Example #1
0
def save_simulations(domain, data_directory, methods, target_errors):
    """ Save simulation data for each method to file. """
    for method in methods:
        print("%s" % method)

        for target_error in target_errors:
            print("\t%.1e" % target_error)

            method_error = "-".join([method, "%.0e" % (target_error)])
            filename = os.path.join(data_directory, method_error)

            system = System(domain)
            system.add(
                Sech(peak_power=8.8e-3, width=(1.0 / 0.44), position=0.625))
            system.add(
                Sech(peak_power=8.8e-3,
                     width=(1.0 / 0.44),
                     position=0.375,
                     offset_nu=-0.8))
            system.add(
                Fibre("fibre",
                      length=400.0,
                      beta=[0.0, 0.0, -0.1, 0.0],
                      gamma=2.2,
                      method=method,
                      local_error=target_error))
            system.run()

            A_calc = system.fields['fibre']
            storage = system["fibre"].stepper.storage

            np.savez(filename, field=A_calc, ffts=storage.fft_total)
Example #2
0
def save_simulations(domain, data_directory, methods, target_errors):
    """ Save data for each method and target error to file. """
    for method in methods:
        print("%s" % method)

        for target_error in target_errors:
            print("\t%.1e" % target_error)

            method_error = "-".join([method, "%.0e" % (target_error)])
            filename = os.path.join(data_directory, method_error)

            system = System(domain)
            system.add(Sech(peak_power=4.0, width=1.0))
            system.add(
                Fibre("fibre",
                      length=0.5 * np.pi,
                      beta=[0.0, 0.0, -1.0, 0.0],
                      gamma=1.0,
                      method=method,
                      local_error=target_error))
            system.run()

            A_calc = system.fields['fibre']
            storage = system["fibre"].stepper.storage

            np.savez(filename, field=A_calc, ffts=storage.fft_total)
Example #3
0
def generate_overview_plots(domain):
    """ Generate single, map, and waterfall plots of the soliton collision. """
    system = System(domain)
    system.add(Sech(peak_power=8.8e-3, width=(1.0 / 0.44),
                    position=0.625))
    system.add(Sech(peak_power=8.8e-3, width=(1.0 / 0.44),
                    position=0.375, offset_nu=-0.8))
    system.add(Fibre(length=400.0, beta=[0.0, 0.0, -0.1, 0.0],
                     gamma=2.2, total_steps=400, traces=100,
                     method='ARK4IP', local_error=1e-6))
    system.run()

    storage = system['fibre'].stepper.storage
    (x, y, z) = storage.get_plot_data(reduced_range=(140.0, 360.0))

    # Split step_sizes (list of tuples) into separate lists;
    # distances and steps:
    (distances, steps) = list(zip(*storage.step_sizes))

    print(np.sum(steps))

    single_plot(distances, steps, labels["z"], "Step size, h (km)",
                filename="soliton_collision_steps")

    map_plot(x, y, z, labels["t"], labels["P_t"], labels["z"],
             filename="soliton_collision_map")

    waterfall_plot(x, y, z, labels["t"], labels["z"], labels["P_t"],
                   filename="soliton_collision_waterfall",
                   y_range=(0.0, 0.02))
Example #4
0
def generate_map_and_waterfall_plots(domain):
    """ Generate map and waterfall plots to visualise pulse propagation. """
    system = System(domain)
    system.add(Sech(peak_power=4.0, width=1.0))
    system.add(
        Fibre("fibre",
              length=0.5 * np.pi,
              beta=[0.0, 0.0, -1.0, 0.0],
              gamma=1.0,
              method="rk4ip",
              total_steps=1000,
              traces=50))
    system.run()

    storage = system['fibre'].stepper.storage
    (x, y, z) = storage.get_plot_data(reduced_range=(95.0, 105.0))

    map_plot(x,
             y,
             z,
             labels["t"],
             labels["P_t"],
             labels["z"],
             filename="soliton_map")

    waterfall_plot(x,
                   y,
                   z,
                   labels["t"],
                   labels["z"],
                   labels["P_t"],
                   filename="soliton_waterfall",
                   y_range=(0.0, 16.0))
Example #5
0
def generate_reference(domain, data_directory):
    """ Generate a reference field (to machine precision), used as A_true. """
    system = System(domain)
    system.add(Sech(peak_power=8.8e-3, width=(1.0 / 0.44),
                    position=0.125))
    system.add(Sech(peak_power=8.8e-3, width=(1.0 / 0.44),
                    position=-0.125, offset_nu=-0.8))
    system.add(Fibre("fibre", length=400.0, beta=[0.0, 0.0, -0.1, 0.0],
                     gamma=2.2, method="ark4ip", local_error=1e-14))
    system.run()

