verify read data
                for sec in range(s, e + 1):
                    # just check the first byte of sector
                    region = sector_to_region(sec, region_start)
                    check_byte = sec * SECTOR_SIZE
                    assert (
                        result_b[check_byte] == data[S[region]][check_byte]
                    ), "unexpected data in sector {}, S={}, s={}, e={}, insert_order={}\n".format(
                        sec, S, s, e, insert_order)

                # WO is not supposed to clean dirty data
                assert (
                    core_device.get_stats()[IoDir.WRITE] == 0
                ), "unexpected write to core device, S={}, s={}, e={}, insert_order = {}\n".format(
                    S, s, e, insert_order)
Example #6
0
def test_evict_overflown_pinned(pyocf_ctx, cls: CacheLineSize):
    """ Verify if overflown pinned ioclass is evicted """
    cache_device = Volume(Size.from_MiB(35))
    core_device = Volume(Size.from_MiB(100))
    cache = Cache.start_on_device(cache_device,
                                  cache_mode=CacheMode.WT,
                                  cache_line_size=cls)
    core = Core.using_device(core_device)
    cache.add_core(core)

    test_ioclass_id = 1
    pinned_ioclass_id = 2
    pinned_ioclass_max_occupancy = 10

    cache.configure_partition(
        part_id=test_ioclass_id,
        name="default_ioclass",
        max_size=100,
        priority=1,
    )
    cache.configure_partition(
        part_id=pinned_ioclass_id,
        name="pinned_ioclass",
        max_size=pinned_ioclass_max_occupancy,
        priority=-1,
    )

    cache.set_seq_cut_off_policy(SeqCutOffPolicy.NEVER)

    cache_size = cache.get_stats()["conf"]["size"]

    data = Data(4096)

    # Populate cache with data
    for i in range(cache_size.blocks_4k):
        send_io(core, data, i * 4096, test_ioclass_id)

    part_current_size = CacheLines(
        cache.get_partition_info(part_id=test_ioclass_id)["_curr_size"], cls)
    assert isclose(
        part_current_size.blocks_4k,
        cache_size.blocks_4k,
        abs_tol=Size(
            cls).blocks_4k), "Failed to populate the default partition"

    # Repart - force overflow of second partition occupancy limit
    pinned_double_size = ceil(
        (cache_size.blocks_4k * pinned_ioclass_max_occupancy * 2) / 100)
    for i in range(pinned_double_size):
        send_io(core, data, i * 4096, pinned_ioclass_id)

    part_current_size = CacheLines(
        cache.get_partition_info(part_id=pinned_ioclass_id)["_curr_size"], cls)
    assert isclose(
        part_current_size.blocks_4k,
        pinned_double_size,
        abs_tol=Size(cls).blocks_4k
    ), "Occupancy of pinned ioclass doesn't match expected value"

    # Trigger IO to the default ioclass - force eviction from overlown ioclass
    for i in range(cache_size.blocks_4k):
        send_io(core, data, (cache_size.blocks_4k + i) * 4096, test_ioclass_id)

    part_current_size = CacheLines(
        cache.get_partition_info(part_id=pinned_ioclass_id)["_curr_size"], cls)
    assert isclose(
        part_current_size.blocks_4k,
        ceil(cache_size.blocks_4k * 0.1),
        abs_tol=Size(cls).blocks_4k,
    ), "Overflown part has not been evicted"
Example #7
0
def test_seq_cutoff_max_streams(pyocf_ctx):
    """
    Test number of sequential streams tracked by OCF.

    MAX_STREAMS is the maximal amount of streams which OCF is able to track.

    1. Issue MAX_STREAMS requests (write or reads) to cache, 1 sector shorter than
        seq cutoff threshold
    2. Issue MAX_STREAMS-1 requests continuing the streams from 1. to surpass the threshold and
        check if cutoff was triggered (requests used PT engine)
    3. Issue single request to stream not used in 1. or 2. and check if it's been handled by cache
    4. Issue single request to stream least recently used in 1. and 2. and check if it's been
        handled by cache. It should no longer be tracked by OCF, because of request in step 3. which
        overflowed the OCF handling structure)
    """
    MAX_STREAMS = 256
    TEST_STREAMS = MAX_STREAMS + 1  # Number of streams used by test - one more than OCF can track
    core_size = Size.from_MiB(200)
    threshold = Size.from_KiB(4)

    streams = [
        Stream(
            last=Size((stream_no * int(core_size) // TEST_STREAMS),
                      sector_aligned=True),
            length=Size(0),
            direction=choice(list(IoDir)),
        ) for stream_no in range(TEST_STREAMS)
    ]  # Generate MAX_STREAMS + 1 non-overlapping streams

