def op_test_data(ctx_factory): """Test fixtures for lazy tests.""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) eager_actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) lazy_actx = PytatoPyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) def get_discr(order): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(-0.5,)*2, b=(0.5,)*2, nelements_per_axis=(4,)*2, boundary_tag_to_face={ "x": ["-x", "+x"], "y": ["-y", "+y"] }) from grudge.eager import EagerDGDiscretization return EagerDGDiscretization(eager_actx, mesh, order=order) return eager_actx, lazy_actx, get_discr
def sim_health_index(n_runs): # Set up OpenCL context and command queue ctx = cl.create_some_context() queue = cl.CommandQueue(ctx) mem_pool = cltools.MemoryPool(cltools.ImmediateAllocator(queue)) t0 = time.time() rho = 0.5 mu = 3.0 sigma = 1.0 z_0 = mu # Generate an array of Normal Random Numbers on GPU of length n_sims*n_steps n_steps = int(4160) #4160 rand_gen = clrand.PhiloxGenerator(ctx) ran = rand_gen.normal(queue, (n_runs * n_steps), np.float32, mu=0, sigma=1.0) # Establish boundaries for each simulated walk (i.e. start and end) # Necessary so that we perform scan only within rand walks and not between seg_boundaries = [1] + [0] * (n_steps - 1) seg_boundaries = np.array(seg_boundaries, dtype=np.uint8) seg_boundary_flags = np.tile(seg_boundaries, int(n_runs)) seg_boundary_flags = cl_array.to_device(queue, seg_boundary_flags) # GPU: Define Segmented Scan Kernel, scanning simulations: f(n-1) + f(n) prefix_sum = GenericScanKernel( ctx, np.float32, arguments="__global float *ary, __global char *segflags, " "__global float *out, float rho, float mu", input_expr="segflags[i] ? (ary[i]+mu):(ary[i]+(1-rho)*mu)", scan_expr="across_seg_boundary ? (b):(rho*a+b)", neutral="0", is_segment_start_expr="segflags[i]", output_statement="out[i] = item", options=[]) dev_result = cl_array.arange(queue, len(ran), dtype=np.float32, allocator=mem_pool) # Enqueue and Run Scan Kernel prefix_sum(ran, seg_boundary_flags, dev_result, rho, mu) # Get results back on CPU to plot and do final calcs, just as in Lab 1 health_index_all = (dev_result.get().reshape(n_runs, n_steps).transpose()) final_time = time.time() time_elapsed = final_time - t0 print("Simulated %d Health Index in: %f seconds" % (n_runs, time_elapsed)) #print(health_index_all) #print(ran.reshape(n_runs, n_steps).transpose()) #plt.plot(health_index_all) return
def main(write_output=True): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), force_device_scalars=True, ) from meshmode.mesh import BTAG_ALL from meshmode.mesh.generation import generate_warped_rect_mesh mesh = generate_warped_rect_mesh(dim=2, order=4, nelements_side=6) dcoll = DiscretizationCollection(actx, mesh, order=4) nodes = thaw(dcoll.nodes(), actx) bdry_nodes = thaw(dcoll.nodes(dd=BTAG_ALL), actx) bdry_normals = thaw(dcoll.normal(dd=BTAG_ALL), actx) if write_output: vis = shortcuts.make_visualizer(dcoll) vis.write_vtk_file("geo.vtu", [("nodes", nodes)]) bvis = shortcuts.make_boundary_visualizer(dcoll) bvis.write_vtk_file("bgeo.vtu", [("bdry normals", bdry_normals), ("bdry nodes", bdry_nodes)])
def problem_stats(order=3): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) with open_output_file("grudge-problem-stats.txt") as outf: _, dg_discr_2d = get_wave_op_with_discr( actx, dims=2, order=order) print("Number of 2D elements:", dg_discr_2d.mesh.nelements, file=outf) vol_discr_2d = dg_discr_2d.discr_from_dd("vol") dofs_2d = {group.nunit_dofs for group in vol_discr_2d.groups} from pytools import one print("Number of DOFs per 2D element:", one(dofs_2d), file=outf) _, dg_discr_3d = get_wave_op_with_discr( actx, dims=3, order=order) print("Number of 3D elements:", dg_discr_3d.mesh.nelements, file=outf) vol_discr_3d = dg_discr_3d.discr_from_dd("vol") dofs_3d = {group.nunit_dofs for group in vol_discr_3d.groups} from pytools import one print("Number of DOFs per 3D element:", one(dofs_3d), file=outf) logger.info("Wrote '%s'", outf.name)
def statement_counts_table(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) fused_stepper = get_example_stepper(actx, use_fusion=True) stepper = get_example_stepper(actx, use_fusion=False) with open_output_file("statement-counts.tex") as outf: if not PAPER_OUTPUT: print("==== Statement Counts ====", file=outf) print(table( "lr", ("Operator", "Grudge Node Count"), ( ("Time integration: baseline", r"\num{%d}" % len(stepper.bound_op.eval_code.instructions)), ("Right-hand side: baseline", r"\num{%d}" % len(stepper.grudge_bound_op.eval_code.instructions)), ("Inlined operator", r"\num{%d}" % len(fused_stepper.bound_op.eval_code.instructions)) )), file=outf) logger.info("Wrote '%s'", outf.name)
def test_assignment_memory_model(ctx_factory): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) _, discr = get_wave_op_with_discr(actx, dims=2, order=3) # Assignment instruction bound_op = bind( discr, sym.Variable("input0", dof_desc.DD_VOLUME) + sym.Variable("input1", dof_desc.DD_VOLUME), exec_mapper_factory=ExecutionMapperWithMemOpCounting) input0 = discr.zeros(actx) input1 = discr.zeros(actx) result, profile_data = bound_op( profile_data={}, input0=input0, input1=input1) assert profile_data["bytes_read"] == \ dof_array_nbytes(input0) + dof_array_nbytes(input1) assert profile_data["bytes_written"] == dof_array_nbytes(result)
def test_reduction(ctx_factory, grid_shape, proc_shape, dtype, op, _grid_shape, pass_grid_dims, timing=False): if ctx_factory: ctx = ctx_factory() else: ctx = ps.choose_device_and_make_context() queue = cl.CommandQueue(ctx) h = 1 grid_shape = _grid_shape or grid_shape mpi = ps.DomainDecomposition(proc_shape, h, grid_shape=grid_shape) rank_shape, _ = mpi.get_rank_shape_start(grid_shape) from pymbolic import var from pystella import Field tmp_insns = [(var("x"), Field("f") / 2 + .31)] reducers = {} reducers["avg"] = [(var("x"), op)] if pass_grid_dims: reducer = ps.Reduction(mpi, reducers, rank_shape=rank_shape, tmp_instructions=tmp_insns, grid_size=np.product(grid_shape)) else: reducer = ps.Reduction(mpi, reducers, tmp_instructions=tmp_insns) f = clr.rand(queue, rank_shape, dtype=dtype) import pyopencl.tools as clt pool = clt.MemoryPool(clt.ImmediateAllocator(queue)) result = reducer(queue, f=f, allocator=pool) avg = result["avg"] avg_test = reducer.reduce_array(f / 2 + .31, op) if op == "avg": avg_test /= np.product(grid_shape) rtol = 5e-14 if dtype == np.float64 else 1e-5 assert np.allclose(avg, avg_test, rtol=rtol, atol=0), \ f"{op} reduction innaccurate for {grid_shape=}, {proc_shape=}" if timing: from common import timer t = timer(lambda: reducer(queue, f=f, allocator=pool), ntime=1000) if mpi.rank == 0: print( f"reduction took {t:.3f} ms for {grid_shape=}, {proc_shape=}") bandwidth = f.nbytes / 1024**3 / t * 1000 print(f"Bandwidth = {bandwidth:.1f} GB/s")
def test_field_statistics(ctx_factory, grid_shape, proc_shape, dtype, _grid_shape, pass_grid_dims, timing=False): ctx = ctx_factory() queue = cl.CommandQueue(ctx) h = 1 grid_shape = _grid_shape or grid_shape mpi = ps.DomainDecomposition(proc_shape, h, grid_shape=grid_shape) rank_shape, _ = mpi.get_rank_shape_start(grid_shape) # make select parameters local for convenience h = 2 f = clr.rand(queue, (2, 1) + tuple(ni + 2 * h for ni in rank_shape), dtype=dtype) if pass_grid_dims: statistics = ps.FieldStatistics(mpi, h, rank_shape=rank_shape, grid_size=np.product(grid_shape)) else: statistics = ps.FieldStatistics(mpi, h) import pyopencl.tools as clt pool = clt.MemoryPool(clt.ImmediateAllocator(queue)) stats = statistics(f, allocator=pool) avg = stats["mean"] var = stats["variance"] f_h = f.get() rank_sum = np.sum(f_h[..., h:-h, h:-h, h:-h], axis=(-3, -2, -1)) avg_test = mpi.allreduce(rank_sum) / np.product(grid_shape) rank_sum = np.sum(f_h[..., h:-h, h:-h, h:-h]**2, axis=(-3, -2, -1)) var_test = mpi.allreduce(rank_sum) / np.product(grid_shape) - avg_test**2 rtol = 5e-14 if dtype == np.float64 else 1e-5 assert np.allclose(avg, avg_test, rtol=rtol, atol=0), \ f"average innaccurate for {grid_shape=}, {proc_shape=}" assert np.allclose(var, var_test, rtol=rtol, atol=0), \ f"variance innaccurate for {grid_shape=}, {proc_shape=}" if timing: from common import timer t = timer(lambda: statistics(f, allocator=pool)) if mpi.rank == 0: print( f"field stats took {t:.3f} ms " f"for outer shape {f.shape[:-3]}, {grid_shape=}, {proc_shape=}" )
def test_mem_pool_with_arrays(ctx_factory): context = ctx_factory() queue = cl.CommandQueue(context) mem_pool = cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) a_dev = cl_array.arange(queue, 2000, dtype=np.float32, allocator=mem_pool) b_dev = cl_array.to_device(queue, np.arange(2000), allocator=mem_pool) + 4000 assert a_dev.allocator is mem_pool assert b_dev.allocator is mem_pool