    A_true = system.field

    filename = os.path.join(data_directory, "reference_field")
    np.save(filename, A_true)
Example #6
0
def save_simulations(domain, data_directory, methods, steps):
    """ Save data for each method and step to file. """
    for method in methods:
        print "%s" % method

        for step in steps:
            print "\t%d" % step

            method_step = "-".join([method, str(step)])
            filename = os.path.join(data_directory, method_step)

            system = System(domain)
            system.add(Sech(peak_power=4.0, width=1.0))
            system.add(
                Fibre("fibre",
                      length=0.5 * np.pi,
                      beta=[0.0, 0.0, -1.0, 0.0],
                      gamma=1.0,
                      method=method,
                      total_steps=step))
            system.run()

            A_calc = system.fields['fibre']
            np.save(filename, A_calc)
Example #7
0
    # Compare simulations using Fibre and OpenclFibre modules.
    from pyofss import Domain, System, Gaussian, Fibre
    from pyofss import temporal_power, double_plot, labels

    import time

    TS = 4096
    GAMMA = 100.0
    STEPS = 800
    LENGTH = 0.1

    DOMAIN = Domain(bit_width=30.0, samples_per_bit=TS)

    SYS = System(DOMAIN)
    SYS.add(Gaussian("gaussian", peak_power=1.0, width=1.0))
    SYS.add(Fibre("fibre", beta=[0.0, 0.0, 0.0, 1.0], gamma=GAMMA,
                  length=LENGTH, total_steps=STEPS, method="RK4IP"))

    start = time.clock()
    SYS.run()
    stop = time.clock()
    NO_OCL_DURATION = (stop - start) / 1000.0
    NO_OCL_OUT = SYS.fields["fibre"]

    sys = System(DOMAIN)
    sys.add(Gaussian("gaussian", peak_power=1.0, width=1.0))
    sys.add(OpenclFibre(TS, dorf="float", length=LENGTH, total_steps=STEPS))

    start = time.clock()
    sys.run()
    stop = time.clock()
    OCL_DURATION = (stop - start) / 1000.0
Example #8
0
L_D = (width**2) / np.abs(beta_2)
length = 4.0 * L_D

N = 2.0
P_0 = 1.0
gamma = (N**2) / (L_D * P_0)

system = System(domain)
system.add(Sech(peak_power=P_0, width=width))
system.add(
    Fibre(length=length,
          gamma=gamma,
          beta=beta,
          rs_factor=T_R,
          raman_scattering=True,
          self_steepening=True,
          total_steps=200,
          traces=100,
          method='ARK4IP'))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z_temp) = storage.get_plot_data(False, (71.9, 314.9), True)
z_label = r"Fibre length, $z \, (cm)$"
z = z_temp * 1.0e5

map_plot(x,
         y,
         z,
         labels["nu"],
Example #9
0
import sys
from pyofss import Domain, System, Sech, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

system = System(Domain(bit_width=100.0, samples_per_bit=2048))

absolute_separation = 3.5
offset = absolute_separation / system.domain.bit_width

system.add(Sech(peak_power=1.0, width=1.0, position=0.5 - offset))
system.add(Sech(peak_power=1.1, width=1.0, position=0.5 + offset))

system.add(
    Fibre(length=90.0,
          beta=[0.0, 0.0, -1.0, 0.0],
          gamma=1.0,
          total_steps=200,
          traces=100,
          method='ARK4IP'))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z) = storage.get_plot_data(reduced_range=(40.0, 60.0))

map_plot(x,
         y,
         z,
         labels["t"],
         labels["P_t"],
         labels["z"],
         filename="5-16d_map")
Example #10
0
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import temporal_power, spectral_power, double_plot, labels

nu_0 = 193.1
nu_1 = 1.2 * nu_0

offset_nu = 0.2 * 193.1

system = System(Domain(bit_width=30.0, samples_per_bit=8192, channels=2))
system.add(Gaussian(width=1.0, peak_power=100.0, channel=0))
system.add(Gaussian(width=1.0, peak_power=1.0, channel=1, offset_nu=offset_nu))
system.add(
    Fibre('fibre',
          length=0.4,
          gamma=[1.0, 1.2],
          beta=[[0.0, 0.0, 1.0, 0.0], [0.0, 10.0, 1.0, 0.0]],
          centre_omega=(nu_to_omega(nu_0), nu_to_omega(nu_1)),
          sim_type='wdm',
          method='ARK4IP'))
system.run()