    # Remove one stream - this is the one we are going to use to overflow OCF tracking structure
    # in step 3
    non_active_stream = choice(streams)
    streams.remove(non_active_stream)

    cache = Cache.start_on_device(Volume(Size.from_MiB(200)),
                                  cache_mode=CacheMode.WT)
    core = Core.using_device(Volume(core_size))

    cache.add_core(core)

    cache.set_seq_cut_off_policy(SeqCutOffPolicy.ALWAYS)
    cache.set_seq_cut_off_threshold(threshold)

    # STEP 1
    shuffle(streams)
    io_size = threshold - Size.from_sector(1)
    io_to_streams(core, streams, io_size)

    stats = cache.get_stats()
    assert (stats["req"]["serviced"]["value"] == stats["req"]["total"]["value"]
            == len(streams)), "All request should be serviced - no cutoff"

    old_serviced = len(streams)

    # STEP 2
    lru_stream = streams[0]
    streams.remove(lru_stream)

    shuffle(streams)
    io_to_streams(core, streams, Size.from_sector(1))

    stats = cache.get_stats()
    assert (
        stats["req"]["serviced"]["value"] == old_serviced
    ), "Serviced requests stat should not increase - cutoff engaged for all"
    assert stats["req"]["wr_pt"]["value"] + stats["req"]["rd_pt"][
        "value"] == len(
            streams
        ), "All streams should be handled in PT - cutoff engaged for all streams"

    # STEP 3
    io_to_streams(core, [non_active_stream], Size.from_sector(1))

    stats = cache.get_stats()
    assert (
        stats["req"]["serviced"]["value"] == old_serviced + 1
    ), "This request should be serviced by cache - no cutoff for inactive stream"

    # STEP 4
    io_to_streams(core, [lru_stream], Size.from_sector(1))

    stats = cache.get_stats()
    assert (
        stats["req"]["serviced"]["value"] == old_serviced + 2
    ), "This request should be serviced by cache - lru_stream should be no longer tracked"
Example #8
0
def test_read_data_consistency(pyocf_ctx, cacheline_size, cache_mode,
                               rand_seed):
    CACHELINE_COUNT = 9
    SECTOR_SIZE = Size.from_sector(1).B
    CLS = cacheline_size // SECTOR_SIZE
    WORKSET_SIZE = CACHELINE_COUNT * cacheline_size
    WORKSET_OFFSET = 128 * cacheline_size
    SECTOR_COUNT = int(WORKSET_SIZE / SECTOR_SIZE)
    ITRATION_COUNT = 50

    random.seed(rand_seed)

    # start sector for each region (positions of '*' on the above diagram)
    region_start = ([0, 3 * CLS, 4 * CLS - 1] +
                    [4 * CLS + i
                     for i in range(CLS)] + [5 * CLS, 5 * CLS + 1, 6 * CLS])
    num_regions = len(region_start)
    # possible IO start sectors for test iteration  (positions of '>' on the above diagram)
    start_sec = [0, CLS, 2 * CLS, 3 * CLS, 4 * CLS - 2, 4 * CLS - 1
                 ] + [4 * CLS + i for i in range(CLS)]
    # possible IO end sectors for test iteration (positions o '<' on the above diagram)
    end_sec = ([3 * CLS - 1] + [4 * CLS + i for i in range(CLS)] + [
        5 * CLS, 5 * CLS + 1, 6 * CLS - 1, 7 * CLS - 1, 8 * CLS - 1,
        9 * CLS - 1
    ])

    data = {}
    # memset n-th sector of core data with n << 2
    data[SectorStatus.INVALID] = bytes([
        get_byte(((x // SECTOR_SIZE) << 2) + 0, x % 4)
        for x in range(WORKSET_SIZE)
    ])
    # memset n-th sector of clean data with n << 2 + 1
    data[SectorStatus.CLEAN] = bytes([
        get_byte(((x // SECTOR_SIZE) << 2) + 1, x % 4)
        for x in range(WORKSET_SIZE)
    ])
    # memset n-th sector of dirty data with n << 2 + 2
    data[SectorStatus.DIRTY] = bytes([
        get_byte(((x // SECTOR_SIZE) << 2) + 2, x % 4)
        for x in range(WORKSET_SIZE)
    ])

    result_b = bytes(WORKSET_SIZE)

    cache_device = Volume(Size.from_MiB(30))
    core_device = Volume(Size.from_MiB(30))

    cache = Cache.start_on_device(cache_device,
                                  cache_mode=CacheMode.WO,
                                  cache_line_size=cacheline_size)
    core = Core.using_device(core_device)

    cache.add_core(core)

    insert_order = list(range(CACHELINE_COUNT))