def test_stepper_timing(ctx_factory, use_fusion): cl_ctx = ctx_factory() queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) dims = 3 sym_operator, discr = get_wave_op_with_discr( actx, dims=dims, order=3) t_start = 0 dt = 0.04 t_end = 0.1 ic = flat_obj_array(discr.zeros(actx), [discr.zeros(actx) for i in range(discr.dim)]) if not use_fusion: bound_op = bind( discr, sym_operator, exec_mapper_factory=ExecutionMapperWithTiming) stepper = RK4TimeStepper( discr, "w", bound_op, 1 + discr.dim, get_wave_component, exec_mapper_factory=ExecutionMapperWithTiming) else: stepper = FusedRK4TimeStepper( discr, "w", sym_operator, 1 + discr.dim, get_wave_component, exec_mapper_factory=ExecutionMapperWithTiming) step = 0 import time t = time.time() nsteps = int(np.ceil((t_end + 1e-9) / dt)) for (_, _, profile_data) in stepper.run( # noqa: B007 ic, t_start, dt, t_end, return_profile_data=True): step += 1 tn = time.time() logger.info("step %d/%d: %f", step, nsteps, tn - t) t = tn logger.info("fusion? %s", use_fusion) for key, value in profile_data.items(): if isinstance(value, TimingFutureList): print(key, value.elapsed())
def __init__(self, ctx, queue): self.ctx = ctx self.queue = queue self.allocator = clt.ImmediateAllocator(self.queue) self.memory_pool = clt.MemoryPool(self.allocator) self.program_cache = {} self.array_cache = {} self.arrays = None self.square_array = ElementwiseKernel(self.ctx, "float *in, float *out", "out[i] = in[i]*in[i]", "square")
def test_stepper_mem_ops(ctx_factory, use_fusion): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) dims = 2 sym_operator, discr = get_wave_op_with_discr( actx, dims=dims, order=3) t_start = 0 dt = 0.04 t_end = 0.2 ic = flat_obj_array(discr.zeros(actx), [discr.zeros(actx) for i in range(discr.dim)]) if not use_fusion: bound_op = bind( discr, sym_operator, exec_mapper_factory=ExecutionMapperWithMemOpCounting) stepper = RK4TimeStepper( discr, "w", bound_op, 1 + discr.dim, get_wave_component, exec_mapper_factory=ExecutionMapperWithMemOpCounting) else: stepper = FusedRK4TimeStepper( discr, "w", sym_operator, 1 + discr.dim, get_wave_component, exec_mapper_factory=ExecutionMapperWithMemOpCounting) step = 0 nsteps = int(np.ceil((t_end + 1e-9) / dt)) for (_, _, profile_data) in stepper.run( # noqa: B007 ic, t_start, dt, t_end, return_profile_data=True): step += 1 logger.info("step %d/%d", step, nsteps) logger.info("using fusion? %s", use_fusion) logger.info("bytes read: %d", profile_data["bytes_read"]) logger.info("bytes written: %d", profile_data["bytes_written"]) logger.info("bytes total: %d", profile_data["bytes_read"] + profile_data["bytes_written"])
def test_stepper_equivalence(ctx_factory, order=4): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) dims = 2 sym_operator, discr = get_wave_op_with_discr( actx, dims=dims, order=order) #sym_operator_direct, discr = get_wave_op_with_discr_direct( # actx, dims=dims, order=order) if dims == 2: dt = 0.04 elif dims == 3: dt = 0.02 ic = flat_obj_array(discr.zeros(actx), [discr.zeros(actx) for i in range(discr.dim)]) bound_op = bind(discr, sym_operator) stepper = RK4TimeStepper( discr, "w", bound_op, 1 + discr.dim, get_wave_component) fused_stepper = FusedRK4TimeStepper( discr, "w", sym_operator, 1 + discr.dim, get_wave_component) t_start = 0 t_end = 0.5 nsteps = int(np.ceil((t_end + 1e-9) / dt)) print("dt=%g nsteps=%d" % (dt, nsteps)) step = 0 norm = bind(discr, sym.norm(2, sym.var("u_ref") - sym.var("u"))) fused_steps = fused_stepper.run(ic, t_start, dt, t_end) for t_ref, (u_ref, _v_ref) in stepper.run(ic, t_start, dt, t_end): step += 1 logger.debug("step %d/%d", step, nsteps) t, (u, v) = next(fused_steps) assert t == t_ref, step assert norm(u=u, u_ref=u_ref) <= 1e-13, step
def scalar_assignment_percent_of_total_mem_ops_table(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)) ) result2d = mem_ops_results(actx, 2) result3d = mem_ops_results(actx, 3) with open_output_file("scalar-assignments-mem-op-percentage.tex") as outf: if not PAPER_OUTPUT: print("==== Scalar Assigment % of Total Mem Ops ====", file=outf) print( table( "lr", ("Operator", r"\parbox{1in}{\centering \% Memory Ops. " r"Due to Scalar Assignments}"), ( ("2D: Baseline", "%.1f" % ( 100 * result2d["nonfused_bytes_total_by_scalar_assignments"] / result2d["nonfused_bytes_total"])), ("2D: Inlined", "%.1f" % ( 100 * result2d["fused_bytes_total_by_scalar_assignments"] / result2d["fused_bytes_total"])), ("3D: Baseline", "%.1f" % ( 100 * result3d["nonfused_bytes_total_by_scalar_assignments"] / result3d["nonfused_bytes_total"])), ("3D: Inlined", "%.1f" % ( 100 * result3d["fused_bytes_total_by_scalar_assignments"] / result3d["fused_bytes_total"])), )), file=outf) logger.info("Wrote '%s'", outf.name)
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nparts = comm.Get_size() logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) # timestepping control current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step t_final = 0.005 current_cfl = 1.0 current_dt = .001 current_t = 0 constant_cfl = False # some i/o frequencies nstatus = 1 nrestart = 5 nviz = 1 nhealth = 1 dim = 2 rst_path = "restart_data/" rst_pattern = ( rst_path + "{cname}-{step:04d}-{rank:04d}.pkl" ) if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["nparts"] == nparts else: # generate the grid from scratch box_ll = -5.0 box_ur = 5.0 nel_1d = 16 from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll,)*dim, b=(box_ur,) * dim, nelements_per_axis=(nel_1d,)*dim) local_mesh, global_nelements = generate_and_distribute_mesh(comm, generate_mesh) local_nelements = local_mesh.nelements order = 3 discr = EagerDGDiscretization( actx, local_mesh, order=order, mpi_communicator=comm ) nodes = thaw(actx, discr.nodes()) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) # soln setup and init nspecies = 4 centers = make_obj_array([np.zeros(shape=(dim,)) for i in range(nspecies)]) spec_y0s = np.ones(shape=(nspecies,)) spec_amplitudes = np.ones(shape=(nspecies,)) eos = IdealSingleGas() velocity = np.ones(shape=(dim,)) initializer = MulticomponentLump(dim=dim, nspecies=nspecies, spec_centers=centers, velocity=velocity, spec_y0s=spec_y0s, spec_amplitudes=spec_amplitudes) boundaries = { BTAG_ALL: PrescribedInviscidBoundary(fluid_solution_func=initializer) } if rst_filename: current_t = restart_data["t"] current_step = restart_data["step"] current_state = restart_data["state"] if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) else: # Set the current state from time 0 current_state = initializer(nodes) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) def my_write_status(component_errors): if rank == 0: logger.info( "------- errors=" + ", ".join("%.3g" % en for en in component_errors)) def my_write_viz(step, t, state, dv=None, exact=None, resid=None): if dv is None: dv = eos.dependent_vars(state) if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) if resid is None: resid = state - exact viz_fields = [("cv", state), ("dv", dv), ("exact", exact), ("resid", resid)] from mirgecom.simutil import write_visfile write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname != rst_filename: rst_data = { "local_mesh": local_mesh, "state": state, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nparts } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(pressure, component_errors): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", pressure) \ or check_range_local(discr, "vol", pressure, .99999999, 1.00000001): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") exittol = .09 if max(component_errors) > exittol: health_error = True if rank == 0: logger.info("Solution diverged from exact soln.") return health_error def my_pre_step(step, t, dt, state): try: dv = None exact = None component_errors = None if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: dv = eos.dependent_vars(state) exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, state, exact) from mirgecom.simutil import allsync health_errors = allsync( my_health_check(dv.pressure, component_errors), comm, op=MPI.LOR ) if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") if do_restart: my_write_restart(step=step, t=t, state=state) if do_viz: if dv is None: dv = eos.dependent_vars(state) if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) resid = state - exact my_write_viz(step=step, t=t, state=state, dv=dv, exact=exact, resid=resid) if do_status: if component_errors is None: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, state, exact) my_write_status(component_errors) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, state=state) my_write_restart(step=step, t=t, state=state) raise dt = get_sim_timestep(discr, state, t, dt, current_cfl, eos, t_final, constant_cfl) return state, dt def my_post_step(step, t, dt, state): # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, state, eos) logmgr.tick_after() return state, dt def my_rhs(t, state): return euler_operator(discr, cv=state, time=t, boundaries=boundaries, eos=eos) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, eos, t_final, constant_cfl) current_step, current_t, current_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, dt=current_dt, post_step_callback=my_post_step, state=current_state, t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") final_dv = eos.dependent_vars(current_state) final_exact = initializer(x_vec=nodes, eos=eos, time=current_t) final_resid = current_state - final_exact my_write_viz(step=current_step, t=current_t, state=current_state, dv=final_dv, exact=final_exact, resid=final_resid) my_write_restart(step=current_step, t=current_t, state=current_state) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 time_err = current_t - t_final if np.abs(time_err) > finish_tol: raise ValueError(f"Simulation did not finish at expected time {time_err=}.")