A_fs = system.fields['fibre']

P_t0 = temporal_power(A_fs[0])
P_t1 = temporal_power(A_fs[1])

double_plot(system.domain.t,
            P_t0,
            system.domain.t,
            P_t1,
            labels["t"],
Example #11
0
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import sys
import numpy as np
from pyofss import Domain, System, Sech, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

system = System(Domain(bit_width=100.0, samples_per_bit=4096))
system.add(Sech(peak_power=1.0, width=1.0))
system.add(
    Fibre(length=0.5 * np.pi,
          beta=[0.0, 0.0, -1.0, 0.0],
          gamma=9.0,
          traces=100,
          method='ARK4IP'))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z) = storage.get_plot_data(False, (191.1, 195.1), normalised=True)

map_plot(x,
         y,
         z,
         labels["nu"],
         labels["P_nu"],
         labels["z"],
         filename="5-6_map_nu")
Example #12
0
    a high zoom level.
    """
    from pyofss import Domain, System, Gaussian, Fibre
    from pyofss import temporal_power, multi_plot, labels

    domain = Domain(bit_width=200.0, samples_per_bit=2048)
    gaussian = Gaussian(peak_power=1.0, width=1.0)

    P_ts = []
    methods = ['ss_simple', 'ss_symmetric', 'ss_sym_rk4', 'rk4ip']

    for m in methods:
        sys = System(domain)
        sys.add(gaussian)
        sys.add(
            Fibre(length=5.0,
                  method=m,
                  total_steps=50,
                  beta=[0.0, 0.0, 0.0, 1.0],
                  gamma=1.0))
        sys.run()
        P_ts.append(temporal_power(sys.field))

    multi_plot(sys.domain.t,
               P_ts,
               methods,
               labels["t"],
               labels["P_t"],
               methods,
               x_range=(80.0, 140.0))
Example #13
0
import sys
from pyofss import Domain, System, Sech, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

domain = Domain(bit_width=0.4, samples_per_bit=4096)
s = 0.2
width = 1.0 / (s * domain.centre_omega)
beta_2 = width**2

system = System(domain)
system.add(Sech(peak_power=1.0, width=width))
system.add(
    Fibre(length=4.0,
          beta=[0.0, 0.0, -beta_2],
          gamma=4.0,
          self_steepening=True,
          traces=100,
          method='ARK4IP'))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z) = storage.get_plot_data(False, (0.0, 600.0), normalised=True)

map_plot(x,
         y,
         z,
         labels["nu"],
         labels["P_nu"],
         labels["z"],
         filename="5-19_map_nu")
Example #14
0
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import sys
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

system = System(Domain(bit_width=400.0, samples_per_bit=2048))
system.add(Gaussian(peak_power=1.0, width=30.0))
system.add(Fibre(length=90.0, beta=[0.0, 0.0, 1.0, 0.0], gamma=1.0,
                 traces=100))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z) = storage.get_plot_data(False, (192.6, 193.6), normalised=True)

map_plot(x,
         y,
         z,
         labels["nu"],
         labels["P_nu"],
         labels["z"],
         filename="4-11_map_nu")

waterfall_plot(x,
               y,
Example #15
0
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

from pyofss import Domain, System, Gaussian, Fibre
from pyofss import spectral_power, double_plot, labels

system = System(Domain(bit_width=200.0, samples_per_bit=4096, channels=2))
system.add(Gaussian(width=1.0, peak_power=1.0, channel=0))
system.add(Gaussian(width=1.0, peak_power=0.5, channel=1))
system.add(
    Fibre('fibre',
          length=40.0,
          gamma=[1.0, 1.2],
          beta=[[0.0, 0.0, 0.0, 0.0], [0.0, 0.125, 0.0, 0.0]],
          sim_type='wdm',
          total_steps=400,
          method='RK4IP'))
system.run()

A_fs = system.fields['fibre']

P_nu0 = spectral_power(A_fs[0], True)
P_nu1 = spectral_power(A_fs[1], True)

double_plot(system.domain.nu,
            P_nu0,
            system.domain.nu,
            P_nu1,
            labels["nu"],
Example #16
0
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

from pyofss import Domain, System, Gaussian, Fibre
from pyofss import temporal_power, spectral_power, double_plot, labels

system = System(Domain(bit_width=400.0, samples_per_bit=2048))
system.add(Gaussian(peak_power=1.0, width=30.0, C=-20.0))
system.add(
    Fibre(length=72.0, beta=[0.0, 0.0, 1.0, 0.0], gamma=1.0, total_steps=500))
system.run()