    # set fixed generated sector statuses
    region_statuses = [
        [I, I, I] + [I for i in range(CLS)] + [I, I, I],
        [I, I, I] + [D for i in range(CLS)] + [I, I, I],
        [I, I, I] + [C for i in range(CLS)] + [I, I, I],
        [I, I, I] + [D for i in range(CLS // 2 - 1)] + [I] +
        [D for i in range(CLS // 2)] + [I, I, I],
        [I, I, I] + [D for i in range(CLS // 2 - 1)] + [I, I] +
        [D for i in range(CLS // 2 - 1)] + [I, I, I],
        [I, I, I] + [D for i in range(CLS // 2 - 2)] + [I, I, D, C] +
        [D for i in range(CLS // 2 - 2)] + [I, I, I],
        [I, I, D] + [D for i in range(CLS)] + [D, I, I],
        [I, I, D] + [D for i in range(CLS // 2 - 1)] + [I] +
        [D for i in range(CLS // 2)] + [D, I, I],
    ]

    # add randomly generated sector statuses
    for _ in range(ITRATION_COUNT - len(region_statuses)):
        region_statuses.append(
            [random.choice(list(SectorStatus)) for _ in range(num_regions)])

    # iterate over generated status combinations and perform the test
    for region_state in region_statuses:
        # write data to core and invalidate all CL and write data pattern to core
        cache.change_cache_mode(cache_mode=CacheMode.PT)
        io_to_exp_obj(
            core,
            WORKSET_OFFSET,
            len(data[SectorStatus.INVALID]),
            data[SectorStatus.INVALID],
            0,
            IoDir.WRITE,
        )

        # randomize cacheline insertion order to exercise different
        # paths with regard to cache I/O physical addresses continuousness
        random.shuffle(insert_order)
        sectors = [
            insert_order[i // CLS] * CLS + (i % CLS)
            for i in range(SECTOR_COUNT)
        ]

        # insert clean sectors - iterate over cachelines in @insert_order order
        cache.change_cache_mode(cache_mode=CacheMode.WT)
        for sec in sectors:
            region = sector_to_region(sec, region_start)
            if region_state[region] != SectorStatus.INVALID:
                io_to_exp_obj(
                    core,
                    WORKSET_OFFSET + SECTOR_SIZE * sec,
                    SECTOR_SIZE,
                    data[SectorStatus.CLEAN],
                    sec * SECTOR_SIZE,
                    IoDir.WRITE,
                )

        # write dirty sectors
        cache.change_cache_mode(cache_mode=CacheMode.WB)
        for sec in sectors:
            region = sector_to_region(sec, region_start)
            if region_state[region] == SectorStatus.DIRTY:
                io_to_exp_obj(
                    core,
                    WORKSET_OFFSET + SECTOR_SIZE * sec,
                    SECTOR_SIZE,
                    data[SectorStatus.DIRTY],
                    sec * SECTOR_SIZE,
                    IoDir.WRITE,
                )

        cache.change_cache_mode(cache_mode=cache_mode)

        core_device.reset_stats()

        # get up to 32 randomly selected pairs of (start,end) sectors
        # 32 is enough to cover all combinations for 4K and 8K cacheline size
        io_ranges = [(s, e) for s, e in product(start_sec, end_sec) if s < e]
        random.shuffle(io_ranges)
        io_ranges = io_ranges[:32]

        # run the test for each selected IO range for currently set up region status
        for start, end in io_ranges:
            print_test_case(region_start, region_state, start, end,
                            SECTOR_COUNT, CLS)

            # issue read
            START = start * SECTOR_SIZE
            END = end * SECTOR_SIZE
            size = (end - start + 1) * SECTOR_SIZE
            assert 0 == io_to_exp_obj(
                core, WORKSET_OFFSET + START, size, result_b, START, IoDir.READ
            ), "error reading in {}: region_state={}, start={}, end={}, insert_order={}".format(
                cache_mode, region_state, start, end, insert_order)

            # verify read data
            for sec in range(start, end + 1):
                # just check the first 32bits of sector (this is the size of fill pattern)
                region = sector_to_region(sec, region_start)
                start_byte = sec * SECTOR_SIZE
                expected_data = bytes_to_uint32(
                    data[region_state[region]][start_byte + 0],
                    data[region_state[region]][start_byte + 1],
                    data[region_state[region]][start_byte + 2],
                    data[region_state[region]][start_byte + 3],
                )
                actual_data = bytes_to_uint32(
                    result_b[start_byte + 0],
                    result_b[start_byte + 1],
                    result_b[start_byte + 2],
                    result_b[start_byte + 3],
                )

                assert (
                    actual_data == expected_data
                ), "unexpected data in sector {}, region_state={}, start={}, end={}, insert_order={}\n".format(
                    sec, region_state, start, end, insert_order)

            if cache_mode == CacheMode.WO:
                # WO is not supposed to clean dirty data
                assert (
                    core_device.get_stats()[IoDir.WRITE] == 0
                ), "unexpected write to core device, region_state={}, start={}, end={}, insert_order = {}\n".format(
                    region_state, start, end, insert_order)