def auto_test_vs_ref(ref_knl, ctx, test_knl=None, op_count=[], op_label=[], parameters={}, print_ref_code=False, print_code=True, warmup_rounds=2, dump_binary=False, fills_entire_output=None, do_check=True, check_result=None, max_test_kernel_count=1, quiet=False, blacklist_ref_vendors=[]): """Compare results of `ref_knl` to the kernels generated by scheduling *test_knl*. :arg check_result: a callable with :class:`numpy.ndarray` arguments *(result, reference_result)* returning a a tuple (class:`bool`, message) indicating correctness/acceptability of the result :arg max_test_kernel_count: Stop testing after this many *test_knl* """ import pyopencl as cl if test_knl is None: test_knl = ref_knl do_check = False if len(ref_knl.args) != len(test_knl.args): raise LoopyError("ref_knl and test_knl do not have the same number " "of arguments") for i, (ref_arg, test_arg) in enumerate(zip(ref_knl.args, test_knl.args)): if ref_arg.name != test_arg.name: raise LoopyError( "ref_knl and test_knl argument lists disagree at index " "%d (1-based)" % (i + 1)) if ref_arg.dtype != test_arg.dtype: raise LoopyError( "ref_knl and test_knl argument lists disagree at index " "%d (1-based)" % (i + 1)) from loopy.compiled import CompiledKernel from loopy.target.execution import get_highlighted_code if isinstance(op_count, (int, float)): warn("op_count should be a list", stacklevel=2) op_count = [op_count] if isinstance(op_label, str): warn("op_label should be a list", stacklevel=2) op_label = [op_label] from time import time if check_result is None: check_result = _default_check_result if fills_entire_output is not None: warn("fills_entire_output is deprecated", DeprecationWarning, stacklevel=2) # {{{ compile and run reference code from loopy.type_inference import infer_unknown_types ref_knl = infer_unknown_types(ref_knl, expect_completion=True) found_ref_device = False ref_errors = [] from loopy.kernel.data import ImageArg need_ref_image_support = any( isinstance(arg, ImageArg) for arg in ref_knl.args) for dev in _enumerate_cl_devices_for_ref_test(blacklist_ref_vendors, need_ref_image_support): ref_ctx = cl.Context([dev]) ref_queue = cl.CommandQueue( ref_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) pp_ref_knl = lp.preprocess_kernel(ref_knl) for knl in lp.generate_loop_schedules(pp_ref_knl): ref_sched_kernel = knl break logger.info("{} (ref): trying {} for the reference calculation".format( ref_knl.name, dev)) ref_compiled = CompiledKernel(ref_ctx, ref_sched_kernel) if not quiet and print_ref_code: print(75 * "-") print("Reference Code:") print(75 * "-") print(get_highlighted_code(ref_compiled.get_code())) print(75 * "-") ref_kernel_info = ref_compiled.kernel_info(frozenset()) try: ref_args, ref_arg_data = \ make_ref_args(ref_sched_kernel, ref_kernel_info.implemented_data_info, ref_queue, parameters) ref_args["out_host"] = False except cl.RuntimeError as e: if e.code == cl.status_code.IMAGE_FORMAT_NOT_SUPPORTED: import traceback ref_errors.append("\n".join([ 75 * "-", "On %s:" % dev, 75 * "-", traceback.format_exc(), 75 * "-" ])) continue else: raise found_ref_device = True if not do_check: break ref_queue.finish() logger.info("{} (ref): using {} for the reference calculation".format( ref_knl.name, dev)) logger.info("%s (ref): run" % ref_knl.name) ref_start = time() if not AUTO_TEST_SKIP_RUN: ref_evt, _ = ref_compiled(ref_queue, **ref_args) else: ref_evt = cl.enqueue_marker(ref_queue) ref_queue.finish() ref_stop = time() ref_elapsed_wall = ref_stop - ref_start logger.info("%s (ref): run done" % ref_knl.name) ref_evt.wait() ref_elapsed_event = 1e-9 * (ref_evt.profile.END - ref_evt.profile.START) break if not found_ref_device: raise LoopyError("could not find a suitable device for the " "reference computation.