P_t = temporal_power(system.fields['fibre'])
P_nu_normalised = spectral_power(system.fields['fibre'], True)

double_plot(system.domain.t,
            P_t,
            system.domain.nu,
            P_nu_normalised,
            labels['t'],
            labels['P_t'],
            labels['nu'],
            labels['P_nu'],
            x_range=(50.0, 350.0),
            X_range=(192.6, 193.6),
Example #17
0
from pyofss.domain import nu_to_omega, lambda_to_nu
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

nu_0 = lambda_to_nu(1060.0)
nu_1 = lambda_to_nu(1550.0)

offset_nu = nu_0 - nu_1

system = System(Domain(bit_width=20.0, samples_per_bit=8192,
                       channels=2, centre_nu=nu_0))
system.add(Gaussian(width=1.0, peak_power=1000.0, channel=0))
system.add(Gaussian(width=1.0, peak_power=0.1, channel=1,
                    offset_nu=-offset_nu))
system.add(Fibre('fibre', length=0.05, gamma=[0.9, 0.615483871],
           beta=[[0.0, 0.0, 1.0, 0.0], [0.0, 0.0, -1.0, 0.0]],
           centre_omega=(nu_to_omega(nu_0), nu_to_omega(nu_1)),
           sim_type='wdm', method='ARK4IP', traces=100))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z_temp) = storage.get_plot_data(channel=0)
z_label = r"Fibre length, $z \, (m)$"
z = z_temp * 1.0e3

map_plot(x, y, z, labels["t"], labels["P_t"], z_label,
         filename="7-9_map_t_pump")

waterfall_plot(x, y, z, labels["t"], z_label, labels["P_t"],
               filename="7-9_waterfall_t_pump", y_range=(0.0, 1.0e3))

if (len(sys.argv) > 1) and (sys.argv[1] == 'animate'):
Example #18
0
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import sys
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

system = System(Domain(bit_width=600.0, samples_per_bit=4096))
system.add(Gaussian(peak_power=1.0, width=1.0, m=3))
system.add(
    Fibre(length=6.0,
          beta=[0.0, 0.0, 0.0, 1.0],
          traces=100,
          total_steps=200,
          method='RK4IP'))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z) = storage.get_plot_data(reduced_range=(-10.0, 40.0))

map_plot(x, y, z, labels["t"], labels["P_t"], labels["z"], filename="3-7_map")

waterfall_plot(x,
               y,
               z,
               labels["t"],
               labels["z"],
               labels["P_t"],
Example #19
0
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

from pyofss import Domain, System, Gaussian, Fibre
from pyofss import temporal_power, spectral_power, double_plot, labels

system = System(Domain(bit_width=200.0, samples_per_bit=2048))
system.add(Gaussian(peak_power=1.0, width=1.0))
system.add(
    Fibre(length=5.0, beta=[0.0, 0.0, 0.0, 1.0], gamma=1.0, total_steps=100))
system.run()

print system.domain

P_t = temporal_power(system.fields['fibre'])
P_nu_normalised = spectral_power(system.fields['fibre'], True)
P_lambda_normalised = P_nu_normalised

t = system.domain.t
nu = system.domain.nu
Lambda = system.domain.Lambda

double_plot(nu,
            P_nu_normalised,
            Lambda,
Example #20
0
"""

import sys
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

domain = Domain(bit_width=50.0, samples_per_bit=8192)

width = 1.0
tau_R = 0.03
T_R = tau_R * width

system = System(domain)
system.add(Gaussian(peak_power=1.0, width=width))
system.add(Fibre(length=5.0, gamma=4.0, beta=[0.0, 0.0, -1.0],
                 raman_scattering=True, rs_factor=T_R,
                 total_steps=200, traces=200, method='ARK4IP'))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z) = storage.get_plot_data(False, (191.1, 195.1), normalised=True)

map_plot(x, y, z, labels["nu"], labels["P_nu"], labels["z"],
         filename="4-23_map_nu")

waterfall_plot(x, y, z, labels["nu"], labels["z"], labels["P_nu"],
               filename="4-23_waterfall_nu", y_range=(0.0, 1.1))

if (len(sys.argv) > 1) and (sys.argv[1] == 'animate'):
    animated_plot(x, y, z, labels["nu"], labels["P_nu"],
                  r"$z = {0:7.3f} \, km$", (x[0], x[-1]), (0.0, 1.1), fps=20,
Example #21
0
from pyofss import temporal_power, multi_plot, labels

domain = Domain(bit_width=2.0, samples_per_bit=4096)

s = 0.01
width = 1.0 / (s * domain.centre_omega)