def main(ctx_factory=cl.create_some_context): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) dim = 3 nel_1d = 16 order = 3 exittol = .09 t_final = 0.01 current_cfl = 1.0 vel = np.zeros(shape=(dim, )) orig = np.zeros(shape=(dim, )) vel[:dim] = 1.0 current_dt = .001 current_t = 0 eos = IdealSingleGas() initializer = Lump(numdim=dim, center=orig, velocity=vel) casename = "lump" boundaries = {BTAG_ALL: PrescribedBoundary(initializer)} constant_cfl = False nstatus = 1 nviz = 1 rank = 0 checkpoint_t = current_t current_step = 0 timestepper = rk4_step box_ll = -5.0 box_ur = 5.0 comm = MPI.COMM_WORLD rank = comm.Get_rank() from meshmode.mesh.generation import generate_regular_rect_mesh generate_grid = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, n=(nel_1d, ) * dim) local_mesh, global_nelements = create_parallel_grid(comm, generate_grid) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) current_state = initializer(0, nodes) visualizer = make_visualizer( discr, discr.order + 3 if discr.dim == 2 else discr.order) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return inviscid_operator(discr, q=state, t=t, boundaries=boundaries, eos=eos) def my_checkpoint(step, t, dt, state): return sim_checkpoint(discr, visualizer, eos, q=state, exact_soln=initializer, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm) try: (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t=current_t, t_final=t_final) except ExactSolutionMismatch as ex: current_step = ex.step current_t = ex.t current_state = ex.state # if current_t != checkpoint_t: if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: raise ValueError("Simulation exited abnormally")
def main(ctx_factory=cl.create_some_context, use_leap=False): """Drive example.""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) dim = 3 nel_1d = 16 order = 3 exittol = 10.0 t_final = 0.002 current_cfl = 1.0 velocity = np.zeros(shape=(dim, )) velocity[:dim] = 1.0 current_dt = .001 current_t = 0 constant_cfl = False nstatus = 1 nviz = 1 rank = 0 checkpoint_t = current_t current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step box_ll = -5.0 box_ur = 5.0 error_state = 0 from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) casename = "uiuc_mixture" # Pyrometheus initialization from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") sol = cantera.Solution(phase_id="gas", source=mech_cti) pyrometheus_mechanism = pyro.get_thermochem_class(sol)(actx.np) nspecies = pyrometheus_mechanism.num_species eos = PyrometheusMixture(pyrometheus_mechanism) y0s = np.zeros(shape=(nspecies, )) for i in range(nspecies - 1): y0s[i] = 1.0 / (10.0**(i + 1)) spec_sum = sum([y0s[i] for i in range(nspecies - 1)]) y0s[nspecies - 1] = 1.0 - spec_sum # Mixture defaults to STP (p, T) = (1atm, 300K) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, massfractions=y0s, velocity=velocity) boundaries = {BTAG_ALL: PrescribedBoundary(initializer)} nodes = thaw(actx, discr.nodes()) current_state = initializer(x_vec=nodes, eos=eos) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return euler_operator(discr, cv=state, t=t, boundaries=boundaries, eos=eos) def my_checkpoint(step, t, dt, state): global checkpoint_t checkpoint_t = t return sim_checkpoint(discr, visualizer, eos, cv=state, exact_soln=initializer, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm) try: (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t=current_t, t_final=t_final) except ExactSolutionMismatch as ex: error_state = 1 current_step = ex.step current_t = ex.t current_state = ex.state if current_t != checkpoint_t: # This check because !overwrite if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: error_state = 1 if error_state: raise ValueError("Simulation did not complete successfully.")
def main(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) from mpi4py import MPI comm = MPI.COMM_WORLD num_parts = comm.Get_size() from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis mesh_dist = MPIMeshDistributor(comm) dim = 2 nel_1d = 16 if mesh_dist.is_mananger_rank(): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, n=(nel_1d, ) * dim, boundary_tag_to_face={ "dirichlet": ["+x", "-x"], "neumann": ["+y", "-y"] }) print("%d elements" % mesh.nelements) part_per_element = get_partition_by_pymetis(mesh, num_parts) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) del mesh else: local_mesh = mesh_dist.receive_mesh_part() order = 3 discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) if dim == 2: # no deep meaning here, just a fudge factor dt = 0.0025 / (nel_1d * order**2) else: raise ValueError("don't have a stable time step guesstimate") source_width = 0.2 nodes = thaw(actx, discr.nodes()) u = discr.zeros(actx) vis = make_visualizer(discr, order + 3 if dim == 2 else order) boundaries = { grudge_sym.DTAG_BOUNDARY("dirichlet"): DirichletDiffusionBoundary(0.), grudge_sym.DTAG_BOUNDARY("neumann"): NeumannDiffusionBoundary(0.) } def rhs(t, u): return ( diffusion_operator(discr, alpha=1, boundaries=boundaries, u=u) + actx.np.exp(-np.dot(nodes, nodes) / source_width**2)) rank = comm.Get_rank() t = 0 t_final = 0.01 istep = 0 while True: if istep % 10 == 0: print(istep, t, discr.norm(u)) vis.write_vtk_file( "fld-heat-source-mpi-%03d-%04d.vtu" % (rank, istep), [("u", u)]) if t >= t_final: break u = rk4_step(u, t, dt, rhs) t += dt istep += 1
def main(ctx_factory, dim=2, order=4, use_quad=False, visualize=False, flux_type="upwind"): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), force_device_scalars=True, ) # {{{ parameters # domain [0, d]^dim d = 1.0 # number of points in each dimension npoints = 25 # final time final_time = 1 if use_quad: qtag = dof_desc.DISCR_TAG_QUAD else: qtag = None # }}} # {{{ discretization from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(0, ) * dim, b=(d, ) * dim, npoints_per_axis=(npoints, ) * dim, order=order) from meshmode.discretization.poly_element import \ QuadratureSimplexGroupFactory if use_quad: discr_tag_to_group_factory = { qtag: QuadratureSimplexGroupFactory(order=4 * order) } else: discr_tag_to_group_factory = {} from grudge import DiscretizationCollection dcoll = DiscretizationCollection( actx, mesh, order=order, discr_tag_to_group_factory=discr_tag_to_group_factory) # }}} # {{{ advection operator # gaussian parameters def f_halfcircle(x): source_center = np.array([d / 2, d / 2, d / 2])[:dim] dist = x - source_center return ((0.5 + 0.5 * actx.np.tanh(500 * (-np.dot(dist, dist) + 0.4**2))) * (0.5 + 0.5 * actx.np.tanh(500 * (dist[0])))) def zero_inflow_bc(dtag, t=0): dd = dof_desc.DOFDesc(dtag, qtag) return dcoll.discr_from_dd(dd).zeros(actx) from grudge.models.advection import VariableCoefficientAdvectionOperator x = thaw(dcoll.nodes(), actx) # velocity field if dim == 1: c = x else: # solid body rotation c = flat_obj_array(np.pi * (d / 2 - x[1]), np.pi * (x[0] - d / 2), 0)[:dim] adv_operator = VariableCoefficientAdvectionOperator( dcoll, c, inflow_u=lambda t: zero_inflow_bc(BTAG_ALL, t), quad_tag=qtag, flux_type=flux_type) u = f_halfcircle(x) def rhs(t, u): return adv_operator.operator(t, u) dt = actx.to_numpy( adv_operator.estimate_rk4_timestep(actx, dcoll, fields=u)) logger.info("Timestep size: %g", dt) # }}} # {{{ time stepping from grudge.shortcuts import set_up_rk4 dt_stepper = set_up_rk4("u", dt, u, rhs) plot = Plotter(actx, dcoll, order, visualize=visualize, ylim=[-0.1, 1.1]) step = 0 for event in dt_stepper.run(t_end=final_time): if not isinstance(event, dt_stepper.StateComputed): continue if step % 10 == 0: norm_u = actx.to_numpy(op.norm(dcoll, event.state_component, 2)) plot(event, "fld-var-velocity-%04d" % step) step += 1 logger.info("[%04d] t = %.5f |u| = %.5e", step, event.t, norm_u) # NOTE: These are here to ensure the solution is bounded for the # time interval specified assert norm_u < 1
def main(ctx_factory=cl.create_some_context, snapshot_pattern="y0euler-{step:06d}-{rank:04d}.pkl", restart_step=None, use_profiling=False, use_logmgr=False): """Drive the Y0 example.""" from mpi4py import MPI comm = MPI.COMM_WORLD rank = 0 rank = comm.Get_rank() nparts = comm.Get_size() """logging and profiling""" logmgr = initialize_logmgr(use_logmgr, use_profiling, filename="y0euler.sqlite", mode="wu", mpi_comm=comm) cl_ctx = ctx_factory() if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) actx = PyOpenCLProfilingArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), logmgr=logmgr) else: queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) #nviz = 500 #nrestart = 500 nviz = 50 nrestart = 10000000 current_dt = 1.0e-7 #t_final = 5.e-7 t_final = 3e-4 dim = 2 order = 1 exittol = 10000000 # do never exit when comparing to exact solution #t_final = 0.001 current_cfl = 1.0 vel_init = np.zeros(shape=(dim, )) vel_inflow = np.zeros(shape=(dim, )) vel_outflow = np.zeros(shape=(dim, )) orig = np.zeros(shape=(dim, )) #vel[0] = 340.0 #vel_inflow[0] = 100.0 # m/s current_t = 0 casename = "y0euler" constant_cfl = False # no internal euler status messages nstatus = 1000000000 checkpoint_t = current_t current_step = 0 # working gas: CO2 # # gamma = 1.289 # MW=44.009 g/mol # cp = 37.135 J/mol-K, # rho= 1.977 kg/m^3 @298K gamma_CO2 = 1.289 R_CO2 = 8314.59 / 44.009 # background # 100 Pa # 298 K # rho = 1.77619667e-3 kg/m^3 # velocity = 0,0,0 rho_bkrnd = 1.77619667e-3 pres_bkrnd = 100 temp_bkrnd = 298 c_bkrnd = math.sqrt(gamma_CO2 * pres_bkrnd / rho_bkrnd) # isentropic shock relations # # lab frame, moving shock # state 1 is behind (downstream) the shock, state 2 is in front (upstream) of the shock mach = 2.0 pressure_ratio = (2. * gamma_CO2 * mach * mach - (gamma_CO2 - 1.)) / (gamma_CO2 + 1.) density_ratio = (gamma_CO2 + 1.) * mach * mach / ( (gamma_CO2 - 1.) * mach * mach + 2.) mach2 = math.sqrt(((gamma_CO2 - 1.) * mach * mach + 2.) / (2. * gamma_CO2 * mach * mach - (gamma_CO2 - 1.))) rho1 = rho_bkrnd pressure1 = pres_bkrnd rho2 = rho1 * density_ratio pressure2 = pressure1 * pressure_ratio velocity1 = 0. velocity2 = -mach * c_bkrnd * (1 / density_ratio - 1) c_shkd = math.sqrt(gamma_CO2 * pressure2 / rho2) vel_inflow[0] = velocity2 timestepper = rk4_step eos = IdealSingleGas(gamma=gamma_CO2, gas_const=R_CO2) bulk_init = Discontinuity(dim=dim, x0=.05, sigma=0.01, rhol=rho2, rhor=rho1, pl=pressure2, pr=pressure1, ul=vel_inflow[0], ur=0.) inflow_init = Lump(dim=dim, rho0=rho2, p0=pressure2, center=orig, velocity=vel_inflow, rhoamp=0.0) outflow_init = Lump(dim=dim, rho0=rho1, p0=pressure1, center=orig, velocity=vel_outflow, rhoamp=0.0) inflow = PrescribedBoundary(inflow_init) outflow = PrescribedBoundary(outflow_init) wall = AdiabaticSlipBoundary() dummy = DummyBoundary() # shock capturing parameters # sonic conditions density_ratio = (gamma_CO2 + 1.) * 1.0 / ((gamma_CO2 - 1.) + 2.) density_star = rho1 * density_ratio shock_thickness = 20 * 0.001 # on the order of 3 elements, should match what is in mesh generator # alpha is ~h/p (spacing/order) #alpha_sc = shock_thickness*abs(velocity1-velocity2)*density_star alpha_sc = 0.1 # sigma is ~p^-4 sigma_sc = -11.0 # kappa is empirical ... kappa_sc = 0.5 print( f"Shock capturing parameters: alpha {alpha_sc}, s0 {sigma_sc}, kappa {kappa_sc}" ) # timestep estimate wave_speed = max(mach2 * c_bkrnd, c_shkd + velocity2) char_len = 0.001 area = char_len * char_len / 2 perimeter = 2 * char_len + math.sqrt(2 * char_len * char_len) h = 2 * area / perimeter dt_est = 1 / (wave_speed * order * order / h) print(f"Time step estimate {dt_est}\n") dt_est_visc = 1 / (wave_speed * order * order / h + alpha_sc * order * order * order * order / h / h) print(f"Viscous timestep estimate {dt_est_visc}\n") from grudge import sym # boundaries = {BTAG_ALL: DummyBoundary} boundaries = { sym.DTAG_BOUNDARY("Inflow"): inflow, sym.DTAG_BOUNDARY("Outflow"): outflow, sym.DTAG_BOUNDARY("Wall"): wall } #local_mesh, global_nelements = create_parallel_grid(comm, #get_pseudo_y0_mesh) # #local_nelements = local_mesh.nelements if restart_step is None: local_mesh, global_nelements = create_parallel_grid(comm, get_mesh) local_nelements = local_mesh.nelements else: # Restart with open(snapshot_pattern.format(step=restart_step, rank=rank), "rb") as f: restart_data = pickle.load(f) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert comm.Get_size() == restart_data["num_parts"] if rank == 0: logging.info("Making discretization") discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) if restart_step is None: if rank == 0: logging.info("Initializing soln.") current_state = bulk_init(0, nodes, eos=eos) else: current_t = restart_data["t"] current_step = restart_step current_state = unflatten( actx, discr.discr_from_dd("vol"), obj_array_vectorize(actx.from_numpy, restart_data["state"])) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_discretization_quantities(logmgr, discr, eos, dim) #logmgr_add_package_versions(logmgr) logmgr.add_watches([ "step.max", "t_sim.max", "t_step.max", "min_pressure", "max_pressure", "min_temperature", "max_temperature" ]) try: logmgr.add_watches(["memory_usage.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["pyopencl_array_time.max"]) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) #visualizer = make_visualizer(discr, discr.order + 3 #if discr.dim == 2 else discr.order) visualizer = make_visualizer(discr, discr.order) # initname = initializer.__class__.__name__ initname = "pseudoY0" eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): #return inviscid_operator(discr, eos=eos, boundaries=boundaries, q=state, t=t) return (inviscid_operator( discr, q=state, t=t, boundaries=boundaries, eos=eos) + artificial_viscosity(discr, t=t, r=state, eos=eos, boundaries=boundaries, alpha=alpha_sc, sigma=sigma_sc, kappa=kappa_sc)) def my_checkpoint(step, t, dt, state): write_restart = (check_step(step, nrestart) if step != restart_step else False) if write_restart is True: with open(snapshot_pattern.format(step=step, rank=rank), "wb") as f: pickle.dump( { "local_mesh": local_mesh, "state": obj_array_vectorize(actx.to_numpy, flatten(state)), "t": t, "step": step, "global_nelements": global_nelements, "num_parts": nparts, }, f) #x0=f(time) exact_soln = Discontinuity(dim=dim, x0=.05, sigma=0.00001, rhol=rho2, rhor=rho1, pl=pressure2, pr=pressure1, ul=vel_inflow[0], ur=0., uc=mach * c_bkrnd) return sim_checkpoint(discr=discr, visualizer=visualizer, eos=eos, q=state, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm, vis_timer=vis_timer, overwrite=True, exact_soln=exact_soln, sigma=sigma_sc, kappa=kappa_sc) if rank == 0: logging.info("Stepping.") (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t_final=t_final, t=current_t, istep=current_step, logmgr=logmgr,eos=eos,dim=dim) if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: raise ValueError("Simulation exited abnormally") if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data())
def main(ctx_factory=cl.create_some_context, snapshot_pattern="flame1d-{step:06d}-{rank:04d}.pkl", restart_step=None, use_profiling=False, use_logmgr=False): """Drive the Y0 example.""" from mpi4py import MPI comm = MPI.COMM_WORLD rank = 0 rank = comm.Get_rank() nparts = comm.Get_size() """logging and profiling""" logmgr = initialize_logmgr(use_logmgr, filename="flame1d.sqlite", mode="wo", mpi_comm=comm) cl_ctx = ctx_factory() if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) actx = PyOpenCLProfilingArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), logmgr=logmgr) else: queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) #nviz = 500 #nrestart = 500 nviz = 1 nrestart = 3 #current_dt = 5.0e-8 # stable with euler current_dt = 5.0e-8 # stable with rk4 #current_dt = 4e-7 # stable with lrsrk144 t_final = 1.5e-7 dim = 2 order = 1 exittol = 1000000000000 #t_final = 0.001 current_cfl = 1.0 current_t = 0 constant_cfl = False nstatus = 10000000000 rank = 0 checkpoint_t = current_t current_step = 0 vel_burned = np.zeros(shape=(dim, )) vel_unburned = np.zeros(shape=(dim, )) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti # uiuc C2H4 #mech_cti = get_mechanism_cti("uiuc") # sanDiego H2 mech_cti = get_mechanism_cti("sanDiego") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. temp_unburned = 300.0 temp_ignition = 1500.0 # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 # H2 stoich_ratio = 0.5 #C2H4 #stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen # C2H4 #i_fu = cantera_soln.species_index("C2H4") # H2 i_fu = cantera_soln.species_index("H2") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 pres_unburned = one_atm # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({temp_unburned}, {pres_unburned}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = temp_unburned, pres_unburned, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. y_unburned = np.zeros(nspecies) can_t, rho_unburned, y_unburned = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # now find the conditions for the burned gas cantera_soln.equilibrate('TP') temp_burned, rho_burned, y_burned = cantera_soln.TDY pres_burned = cantera_soln.P casename = "flame1d" pyrometheus_mechanism = pyro.get_thermochem_class(cantera_soln)(actx.np) # C2H4 mu = 1.e-5 kappa = 1.6e-5 # Pr = mu*rho/alpha = 0.75 # H2 mu = 1.e-5 kappa = mu * 0.08988 / 0.75 # Pr = mu*rho/alpha = 0.75 species_diffusivity = 1.e-5 * np.ones(nspecies) transport_model = SimpleTransport(viscosity=mu, thermal_conductivity=kappa, species_diffusivity=species_diffusivity) eos = PyrometheusMixture(pyrometheus_mechanism, temperature_guess=temp_unburned, transport_model=transport_model) species_names = pyrometheus_mechanism.species_names print(f"Pyrometheus mechanism species names {species_names}") print( f"Unburned state (T,P,Y) = ({temp_unburned}, {pres_unburned}, {y_unburned}" ) print(f"Burned state (T,P,Y) = ({temp_burned}, {pres_burned}, {y_burned}") flame_start_loc = 0.05 flame_speed = 1000 # use the burned conditions with a lower temperature bulk_init = PlanarDiscontinuity(dim=dim, disc_location=flame_start_loc, sigma=0.01, nspecies=nspecies, temperature_left=temp_ignition, temperature_right=temp_unburned, pressure_left=pres_burned, pressure_right=pres_unburned, velocity_left=vel_burned, velocity_right=vel_unburned, species_mass_left=y_burned, species_mass_right=y_unburned) inflow_init = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pres_burned, temperature=temp_ignition, massfractions=y_burned, velocity=vel_burned) outflow_init = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pres_unburned, temperature=temp_unburned, massfractions=y_unburned, velocity=vel_unburned) inflow = PrescribedViscousBoundary(q_func=inflow_init) outflow = PrescribedViscousBoundary(q_func=outflow_init) wall = PrescribedViscousBoundary( ) # essentially a "dummy" use the interior solution for the exterior from grudge import sym boundaries = { sym.DTAG_BOUNDARY("Inflow"): inflow, sym.DTAG_BOUNDARY("Outflow"): outflow, sym.DTAG_BOUNDARY("Wall"): wall } if restart_step is None: char_len = 0.001 box_ll = (0.0, 0.0) box_ur = (0.25, 0.01) num_elements = (int((box_ur[0] - box_ll[0]) / char_len), int((box_ur[1] - box_ll[1]) / char_len)) from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=box_ll, b=box_ur, n=num_elements, mesh_type="X", boundary_tag_to_face={ "Inflow": ["-x"], "Outflow": ["+x"], "Wall": ["+y", "-y"] }) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements else: # Restart with open(snapshot_pattern.format(step=restart_step, rank=rank), "rb") as f: restart_data = pickle.load(f) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert comm.Get_size() == restart_data["num_parts"] if rank == 0: logging.info("Making discretization") discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) if restart_step is None: if rank == 0: logging.info("Initializing soln.") # for Discontinuity initial conditions current_state = bulk_init(t=0., x_vec=nodes, eos=eos) # for uniform background initial condition #current_state = bulk_init(nodes, eos=eos) else: current_t = restart_data["t"] current_step = restart_step current_state = unflatten( actx, discr.discr_from_dd("vol"), obj_array_vectorize(actx.from_numpy, restart_data["state"])) vis_timer = None if logmgr: logmgr_add_cl_device_info(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ "step.max", "t_sim.max", "t_step.max", "t_log.max", "min_pressure", "max_pressure", "min_temperature", "max_temperature" ]) try: logmgr.add_watches( ["memory_usage_python.max", "memory_usage_gpu.