\n" "These errors were encountered:\n" + "\n".join(ref_errors)) # }}} # {{{ compile and run parallel code need_check = do_check queue = cl.CommandQueue( ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) from loopy.kernel import KernelState from loopy.target.pyopencl import PyOpenCLTarget if test_knl.state not in [ KernelState.PREPROCESSED, KernelState.LINEARIZED ]: if isinstance(test_knl.target, PyOpenCLTarget): test_knl = test_knl.copy(target=PyOpenCLTarget(ctx.devices[0])) test_knl = lp.preprocess_kernel(test_knl) if not test_knl.schedule: test_kernels = lp.generate_loop_schedules(test_knl) else: test_kernels = [test_knl] test_kernel_count = 0 from loopy.type_inference import infer_unknown_types for i, kernel in enumerate(test_kernels): test_kernel_count += 1 if test_kernel_count > max_test_kernel_count: break kernel = infer_unknown_types(kernel, expect_completion=True) compiled = CompiledKernel(ctx, kernel) kernel_info = compiled.kernel_info(frozenset()) args = make_args(kernel, kernel_info.implemented_data_info, queue, ref_arg_data, parameters) args["out_host"] = False if not quiet: print(75 * "-") print("Kernel #%d:" % i) print(75 * "-") if print_code: print(compiled.get_highlighted_code()) print(75 * "-") if dump_binary: # {{{ find cl program for name in dir(kernel_info.cl_kernels): if name.startswith("__"): continue cl_kernel = getattr(kernel_info.cl_kernels, name) cl_program = cl_kernel.get_info(cl.kernel_info.PROGRAM) break else: assert False, "could not find cl_program" # }}} print(type(cl_program)) if hasattr(cl_program, "binaries"): print(cl_program.binaries[0]) print(75 * "-") logger.info("%s: run warmup" % (knl.name)) for i in range(warmup_rounds): if not AUTO_TEST_SKIP_RUN: compiled(queue, **args) if need_check and not AUTO_TEST_SKIP_RUN: for arg_desc in ref_arg_data: if arg_desc is None: continue if not arg_desc.needs_checking: continue from pyopencl.compyte.array import as_strided ref_ary = as_strided( arg_desc.ref_storage_array.get(), shape=arg_desc.ref_shape, strides=arg_desc.ref_numpy_strides).flatten() test_ary = as_strided( arg_desc.test_storage_array.get(), shape=arg_desc.test_shape, strides=arg_desc.test_numpy_strides).flatten() common_len = min(len(ref_ary), len(test_ary)) ref_ary = ref_ary[:common_len] test_ary = test_ary[:common_len] error_is_small, error = check_result(test_ary, ref_ary) if not error_is_small: raise AutomaticTestFailure(error) need_check = False events = [] queue.finish() logger.info("%s: warmup done" % (knl.name)) logger.info("%s: timing run" % (knl.name)) timing_rounds = max(warmup_rounds, 1) while True: from time import time start_time = time() evt_start = cl.enqueue_marker(queue) for i in range(timing_rounds): if not AUTO_TEST_SKIP_RUN: evt, _ = compiled(queue, **args) events.append(evt) else: events.append(cl.enqueue_marker(queue)) evt_end = cl.enqueue_marker(queue) queue.finish() stop_time = time() for evt in events: evt.wait() evt_start.wait() evt_end.wait() elapsed_event = (1e-9*events[-1].profile.END - 1e-9*events[0].profile.START) \ / timing_rounds try: elapsed_event_marker = ((1e-9 * evt_end.profile.START - 1e-9 * evt_start.profile.START) / timing_rounds) except cl.RuntimeError: elapsed_event_marker = None elapsed_wall = (stop_time - start_time) / timing_rounds