P_ts = []
zs = [0.0, 10.0, 20.0]

for z in zs:
    system = System(domain)
    system.add(Gaussian(peak_power=1.0, width=width))
    system.add(
        Fibre(length=z,
              gamma=1.0,
              total_steps=200,
              self_steepening=True,
              method="RK4IP"))
    system.run()

    field = system.fields['fibre']
    P_ts.append(temporal_power(field))

multi_plot(system.domain.t,
           P_ts,
           zs,
           labels["t"],
           labels["P_t"], [r"$z = {0:.0f} \, km$"], (-0.3, 0.3),
           filename="4-19")
Example #22
0
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import sys
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

system = System(Domain(bit_width=200.0, samples_per_bit=2048))
system.add(Gaussian(peak_power=1.0, width=1.0))
system.add(Fibre(length=5.0, beta=[0.0, 0.0, -1.0, 0.0], gamma=1.0, traces=50))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z) = storage.get_plot_data(False, (192.1, 194.1), normalised=True)

map_plot(x,
         y,
         z,
         labels["nu"],
         labels["P_nu"],
         labels["z"],
         filename="4-9_map_nu")

waterfall_plot(x,
               y,
Example #23
0
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import sys
from pyofss import Domain, System, Sech, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

system = System(Domain(bit_width=100.0, samples_per_bit=4096))
system.add(Sech(peak_power=1.0, width=1.0))
system.add(
    Fibre(length=4.0,
          beta=[0.0, 0.0, 0.0, 1.0],
          gamma=4.0,
          traces=100,
          method='ARK4IP'))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z) = storage.get_plot_data(False, (192.1, 194.1), normalised=True)

map_plot(x,
         y,
         z,
         labels["nu"],
         labels["P_nu"],
         labels["z"],
         filename="5-17_map_nu")
Example #24
0
domain = Domain(bit_width=0.4, samples_per_bit=4096)

s = 0.2
width = 1.0 / (s * domain.centre_omega)
beta_2 = width**2

P_ts = []
zs = [0.0, 5.0, 10.0]

for z in zs:
    system = System(domain)
    system.add(Sech(peak_power=1.0, width=width))
    system.add(
        Fibre(length=z,
              gamma=1.0,
              total_steps=200,
              self_steepening=True,
              beta=[0.0, 0.0, -beta_2]))
    system.run()

    field = system.fields['fibre']
    P_ts.append(temporal_power(field))

multi_plot(system.domain.t,
           P_ts,
           zs,
           labels["t"],
           labels["P_t"], [r"$z = {0:.0f} \, km$"], (0.175, 0.225),
           filename="5-18")
Example #25
0
from pyofss import temporal_power, spectral_power, double_plot, labels

domain = Domain(bit_width=4.0, samples_per_bit=4096)

s = 0.01
width = 1.0 / (s * domain.centre_omega)
gamma = 100.0 / (width ** 2)

P_ts = []
P_nus = []
length = [20.0 / gamma, 40.0 / gamma]

for l in length:
    system = System(domain)
    system.add(Gaussian(peak_power=1.0, width=width))
    system.add(Fibre(length=l, gamma=gamma, total_steps=200,
                     self_steepening=True, beta=[0.0, 0.0, 1.0]))
    system.run()

    field = system.fields['fibre']
    P_ts.append(temporal_power(field))
    P_nus.append(spectral_power(field, True))

double_plot(system.domain.t, P_ts[0], system.domain.nu, P_nus[0],
            labels["t"], labels["P_t"], labels["nu"], labels["P_nu"],
            x_range=(-0.5, 0.5), X_range=(146.1, 240.1), filename="4-21a")

double_plot(system.domain.t, P_ts[1], system.domain.nu, P_nus[1],
            labels["t"], labels["P_t"], labels["nu"], labels["P_nu"],
            x_range=(-1.0, 1.0), X_range=(146.1, 240.1), filename="4-21b")
Example #26
0
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import sys
from pyofss import Domain, System, Sech, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