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["pyopencl_array_time.max"]) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) visualizer = make_visualizer(discr, order) # initname = initializer.__class__.__name__ initname = "flame1d" eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) #timestepper = rk4_step #timestepper = lsrk54_step #timestepper = lsrk144_step timestepper = euler_step get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): # check for some troublesome output types inf_exists = not np.isfinite(discr.norm(state, np.inf)) if inf_exists: if rank == 0: logging.info( "Non-finite values detected in simulation, exiting...") # dump right now sim_checkpoint(discr=discr, visualizer=visualizer, eos=eos, q=state, vizname=casename, step=999999999, t=t, dt=current_dt, nviz=1, exittol=exittol, constant_cfl=constant_cfl, comm=comm, vis_timer=vis_timer, overwrite=True, s0=s0_sc, kappa=kappa_sc) exit() cv = split_conserved(dim=dim, q=state) return ( ns_operator(discr, q=state, t=t, boundaries=boundaries, eos=eos) + eos.get_species_source_terms(cv)) def my_checkpoint(step, t, dt, state): write_restart = (check_step(step, nrestart) if step != restart_step else False) if write_restart is True: with open(snapshot_pattern.format(step=step, rank=rank), "wb") as f: pickle.dump( { "local_mesh": local_mesh, "state": obj_array_vectorize(actx.to_numpy, flatten(state)), "t": t, "step": step, "global_nelements": global_nelements, "num_parts": nparts, }, f) def loc_fn(t): return flame_start_loc + flame_speed * t exact_soln = PlanarDiscontinuity(dim=dim, disc_location=loc_fn, sigma=0.0000001, nspecies=nspecies, temperature_left=temp_ignition, temperature_right=temp_unburned, pressure_left=pres_burned, pressure_right=pres_unburned, velocity_left=vel_burned, velocity_right=vel_unburned, species_mass_left=y_burned, species_mass_right=y_unburned) cv = split_conserved(dim, state) reaction_rates = eos.get_production_rates(cv) viz_fields = [("reaction_rates", reaction_rates)] return sim_checkpoint(discr=discr, visualizer=visualizer, eos=eos, q=state, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm, vis_timer=vis_timer, overwrite=True, exact_soln=exact_soln, viz_fields=viz_fields) if rank == 0: logging.info("Stepping.") (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t_final=t_final, t=current_t, istep=current_step, logmgr=logmgr,eos=eos,dim=dim) if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: raise ValueError("Simulation exited abnormally") if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) exit()
def main(ctx_factory, dim=3, order=4, visualize=False): cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), force_device_scalars=True, ) from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(0.0, ) * dim, b=(1.0, ) * dim, nelements_per_axis=(4, ) * dim) dcoll = DiscretizationCollection(actx, mesh, order=order) if 0: epsilon0 = 8.8541878176e-12 # C**2 / (N m**2) mu0 = 4 * np.pi * 1e-7 # N/A**2. epsilon = 1 * epsilon0 mu = 1 * mu0 else: epsilon = 1 mu = 1 from grudge.models.em import MaxwellOperator maxwell_operator = MaxwellOperator(dcoll, epsilon, mu, flux_type=0.5, dimensions=dim) def cavity_mode(x, t=0): if dim == 3: return get_rectangular_cavity_mode(actx, x, t, 1, (1, 2, 2)) else: return get_rectangular_cavity_mode(actx, x, t, 1, (2, 3)) fields = cavity_mode(thaw(dcoll.nodes(), actx), t=0) maxwell_operator.check_bc_coverage(mesh) def rhs(t, w): return maxwell_operator.operator(t, w) dt = maxwell_operator.estimate_rk4_timestep(actx, dcoll, fields=fields) dt_stepper = set_up_rk4("w", dt, fields, rhs) target_steps = 60 final_t = dt * target_steps nsteps = int(final_t / dt) + 1 logger.info("dt = %g nsteps = %d", dt, nsteps) from grudge.shortcuts import make_visualizer vis = make_visualizer(dcoll) step = 0 def norm(u): return op.norm(dcoll, u, 2) e, h = maxwell_operator.split_eh(fields) if visualize: vis.write_vtk_file(f"fld-cavities-{step:04d}.vtu", [ ("e", e), ("h", h), ]) for event in dt_stepper.run(t_end=final_t): if isinstance(event, dt_stepper.StateComputed): assert event.component_id == "w" step += 1 e, h = maxwell_operator.split_eh(event.state_component) norm_e0 = actx.to_numpy(norm(u=e[0])) norm_e1 = actx.to_numpy(norm(u=e[1])) norm_h0 = actx.to_numpy(norm(u=h[0])) norm_h1 = actx.to_numpy(norm(u=h[1])) logger.info( "[%04d] t = %.5f |e0| = %.5e, |e1| = %.5e, |h0| = %.5e, |h1| = %.5e", step, event.t, norm_e0, norm_e1, norm_h0, norm_h1) if step % 10 == 0: if visualize: vis.write_vtk_file(f"fld-cavities-{step:04d}.vtu", [ ("e", e), ("h", h), ]) # NOTE: These are here to ensure the solution is bounded for the # time interval specified assert norm_e0 < 0.5 assert norm_e1 < 0.5 assert norm_h0 < 0.5 assert norm_h1 < 0.5
def main(ctx_factory=cl.create_some_context, casename="flame1d", user_input_file=None, snapshot_pattern="{casename}-{step:06d}-{rank:04d}.pkl", restart_step=None, restart_name=None, use_profiling=False, use_logmgr=False, use_lazy_eval=False): """Drive the 1D Flame example.""" from mpi4py import MPI comm = MPI.COMM_WORLD rank = 0 rank = comm.Get_rank() nparts = comm.Get_size() if restart_name is None: restart_name = casename """logging and profiling""" logmgr = initialize_logmgr(use_logmgr, filename=(f"{casename}.sqlite"), mode="wo", mpi_comm=comm) cl_ctx = ctx_factory() if use_profiling: if use_lazy_eval: raise RuntimeError("Cannot run lazy with profiling.") queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) actx = PyOpenCLProfilingArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), logmgr=logmgr) else: queue = cl.CommandQueue(cl_ctx) if use_lazy_eval: actx = PytatoArrayContext(queue) else: actx = PyOpenCLArrayContext( queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) # default input values that will be read from input (if they exist) nviz = 100 nrestart = 100 nhealth = 100 nstatus = 1 current_dt = 1e-9 t_final = 1.e-3 order = 1 integrator = "rk4" if user_input_file: if rank == 0: with open(user_input_file) as f: input_data = yaml.load(f, Loader=yaml.FullLoader) else: input_data = None input_data = comm.bcast(input_data, root=0) #print(input_data) try: nviz = int(input_data["nviz"]) except KeyError: pass try: nrestart = int(input_data["nrestart"]) except KeyError: pass try: nhealth = int(input_data["nhealth"]) except KeyError: pass try: nstatus = int(input_data["nstatus"]) except KeyError: pass try: current_dt = float(input_data["current_dt"]) except KeyError: pass try: t_final = float(input_data["t_final"]) except KeyError: pass try: order = int(input_data["order"]) except KeyError: pass try: integrator = input_data["integrator"] except KeyError: pass # param sanity check allowed_integrators = ["rk4", "euler", "lsrk54", "lsrk144"] if (integrator not in allowed_integrators): error_message = "Invalid time integrator: {}".format(integrator) raise RuntimeError(error_message) timestepper = rk4_step if integrator == "euler": timestepper = euler_step if integrator == "lsrk54": timestepper = lsrk54_step if integrator == "lsrk144": timestepper = lsrk144_step if (rank == 0): print(f'#### Simluation control data: ####') print(f'\tnviz = {nviz}') print(f'\tnrestart = {nrestart}') print(f'\tnhealth = {nhealth}') print(f'\tnstatus = {nstatus}') print(f'\tcurrent_dt = {current_dt}') print(f'\tt_final = {t_final}') print(f'\torder = {order}') print(f"\tTime integration {integrator}") print(f'#### Simluation control data: ####') restart_path = 'restart_data/' viz_path = 'viz_data/' #if(rank == 0): #if not os.path.exists(restart_path): #os.makedirs(restart_path) #if not os.path.exists(viz_path): #os.makedirs(viz_path) dim = 2 exittol = .09 current_cfl = 1.0 current_t = 0 constant_cfl = False checkpoint_t = current_t current_step = 0 vel_burned = np.zeros(shape=(dim, )) vel_unburned = np.zeros(shape=(dim, )) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. fuel = "H2" allowed_fuels = ["H2", "C2H4"] if (fuel not in allowed_fuels): error_message = "Invalid fuel selection: {}".format(fuel) raise RuntimeError(error_message) if rank == 0: print(f"Fuel: {fuel}") from mirgecom.mechanisms import get_mechanism_cti if fuel == "C2H4": mech_cti = get_mechanism_cti("uiuc") elif fuel == "H2": mech_cti = get_mechanism_cti("sanDiego") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. temp_unburned = 300.0 temp_ignition = 1500.0 # Parameters for calculating the amounts of fuel, oxidizer, and inert species if fuel == "C2H4": stoich_ratio = 3.0 if fuel == "H2": stoich_ratio = 0.5 equiv_ratio = 1.0 ox_di_ratio = 0.21 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen i_fu = cantera_soln.species_index(fuel) i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 pres_unburned = one_atm # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({temp_unburned}, {pres_unburned}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = temp_unburned, pres_unburned, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. y_unburned = np.zeros(nspecies) can_t, rho_unburned, y_unburned = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # now find the conditions for the burned gas cantera_soln.equilibrate('TP') temp_burned, rho_burned, y_burned = cantera_soln.TDY pres_burned = cantera_soln.P pyrometheus_mechanism = pyro.get_thermochem_class(cantera_soln)(actx.np) kappa = 1.6e-5 # Pr = mu*rho/alpha = 0.75 mu = 1.e-5 species_diffusivity = 1.e-5 * np.ones(nspecies) transport_model = SimpleTransport(viscosity=mu, thermal_conductivity=kappa, species_diffusivity=species_diffusivity) eos = PyrometheusMixture(pyrometheus_mechanism, temperature_guess=temp_unburned, transport_model=transport_model) species_names = pyrometheus_mechanism.species_names print(f"Pyrometheus mechanism species names {species_names}") print( f"Unburned state (T,P,Y) = ({temp_unburned}, {pres_unburned}, {y_unburned}" ) print(f"Burned state (T,P,Y) = ({temp_burned}, {pres_burned}, {y_burned}") flame_start_loc = 0.10 flame_speed = 1000 # use the burned conditions with a lower temperature #bulk_init = PlanarDiscontinuity(dim=dim, disc_location=flame_start_loc, sigma=0.01, nspecies=nspecies, #temperature_left=temp_ignition, temperature_right=temp_unburned, #pressure_left=pres_burned, pressure_right=pres_unburned, #velocity_left=vel_burned, velocity_right=vel_unburned, #species_mass_left=y_burned, species_mass_right=y_unburned) bulk_init = PlanarDiscontinuity(dim=dim, disc_location=flame_start_loc, sigma=0.0005, nspecies=nspecies, temperature_right=temp_ignition, temperature_left=temp_unburned, pressure_right=pres_burned, pressure_left=pres_unburned, velocity_right=vel_burned, velocity_left=vel_unburned, species_mass_right=y_burned, species_mass_left=y_unburned) inflow_init = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pres_burned, temperature=temp_ignition, massfractions=y_burned, velocity=vel_burned) outflow_init = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pres_unburned, temperature=temp_unburned, massfractions=y_unburned, velocity=vel_unburned) def symmetry(nodes, eos, cv=None, **kwargs): dim = len(nodes) if cv is not None: #cv = split_conserved(dim, q) mass = cv.mass momentum = cv.momentum momentum[1] = -1.0 * momentum[1] ke = .5 * np.dot(cv.momentum, cv.momentum) / cv.mass energy = cv.energy species_mass = cv.species_mass return make_conserved(dim=dim, mass=mass, momentum=momentum, energy=energy, species_mass=species_mass) def dummy(nodes, eos, cv=None, **kwargs): dim = len(nodes) if cv is not None: #cv = split_conserved(dim, q) mass = cv.mass momentum = cv.momentum ke = .5 * np.dot(cv.momentum, cv.momentum) / cv.mass energy = cv.energy species_mass = cv.species_mass return make_conserved(dim=dim, mass=mass, momentum=momentum, energy=energy, species_mass=species_mass) inflow = PrescribedViscousBoundary(q_func=inflow_init) outflow = PrescribedViscousBoundary(q_func=outflow_init) wall_symmetry = PrescribedViscousBoundary(q_func=symmetry) wall_dummy = PrescribedViscousBoundary(q_func=dummy) wall = PrescribedViscousBoundary( ) # essentially a "dummy" use the interior solution for the exterior boundaries = { DTAG_BOUNDARY("Inflow"): inflow, DTAG_BOUNDARY("Outflow"): outflow, #DTAG_BOUNDARY("Wall"): wall_dummy} DTAG_BOUNDARY("Wall"): wall_symmetry } if restart_step is None: char_len = 0.0001 box_ll = (0.0, 0.0) box_ur = (0.2, 0.00125) num_elements = (int((box_ur[0] - box_ll[0]) / char_len), int((box_ur[1] - box_ll[1]) / char_len)) from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=box_ll, b=box_ur, n=num_elements, boundary_tag_to_face={ "Inflow": ["+x"], "Outflow": ["-x"], "Wall": ["+y", "-y"] }) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements else: # Restart from mirgecom.restart import read_restart_data restart_file = restart_path + snapshot_pattern.format( casename=restart_name, step=restart_step, rank=rank) restart_data = read_restart_data(actx, restart_file) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert comm.Get_size() == restart_data["num_parts"] if rank == 0: logging.info("Making discretization") discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) if restart_step is None: if rank == 0: logging.info("Initializing soln.") # for Discontinuity initial conditions current_state = bulk_init(x_vec=nodes, eos=eos, time=0.) # for uniform background initial condition #current_state = bulk_init(nodes, eos=eos) else: current_t = restart_data["t"] current_step = restart_step #current_state = make_fluid_restart_state(actx, discr.discr_from_dd("vol"), restart_data["state"]) current_state = restart_data["state"] vis_timer = None log_cfl = LogUserQuantity(name="cfl", value=current_cfl) if logmgr: logmgr_add_cl_device_info(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr_set_time(logmgr, current_step, current_t) logmgr.add_quantity(log_cfl, interval=nstatus) #logmgr_add_package_versions(logmgr) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s, "), ("cfl.max", "cfl = {value:1.4f}\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) try: logmgr.add_watches(["memory_usage.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["pyopencl_array_time.max"]) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) visualizer = make_visualizer(discr) initname = "flame1d" eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return ( ns_operator(discr, cv=state, t=t, boundaries=boundaries, eos=eos) + eos.get_species_source_terms(cv=state)) def my_checkpoint(step, t, dt, state, force=False): do_health = force or check_step(step, nhealth) and step > 0 do_viz = force or check_step(step, nviz) do_restart = force or check_step(step, nrestart) do_status = force or check_step(step, nstatus) if do_viz or do_health: dv = eos.dependent_vars(state) errors = False if do_health: health_message = "" if check_naninf_local(discr, "vol", dv.pressure): errors = True health_message += "Invalid pressure data found.\n" elif check_range_local(discr, "vol", dv.pressure, min_value=1, max_value=2.e6): errors = True health_message += "Pressure data failed health check.\n" errors = comm.allreduce(errors, MPI.LOR) if errors: if rank == 0: logger.info("Fluid solution failed health check.") if health_message: logger.info(f"{rank=}: {health_message}") #if check_step(step, nrestart) and step != restart_step and not errors: if do_restart or errors: filename = restart_path + snapshot_pattern.format( step=step, rank=rank, casename=casename) restart_dictionary = { "local_mesh": local_mesh, "order": order, "state": state, "t": t, "step": step, "global_nelements": global_nelements, "num_parts": nparts } write_restart_file(actx, restart_dictionary, filename, comm) if do_status or do_viz or errors: local_cfl = get_inviscid_cfl(discr, eos=eos, dt=dt, cv=state) max_cfl = nodal_max(discr, "vol", local_cfl) log_cfl.set_quantity(max_cfl) #if ((check_step(step, nviz) and step != restart_step) or errors): if do_viz or errors: def loc_fn(t): return flame_start_loc + flame_speed * t #exact_soln = PlanarDiscontinuity(dim=dim, disc_location=loc_fn, #sigma=0.0000001, nspecies=nspecies, #temperature_left=temp_ignition, temperature_right=temp_unburned, #pressure_left=pres_burned, pressure_right=pres_unburned, #velocity_left=vel_burned, velocity_right=vel_unburned, #species_mass_left=y_burned, species_mass_right=y_unburned) reaction_rates = eos.get_production_rates(cv=state) # conserved quantities viz_fields = [ #("cv", state), ("CV_rho", state.mass), ("CV_rhoU", state.momentum[0]), ("CV_rhoV", state.momentum[1]), ("CV_rhoE", state.energy) ] # species mass fractions viz_fields.extend( ("Y_" + species_names[i], state.species_mass[i] / state.mass) for i in range(nspecies)) # dependent variables viz_fields.extend([ ("DV", eos.dependent_vars(state)), #("exact_soln", exact_soln), ("reaction_rates", reaction_rates), ("cfl", local_cfl) ]) write_visfile(discr, viz_fields, visualizer, vizname=viz_path + casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) if errors: raise RuntimeError("Error detected by user checkpoint, exiting.") if rank == 0: logging.info("Stepping.") (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t_final=t_final, t=current_t, istep=current_step, logmgr=logmgr,eos=eos,dim=dim) if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state, force=True) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) exit()
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Drive the example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() num_parts = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) # timestepping control current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step t_final = 0.01 current_cfl = 1.0 current_dt = .001 current_t = 0 constant_cfl = False # some i/o frequencies nrestart = 10 nstatus = 1 nviz = 10 nhealth = 10 dim = 2 if dim != 2: raise ValueError("This example must be run with dim = 2.") rst_path = "restart_data/" rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl") if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == num_parts else: # generate the grid from scratch nel_1d = 16 box_ll = -5.0 box_ur = 5.0 from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements order = 3 discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(discr.nodes(), actx) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) try: logmgr.add_watches( ["memory_usage_python.max", "memory_usage_gpu.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["multiply_time.max"]) # soln setup and init eos = IdealSingleGas() vel = np.zeros(shape=(dim, )) orig = np.zeros(shape=(dim, )) vel[:dim] = 1.0 initializer = Vortex2D(center=orig, velocity=vel) gas_model = GasModel(eos=eos) def boundary_solution(discr, btag, gas_model, state_minus, **kwargs): actx = state_minus.array_context bnd_discr = discr.discr_from_dd(btag) nodes = thaw(bnd_discr.nodes(), actx) return make_fluid_state( initializer(x_vec=nodes, eos=gas_model.eos, **kwargs), gas_model) boundaries = { BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=boundary_solution) } if rst_filename: current_t = restart_data["t"] current_step = restart_data["step"] current_cv = restart_data["cv"] if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) else: # Set the current state from time 0 current_cv = initializer(nodes) current_state = make_fluid_state(current_cv, gas_model) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) def my_write_status(state, component_errors, cfl=None): if cfl is None: if constant_cfl: cfl = current_cfl else: from grudge.op import nodal_max from mirgecom.inviscid import get_inviscid_cfl cfl = actx.to_numpy( nodal_max(discr, "vol", get_inviscid_cfl(discr, state, current_dt)))[()] if rank == 0: logger.info(f"------ {cfl=}\n" "------- errors=" + ", ".join("%.3g" % en for en in component_errors)) def my_write_viz(step, t, state, dv=None, exact=None, resid=None): if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) if resid is None: resid = state - exact viz_fields = [("cv", state), ("dv", dv), ("exact", exact), ("residual", resid)] from mirgecom.simutil import write_visfile write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname != rst_filename: rst_data = { "local_mesh": local_mesh, "cv": state, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": num_parts } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(pressure, component_errors): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", pressure) \ or check_range_local(discr, "vol", pressure, .2, 