if elapsed_wall * timing_rounds < 0.3: timing_rounds *= 4 else: break logger.info("%s: timing run done" % (knl.name)) rates = "" for cnt, lbl in zip(op_count, op_label): rates += " {:g} {}/s".format(cnt / elapsed_wall, lbl) if not quiet: def format_float_or_none(v): if v is None: return "<unavailable>" else: return "%g" % v print("elapsed: %s s event, %s s marker-event %s s wall " "(%d rounds)%s" % (format_float_or_none(elapsed_event), format_float_or_none(elapsed_event_marker), format_float_or_none(elapsed_wall), timing_rounds, rates)) if do_check: ref_rates = "" for cnt, lbl in zip(op_count, op_label): ref_rates += " {:g} {}/s".format(cnt / ref_elapsed_event, lbl) if not quiet: print("ref: elapsed: {:g} s event, {:g} s wall{}".format( ref_elapsed_event, ref_elapsed_wall, ref_rates)) # }}} result_dict = {} result_dict["elapsed_event"] = elapsed_event result_dict["elapsed_event_marker"] = elapsed_event_marker result_dict["elapsed_wall"] = elapsed_wall result_dict["timing_rounds"] = timing_rounds if do_check: result_dict["ref_elapsed_event"] = ref_elapsed_event result_dict["ref_elapsed_wall"] = ref_elapsed_wall return result_dict
def auto_test_vs_ref( ref_knl, ctx, test_knl=None, op_count=[], op_label=[], parameters={}, print_ref_code=False, print_code=True, warmup_rounds=2, dump_binary=False, fills_entire_output=None, do_check=True, check_result=None, max_test_kernel_count=1, quiet=False, blacklist_ref_vendors=[]): """Compare results of `ref_knl` to the kernels generated by scheduling *test_knl*. :arg check_result: a callable with :class:`numpy.ndarray` arguments *(result, reference_result)* returning a a tuple (class:`bool`, message) indicating correctness/acceptability of the result :arg max_test_kernel_count: Stop testing after this many *test_knl* """ import pyopencl as cl if test_knl is None: test_knl = ref_knl do_check = False if len(ref_knl.args) != len(test_knl.args): raise LoopyError("ref_knl and test_knl do not have the same number " "of arguments") for i, (ref_arg, test_arg) in enumerate(zip(ref_knl.args, test_knl.args)): if ref_arg.name != test_arg.name: raise LoopyError("ref_knl and test_knl argument lists disagree at index " "%d (1-based)" % (i+1)) if ref_arg.dtype != test_arg.dtype: raise LoopyError("ref_knl and test_knl argument lists disagree at index " "%d (1-based)" % (i+1)) from loopy.compiled import CompiledKernel, get_highlighted_cl_code if isinstance(op_count, (int, float)): warn("op_count should be a list", stacklevel=2) op_count = [op_count] if isinstance(op_label, str): warn("op_label should be a list", stacklevel=2) op_label = [op_label] from time import time if check_result is None: check_result = _default_check_result if fills_entire_output is not None: warn("fills_entire_output is deprecated", DeprecationWarning, stacklevel=2) # {{{ compile and run reference code from loopy.preprocess import infer_unknown_types ref_knl = infer_unknown_types(ref_knl, expect_completion=True) found_ref_device = False ref_errors = [] for dev in _enumerate_cl_devices_for_ref_test(blacklist_ref_vendors): ref_ctx = cl.Context([dev]) ref_queue = cl.CommandQueue(ref_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) pp_ref_knl = lp.preprocess_kernel(ref_knl) for knl in lp.generate_loop_schedules(pp_ref_knl): ref_sched_kernel = knl break logger.info("%s (ref): trying %s for the reference calculation" % ( ref_knl.name, dev)) ref_compiled = CompiledKernel(ref_ctx, ref_sched_kernel) if not quiet and print_ref_code: print(75*"-") print("Reference