system = System(Domain(bit_width=100.0, samples_per_bit=2048))
system.add(Sech(peak_power=1.0, width=1.0))
system.add(Fibre(length=10.0, beta=[0.0, 0.0, -1.0, 0.0],
                 gamma=1.44, traces=50, method='ARK4IP'))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z) = storage.get_plot_data(reduced_range=(-6.0, 6.0))

map_plot(x, y, z, labels["t"], labels["P_t"], labels["z"],
         filename="5-8_map_t")

waterfall_plot(x, y, z, labels["t"], labels["z"], labels["P_t"],
               filename="5-8_waterfall_t", y_range=(0.0, 1.64))

if (len(sys.argv) > 1) and (sys.argv[1] == 'animate'):
    animated_plot(x, y, z, labels["t"], labels["P_t"], r"$z = {0:7.3f} \, km$",
                  (x[0], x[-1]), (0.0, 1.64), fps=10, frame_prefix="t_",
                  filename="5-8_animation_t.avi")
Example #27
0
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

from pyofss import Domain, System, Gaussian, Fibre
from pyofss import temporal_power, chirp, multi_plot, labels

P_ts = []
chirps = []
zs = [0.0, 2.0, 4.0]

for z in zs:
    system = System(Domain(bit_width=200.0, samples_per_bit=2048))
    system.add(Gaussian(peak_power=1.0, width=1.0))
    system.add(Fibre(length=z, beta=[0.0, 0.0, -1.0, 0.0]))
    system.run()

    field = system.fields['fibre']
    P_ts.append(temporal_power(field))

    temp = [f if abs(f) >= 5e-12 else 0.0 for f in field]
    chirps.append(chirp(temp, system.domain.window_nu))

multi_plot(system.domain.t,
           P_ts,
           zs,
           labels["t"],
           labels["P_t"], [r"$z = {0:.0f} \, km$"], (-10.0, 10.0),
           filename="3-1")
Example #28
0
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import sys
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

for m in [1, 3]:
    system = System(Domain(bit_width=200.0, samples_per_bit=2048))
    system.add(Gaussian(peak_power=1.0, width=1.0, m=m))
    system.add(Fibre(length=10.0, gamma=1.0, traces=50))
    system.run()

    storage = system['fibre'].stepper.storage
    (x, y, z) = storage.get_plot_data(is_temporal=False, normalised=True)

    map_plot(x,
             y,
             z,
             labels["nu"],
             labels["P_nu"],
             labels["z"],
             filename="4-4_map_m-{0:d}".format(m))

    waterfall_plot(x,
                   y,
Example #29
0
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

from pyofss import Domain, System, Gaussian, Fibre
from pyofss import temporal_power, multi_plot, labels

system = System(Domain(bit_width=200.0, samples_per_bit=2048))
system.add(Gaussian("gaussian", peak_power=1.0, width=1.0))

system.run()
P_ts = [temporal_power(system.fields['gaussian'])]

fibres = [
    Fibre(length=5.0, beta=[0.0, 0.0, 0.0, 1.0], total_steps=100),
    Fibre(length=5.0, beta=[0.0, 0.0, 1.0, 1.0], total_steps=100)
]

for fibre in fibres:
    system = System(Domain(bit_width=200.0, samples_per_bit=2048))
    system.add(Gaussian(peak_power=1.0, width=1.0))
    system.add(fibre)
    system.run()
    P_ts.append(temporal_power(system.fields['fibre']))

z_labels = [
    r"$z = 0 \, km$", r"$z = 5 \, km$, $\beta_2 = \, 0 \, ps / (nm \cdot km)$",
    r"$z = 5 \, km$, $\beta_2 \neq \, 0 \, ps / (nm \cdot km)$"
]
Example #30
0
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import numpy as np
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import spectral_power, quad_plot, labels

A_fs = []
Cs = [0.0, 10.0, -10.0, -20.0]

for C in Cs:
    system = System(Domain(bit_width=100.0, samples_per_bit=2048))
    system.add(Gaussian(width=1.0, peak_power=1.0, C=C))
    system.add(Fibre('fibre', length=1.0, gamma=4.5 * np.pi))
    system.run()
    A_fs.append(system.fields['fibre'])

P_nus = [spectral_power(A_f, True) for A_f in A_fs]

quad_plot(system.domain.nu,
          P_nus,
          Cs,
          labels["nu"],
          labels["P_nu"], ["$C = {0:.0f}$"], (189.1, 197.1),
          filename="4-5")