Code:") print(75*"-") print(get_highlighted_cl_code(ref_compiled.code)) print(75*"-") ref_cl_kernel_info = ref_compiled.cl_kernel_info(frozenset()) try: ref_args, ref_arg_data = \ make_ref_args(ref_sched_kernel, ref_cl_kernel_info.implemented_data_info, ref_queue, parameters) ref_args["out_host"] = False except cl.RuntimeError as e: if e.code == cl.status_code.IMAGE_FORMAT_NOT_SUPPORTED: import traceback ref_errors.append("\n".join([ 75*"-", "On %s:" % dev, 75*"-", traceback.format_exc(), 75*"-"])) continue else: raise found_ref_device = True if not do_check: break ref_queue.finish() logger.info("%s (ref): using %s for the reference calculation" % ( ref_knl.name, dev)) logger.info("%s (ref): run" % ref_knl.name) ref_start = time() if not AUTO_TEST_SKIP_RUN: ref_evt, _ = ref_compiled(ref_queue, **ref_args) else: ref_evt = cl.enqueue_marker(ref_queue) ref_queue.finish() ref_stop = time() ref_elapsed_wall = ref_stop-ref_start logger.info("%s (ref): run done" % ref_knl.name) ref_evt.wait() ref_elapsed_event = 1e-9*(ref_evt.profile.END-ref_evt.profile.START) break if not found_ref_device: raise LoopyError("could not find a suitable device for the " "reference computation.\n" "These errors were encountered:\n"+"\n".join(ref_errors)) # }}} # {{{ compile and run parallel code need_check = do_check queue = cl.CommandQueue(ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) args = None from loopy.kernel import kernel_state if test_knl.state not in [ kernel_state.PREPROCESSED, kernel_state.SCHEDULED]: test_knl = lp.preprocess_kernel(test_knl) if not test_knl.schedule: test_kernels = lp.generate_loop_schedules(test_knl) else: test_kernels = [test_knl] test_kernel_count = 0 from loopy.preprocess import infer_unknown_types for i, kernel in enumerate(test_kernels): test_kernel_count += 1 if test_kernel_count > max_test_kernel_count: break kernel = infer_unknown_types(kernel, expect_completion=True) compiled = CompiledKernel(ctx, kernel) if args is None: cl_kernel_info = compiled.cl_kernel_info(frozenset()) args = make_args(kernel, cl_kernel_info.implemented_data_info, queue, ref_arg_data, parameters) args["out_host"] = False if not quiet: print(75*"-") print("Kernel #%d:" % i) print(75*"-") if print_code: print(compiled.get_highlighted_code()) print(75*"-") if dump_binary: print(type(compiled.cl_program)) print(compiled.cl_program.binaries[0]) print(75*"-") logger.info("%s: run warmup" % (knl.name)) for i in range(warmup_rounds): if not AUTO_TEST_SKIP_RUN: compiled(queue, **args) if need_check and not AUTO_TEST_SKIP_RUN: for arg_desc in ref_arg_data: if arg_desc is None: continue if not arg_desc.needs_checking: continue from pyopencl.compyte.array import as_strided ref_ary = as_strided( arg_desc.ref_storage_array.get(), shape=arg_desc.ref_shape, strides=arg_desc.ref_numpy_strides).flatten() test_ary = as_strided( arg_desc.test_storage_array.get(), shape=arg_desc.test_shape, strides=arg_desc.test_numpy_strides).flatten() common_len = min(len(ref_ary), len(test_ary)) ref_ary = ref_ary[:common_len] test_ary = test_ary[:common_len] error_is_small, error = check_result(test_ary, ref_ary) if not error_is_small: raise AutomaticTestFailure(error) need_check = False events = [] queue.finish() logger.info("%s: warmup done" % (knl.name)) logger.info("%s: timing run" % (knl.name)) timing_rounds = warmup_rounds while True: from time import time start_time = time() evt_start = cl.enqueue_marker(queue) for i in range(timing_rounds): if not AUTO_TEST_SKIP_RUN: evt, _ = compiled(queue, **args) events.append(evt) else: events.append(cl.enqueue_marker(queue)) evt_end = cl.enqueue_marker(queue) queue.finish() stop_time = time() for evt in events: evt.wait() evt_start.wait() evt_end.wait() elapsed_event = (1e-9*events[-1].profile.END - 1e-9*events[0].profile.START) \ / timing_rounds try: elapsed_event_marker = ((1e-9*evt_end.profile.START - 1e-9*evt_start.profile.START) / timing_rounds) except cl.RuntimeError: elapsed_event_marker = None elapsed_wall = (stop_time-start_time)/timing_rounds if elapsed_wall * timing_rounds < 0.3: timing_rounds *= 4 else: break logger.info("%s: timing run done" % (knl.name)) rates = "" for cnt, lbl in zip(op_count, op_label): rates += " %g %s/s" % (cnt/elapsed_wall, lbl) if not quiet: def format_float_or_none(v): if v is None: return "<unavailable>" else: return "%g" % v print("elapsed: %s s event, %s s marker-event %s s wall " "(%d rounds)%s" % ( format_float_or_none(elapsed_event), format_float_or_none(elapsed_event_marker), format_float_or_none(elapsed_wall), timing_rounds, rates)) if do_check: ref_rates = "" for cnt, lbl in zip(op_count, op_label): ref_rates += " %g %s/s" % (cnt/ref_elapsed_event, lbl) if not quiet: print("ref: elapsed: %g s event, %g s wall%s" % ( ref_elapsed_event, ref_elapsed_wall, ref_rates)) # }}} result_dict = {} result_dict["elapsed_event"] = elapsed_event result_dict["elapsed_event_marker"] = elapsed_event_marker result_dict["elapsed_wall"] = elapsed_wall result_dict["timing_rounds"] = timing_rounds if do_check: result_dict["ref_elapsed_event"] = ref_elapsed_event result_dict["ref_elapsed_wall"] = ref_elapsed_wall return result_dict
def make_args(kernel, impl_arg_info, queue, ref_arg_data, parameters): import pyopencl as cl import pyopencl.array as cl_array from loopy.kernel.data import ValueArg, ArrayArg, ImageArg,\ TemporaryVariable, ConstantArg from pymbolic import evaluate args = {} for arg, arg_desc in zip(impl_arg_info, ref_arg_data): kernel_arg = kernel.impl_arg_to_arg.get(arg.name) if arg.arg_class is ValueArg: arg_value = parameters[arg.name] try: argv_dtype = arg_value.dtype except AttributeError: argv_dtype = None if argv_dtype != arg.dtype: arg_value = arg.dtype.numpy_dtype.type(arg_value) args[arg.name] = arg_value elif arg.arg_class is ImageArg: if arg.name in kernel.get_written_variables(): raise NotImplementedError("write-mode images not supported in " "automatic testing") shape = evaluate_shape(arg.unvec_shape, parameters) assert shape == arg_desc.ref_shape # must be contiguous args[arg.name] = cl.image_from_array( queue.context, arg_desc.ref_pre_run_array.get()) elif arg.arg_class is ArrayArg or\ arg.arg_class is ConstantArg: shape = evaluate(arg.unvec_shape, parameters) strides = evaluate(arg.unvec_strides, parameters) dtype = kernel_arg.dtype itemsize = dtype.itemsize numpy_strides = [itemsize * s for s in strides] alloc_size = sum(astrd * (alen - 1) if astrd != 0 else alen - 1 for alen, astrd in zip(shape, strides)) + 1 # use contiguous array to transfer to host host_ref_contig_array = arg_desc.ref_pre_run_storage_array.get() # use device shape/strides from pyopencl.compyte.array import as_strided host_ref_array = as_strided(host_ref_contig_array, arg_desc.ref_shape, arg_desc.ref_numpy_strides) # flatten the thing host_ref_flat_array = host_ref_array.flatten() # create host array with test shape (but not strides) host_contig_array = np.empty(shape, dtype=dtype) common_len = min(len(host_ref_flat_array), len(host_contig_array.ravel())) host_contig_array.ravel()[:common_len] = \ host_ref_flat_array[:common_len] # create host array with test shape and storage layout host_storage_array = np.empty(alloc_size, dtype) host_array = as_strided(host_storage_array, shape, numpy_strides) host_array[...] = host_contig_array host_contig_array = arg_desc.ref_storage_array.get() storage_array = cl_array.to_device(queue, host_storage_array) ary = cl_array.as_strided(storage_array, shape, numpy_strides) args[arg.name] = ary arg_desc.test_storage_array = storage_array arg_desc.test_array = ary arg_desc.test_shape = shape arg_desc.test_strides = strides arg_desc.test_numpy_strides = numpy_strides arg_desc.test_alloc_size = alloc_size elif arg.arg_class is TemporaryVariable: # global temporary, handled by invocation logic pass else: raise LoopyError("arg type not understood") return args
def make_args(kernel, impl_arg_info, queue, ref_arg_data, parameters): import pyopencl as cl import pyopencl.array as cl_array from loopy.kernel.data import ValueArg, GlobalArg, ImageArg, TemporaryVariable from pymbolic import evaluate args = {} for arg, arg_desc in zip(impl_arg_info, ref_arg_data): kernel_arg = kernel.impl_arg_to_arg.get(arg.name) if arg.arg_class is ValueArg: arg_value = parameters[arg.name] try: argv_dtype = arg_value.dtype except AttributeError: argv_dtype = None if argv_dtype != arg.dtype: arg_value = arg.dtype.numpy_dtype.type(arg_value) args[arg.name] = arg_value elif arg.arg_class is ImageArg: if arg.name in kernel.get_written_variables(): raise NotImplementedError("write-mode images not supported in " "automatic testing") shape = evaluate_shape(arg.unvec_shape, parameters) assert shape == arg_desc.ref_shape # must be contiguous args[arg.name] = cl.image_from_array( queue.context, arg_desc.ref_pre_run_array.get()) elif arg.arg_class is GlobalArg: shape = evaluate(arg.unvec_shape, parameters) strides = evaluate(arg.unvec_strides, parameters) dtype = kernel_arg.dtype itemsize = dtype.itemsize numpy_strides = [itemsize*s for s in strides] assert all(s > 0 for s in strides) alloc_size = sum(astrd*(alen-1) for alen, astrd in zip(shape, strides)) + 1 # use contiguous array to transfer to host host_ref_contig_array = arg_desc.ref_pre_run_storage_array.get() # use device shape/strides from pyopencl.compyte.array import as_strided host_ref_array = as_strided(host_ref_contig_array, arg_desc.ref_shape, arg_desc.ref_numpy_strides) # flatten the thing host_ref_flat_array = host_ref_array.flatten() # create host array with test shape (but not strides) host_contig_array = np.empty(shape, dtype=dtype) common_len = min( len(host_ref_flat_array), len(host_contig_array.ravel())) host_contig_array.ravel()[:common_len] = \ host_ref_flat_array[:common_len] # create host array with test shape and storage layout host_storage_array = np.empty(alloc_size, dtype) host_array = as_strided( host_storage_array, shape, numpy_strides) host_array[...] = host_contig_array host_contig_array = arg_desc.ref_storage_array.get() storage_array = cl_array.to_device(queue, host_storage_array) ary = cl_array.as_strided(storage_array, shape, numpy_strides) args[arg.name] = ary arg_desc.test_storage_array = storage_array arg_desc.test_array = ary arg_desc.test_shape = shape arg_desc.test_strides = strides arg_desc.test_numpy_strides = numpy_strides arg_desc.test_alloc_size = alloc_size elif arg.arg_class is TemporaryVariable: # global temporary, handled by invocation logic pass else: raise LoopyError("arg type not understood") return args