1.02): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") exittol = .1 if max(component_errors) > exittol: health_error = True if rank == 0: logger.info("Solution diverged from exact soln.") return health_error def my_pre_step(step, t, dt, state): fluid_state = make_fluid_state(state, gas_model) cv = fluid_state.cv dv = fluid_state.dv try: exact = None component_errors = None if logmgr: logmgr.tick_before() do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, cv, exact) health_errors = global_reduce(my_health_check( dv.pressure, component_errors), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") if do_restart: my_write_restart(step=step, t=t, state=cv) if do_status: if component_errors is None: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions( discr, cv, exact) my_write_status(fluid_state, component_errors) if do_viz: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) resid = state - exact my_write_viz(step=step, t=t, state=cv, dv=dv, exact=exact, resid=resid) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, state=cv) my_write_restart(step=step, t=t, state=cv) raise dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final, constant_cfl) return state, dt def my_post_step(step, t, dt, state): # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, state, eos) logmgr.tick_after() return state, dt def my_rhs(t, state): fluid_state = make_fluid_state(state, gas_model) return euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, current_cv = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=current_state.cv, t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") current_state = make_fluid_state(current_cv, gas_model) final_dv = current_state.dv final_exact = initializer(x_vec=nodes, eos=eos, time=current_t) final_resid = current_state.cv - final_exact my_write_viz(step=current_step, t=current_t, state=current_state.cv, dv=final_dv, exact=final_exact, resid=final_resid) my_write_restart(step=current_step, t=current_t, state=current_state.cv) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_overintegration=False, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Drive the example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() num_parts = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) # timestepping control current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step t_final = 0.1 current_cfl = 1.0 current_dt = .01 current_t = 0 constant_cfl = False # some i/o frequencies nstatus = 1 nrestart = 5 nviz = 10 nhealth = 1 dim = 3 rst_path = "restart_data/" rst_pattern = ( rst_path + "{cname}-{step:04d}-{rank:04d}.pkl" ) if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == num_parts else: # generate the grid from scratch from meshmode.mesh.generation import generate_regular_rect_mesh box_ll = -1 box_ur = 1 nel_1d = 16 generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll,)*dim, b=(box_ur,) * dim, nelements_per_axis=(nel_1d,)*dim) local_mesh, global_nelements = generate_and_distribute_mesh(comm, generate_mesh) local_nelements = local_mesh.nelements from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory order = 1 discr = EagerDGDiscretization( actx, local_mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory( base_dim=local_mesh.dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1) }, mpi_communicator=comm ) nodes = thaw(discr.nodes(), actx) if use_overintegration: quadrature_tag = DISCR_TAG_QUAD else: quadrature_tag = None vis_timer = None if logmgr: logmgr_add_cl_device_info(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) eos = IdealSingleGas() gas_model = GasModel(eos=eos) vel = np.zeros(shape=(dim,)) orig = np.zeros(shape=(dim,)) initializer = Lump(dim=dim, center=orig, velocity=vel, rhoamp=0.0) wall = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: wall} uniform_state = initializer(nodes) acoustic_pulse = AcousticPulse(dim=dim, amplitude=1.0, width=.1, center=orig) if rst_filename: current_t = restart_data["t"] current_step = restart_data["step"] current_cv = restart_data["cv"] if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) else: # Set the current state from time 0 current_cv = acoustic_pulse(x_vec=nodes, cv=uniform_state, eos=eos) current_state = make_fluid_state(current_cv, gas_model) visualizer = make_visualizer(discr) initname = "pulse" eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) def my_write_viz(step, t, state, dv=None): if dv is None: dv = eos.dependent_vars(state) viz_fields = [("cv", state), ("dv", dv)] from mirgecom.simutil import write_visfile write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname != rst_filename: rst_data = { "local_mesh": local_mesh, "cv": state, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": num_parts } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(pressure): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", pressure) \ or check_range_local(discr, "vol", pressure, .8, 1.5): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") return health_error def my_pre_step(step, t, dt, state): fluid_state = make_fluid_state(state, gas_model) dv = fluid_state.dv try: if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) if do_health: health_errors = global_reduce(my_health_check(dv.pressure), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") if do_restart: my_write_restart(step=step, t=t, state=state) if do_viz: my_write_viz(step=step, t=t, state=state, dv=dv) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, state=state) my_write_restart(step=step, t=t, state=state) raise dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final, constant_cfl) return state, dt def my_post_step(step, t, dt, state): # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, state, eos) logmgr.tick_after() return state, dt def my_rhs(t, state): fluid_state = make_fluid_state(cv=state, gas_model=gas_model) return euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model, quadrature_tag=quadrature_tag) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, current_cv = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=current_cv, t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") final_state = make_fluid_state(current_cv, gas_model) final_dv = final_state.dv my_write_viz(step=current_step, t=current_t, state=current_cv, dv=final_dv) my_write_restart(step=current_step, t=current_t, state=current_cv) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_overintegration=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext, log_dependent=True): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) # Some discretization parameters dim = 2 nel_1d = 8 order = 1 # {{{ Time stepping control # This example runs only 3 steps by default (to keep CI ~short) # With the mixture defined below, equilibrium is achieved at ~40ms # To run to equilibrium, set t_final >= 40ms. # Time stepper selection if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step # Time loop control parameters current_step = 0 t_final = 1e-8 current_cfl = 1.0 current_dt = 1e-9 current_t = 0 constant_cfl = False # i.o frequencies nstatus = 1 nviz = 5 nhealth = 1 nrestart = 5 # }}} Time stepping control debug = False rst_path = "restart_data/" rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl") if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == nproc rst_time = restart_data["t"] rst_step = restart_data["step"] rst_order = restart_data["order"] else: # generate the grid from scratch from meshmode.mesh.generation import generate_regular_rect_mesh box_ll = -0.005 box_ur = 0.005 generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory discr = EagerDGDiscretization( actx, local_mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory(base_dim=local_mesh.dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2 * order + 1) }, mpi_communicator=comm) nodes = thaw(discr.nodes(), actx) ones = discr.zeros(actx) + 1.0 if use_overintegration: quadrature_tag = DISCR_TAG_QUAD else: quadrature_tag = None ones = discr.zeros(actx) + 1.0 vis_timer = None if logmgr: logmgr_add_cl_device_info(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s")]) if log_dependent: logmgr_add_many_discretization_quantities( logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ ("min_pressure", "\n------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n") ]) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. temperature_seed = 1500.0 # Initial temperature hot enough to burn # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen i_fu = cantera_soln.species_index("C2H4") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({temperature_seed}, {one_atm}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = temperature_seed, one_atm, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. can_t, can_rho, can_y = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # }}} # {{{ Create Pyrometheus thermochemistry object & EOS # Create a Pyrometheus EOS with the Cantera soln. Pyrometheus uses Cantera and # generates a set of methods to calculate chemothermomechanical properties and # states for this particular mechanism. from mirgecom.thermochemistry import make_pyrometheus_mechanism_class pyro_mechanism = make_pyrometheus_mechanism_class(cantera_soln)(actx.np) eos = PyrometheusMixture(pyro_mechanism, temperature_guess=temperature_seed) gas_model = GasModel(eos=eos) from pytools.obj_array import make_obj_array def get_temperature_update(cv, temperature): y = cv.species_mass_fractions e = gas_model.eos.internal_energy(cv) / cv.mass return pyro_mechanism.get_temperature_update_energy(e, temperature, y) from mirgecom.gas_model import make_fluid_state def get_fluid_state(cv, tseed): return make_fluid_state(cv=cv, gas_model=gas_model, temperature_seed=tseed) compute_temperature_update = actx.compile(get_temperature_update) construct_fluid_state = actx.compile(get_fluid_state) # }}} # {{{ MIRGE-Com state initialization # Initialize the fluid/gas state with Cantera-consistent data: # (density, pressure, temperature, mass_fractions) print(f"Cantera state (rho,T,P,Y) = ({can_rho}, {can_t}, {can_p}, {can_y}") velocity = np.zeros(shape=(dim, )) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=can_p, temperature=can_t, massfractions=can_y, velocity=velocity) my_boundary = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: my_boundary} if rst_filename: current_step = rst_step current_t = rst_time if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) if order == rst_order: current_cv = restart_data["cv"] temperature_seed = restart_data["temperature_seed"] else: rst_cv = restart_data["cv"] old_discr = EagerDGDiscretization(actx, local_mesh, order=rst_order, mpi_communicator=comm) from meshmode.discretization.connection import make_same_mesh_connection connection = make_same_mesh_connection( actx, discr.discr_from_dd("vol"), old_discr.discr_from_dd("vol")) current_cv = connection(rst_cv) temperature_seed = connection(restart_data["temperature_seed"]) else: # Set the current state from time 0 current_cv = initializer(eos=gas_model.eos, x_vec=nodes) temperature_seed = temperature_seed * ones # The temperature_seed going into this function is: # - At time 0: the initial temperature input data (maybe from Cantera) # - On restart: the restarted temperature seed from restart file (saving # the *seed* allows restarts to be deterministic current_fluid_state = construct_fluid_state(current_cv, temperature_seed) current_dv = current_fluid_state.dv temperature_seed = current_dv.temperature # Inspection at physics debugging time if debug: print("Initial MIRGE-Com state:") print(f"Initial DV pressure: {current_fluid_state.pressure}") print(f"Initial DV temperature: {current_fluid_state.temperature}") # }}} visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = gas_model.eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) # Cantera equilibrate calculates the expected end state @ chemical equilibrium # i.e. the expected state after all reactions cantera_soln.equilibrate("UV") eq_temperature, eq_density, eq_mass_fractions = cantera_soln.TDY eq_pressure = cantera_soln.P # Report the expected final state to the user if rank == 0: logger.info(init_message) logger.info(f"Expected equilibrium state:" f" {eq_pressure=}, {eq_temperature=}," f" {eq_density=}, {eq_mass_fractions=}") def my_write_status(dt, cfl, dv=None): status_msg = f"------ {dt=}" if constant_cfl else f"----- {cfl=}" if ((dv is not None) and (not log_dependent)): temp = dv.temperature press = dv.pressure from grudge.op import nodal_min_loc, nodal_max_loc tmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", temp)), comm=comm, op=MPI.MIN) tmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", temp)), comm=comm, op=MPI.MAX) pmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", press)), comm=comm, op=MPI.MIN) pmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", press)), comm=comm, op=MPI.MAX) dv_status_msg = f"\nP({pmin}, {pmax}), T({tmin}, {tmax})" status_msg = status_msg + dv_status_msg if rank == 0: logger.info(status_msg) def my_write_viz(step, t, dt, state, ts_field, dv, production_rates, cfl): viz_fields = [("cv", state), ("dv", dv), ("production_rates", production_rates), ("dt" if constant_cfl else "cfl", ts_field)] write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state, temperature_seed): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname == rst_filename: if rank == 0: logger.info("Skipping overwrite of restart file.") else: rst_data = { "local_mesh": local_mesh, "cv": state.cv, "temperature_seed": temperature_seed, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nproc } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(cv, dv): import grudge.op as op health_error = False pressure = dv.pressure temperature = dv.temperature from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", pressure): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") if check_range_local(discr, "vol", pressure, 1e5, 2.6e5): health_error = True logger.info(f"{rank=}: Pressure range violation.") if check_naninf_local(discr, "vol", temperature): health_error = True logger.info(f"{rank=}: Invalid temperature data found.") if check_range_local(discr, "vol", temperature, 1.498e3, 1.6e3): health_error = True logger.info(f"{rank=}: Temperature range violation.") # This check is the temperature convergence check # The current *temperature* is what Pyrometheus gets # after a fixed number of Newton iterations, *n_iter*. # Calling `compute_temperature` here with *temperature* # input as the guess returns the calculated gas temperature after # yet another *n_iter*. # The difference between those two temperatures is the # temperature residual, which can be used as an indicator of # convergence in Pyrometheus `get_temperature`. # Note: The local max jig below works around a very long compile # in lazy mode. temp_resid = compute_temperature_update(cv, temperature) / temperature temp_err = (actx.to_numpy(op.nodal_max_loc(discr, "vol", temp_resid))) if temp_err > 1e-8: health_error = True logger.info( f"{rank=}: Temperature is not converged {temp_resid=}.") return health_error from mirgecom.inviscid import get_inviscid_timestep def get_dt(state): return get_inviscid_timestep(discr, state=state) compute_dt = actx.compile(get_dt) from mirgecom.inviscid import get_inviscid_cfl def get_cfl(state, dt): return get_inviscid_cfl(discr, dt=dt, state=state) compute_cfl = actx.compile(get_cfl) def get_production_rates(cv, temperature): return eos.get_production_rates(cv, temperature) compute_production_rates = actx.compile(get_production_rates) def my_get_timestep(t, dt, state): # richer interface to calculate {dt,cfl} returns node-local estimates t_remaining = max(0, t_final - t) if constant_cfl: ts_field = current_cfl * compute_dt(state) from grudge.op import nodal_min_loc dt = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", ts_field)), comm=comm, op=MPI.MIN) cfl = current_cfl else: ts_field = compute_cfl(state, current_dt) from grudge.op import nodal_max_loc cfl = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", ts_field)), comm=comm, op=MPI.MAX) return ts_field, cfl, min(t_remaining, dt) def my_pre_step(step, t, dt, state): cv, tseed = state fluid_state = construct_fluid_state(cv, tseed) dv = fluid_state.dv try: if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: health_errors = global_reduce(my_health_check(cv, dv), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") ts_field, cfl, dt = my_get_timestep(t=t, dt=dt, state=fluid_state) if do_status: my_write_status(dt=dt, cfl=cfl, dv=dv) if do_restart: my_write_restart(step=step, t=t, state=fluid_state, temperature_seed=tseed) if do_viz: production_rates = compute_production_rates( fluid_state.cv, fluid_state.temperature) my_write_viz(step=step, t=t, dt=dt, state=cv, dv=dv, production_rates=production_rates, ts_field=ts_field, cfl=cfl) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") # my_write_viz(step=step, t=t, dt=dt, state=cv) # my_write_restart(step=step, t=t, state=fluid_state) raise return state, dt def my_post_step(step, t, dt, state): cv, tseed = state fluid_state = construct_fluid_state(cv, tseed) # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, cv, gas_model.eos) logmgr.tick_after() return make_obj_array([cv, fluid_state.temperature]), dt def my_rhs(t, state): cv, tseed = state from mirgecom.gas_model import make_fluid_state fluid_state = make_fluid_state(cv=cv, gas_model=gas_model, temperature_seed=tseed) return make_obj_array([ euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model, quadrature_tag=quadrature_tag) + eos.get_species_source_terms(cv, fluid_state.temperature), 0 * tseed ]) current_dt = get_sim_timestep(discr, current_fluid_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, current_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=make_obj_array([current_cv, temperature_seed]), t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") final_cv, tseed = current_state final_fluid_state = construct_fluid_state(final_cv, tseed) final_dv = final_fluid_state.dv final_dm = compute_production_rates(final_cv, final_dv.temperature) ts_field, cfl, dt = my_get_timestep(t=current_t, dt=current_dt, state=final_fluid_state) my_write_viz(step=current_step, t=current_t, dt=dt, state=final_cv, dv=final_dv, production_rates=final_dm, ts_field=ts_field, cfl=cfl) my_write_status(dt=dt, cfl=cfl, dv=final_dv) my_write_restart(step=current_step, t=current_t, state=final_fluid_state, temperature_seed=tseed) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def main(ctx_factory=cl.create_some_context, use_leap=False): """Drive the example.""" cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) dim = 1 nel_1d = 24 order = 1 # tolerate large errors; case is unstable exittol = .2 t_final = 0.01 current_cfl = 1.0 current_dt = .0001 current_t = 0 eos = IdealSingleGas() initializer = SodShock1D(dim=dim) casename = "sod1d" boundaries = {BTAG_ALL: PrescribedBoundary(initializer)} constant_cfl = False nstatus = 10 nviz = 10 rank = 0 checkpoint_t = current_t current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step box_ll = -5.0 box_ur = 5.0 from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) current_state = initializer(nodes) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return euler_operator(discr, cv=state, t=t, boundaries=boundaries, eos=eos) def my_checkpoint(step, t, dt, state): return sim_checkpoint(discr, visualizer, eos, cv=state, exact_soln=initializer, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm) try: (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t=current_t, t_final=t_final) except ExactSolutionMismatch as ex: current_step = ex.step current_t = ex.t current_state = ex.state # if current_t != checkpoint_t: if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: raise ValueError("Simulation exited abnormally")
def main(ctx_factory=cl.create_some_context, use_profiling=False, use_logmgr=False, use_leap=False): """Drive the example.""" from mpi4py import MPI comm = MPI.COMM_WORLD logmgr = initialize_logmgr(use_logmgr, filename="vortex.sqlite", mode="wu", mpi_comm=comm) cl_ctx = ctx_factory() if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) actx = PyOpenCLProfilingArrayContext( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)), logmgr=logmgr) else: queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) dim = 2 nel_1d = 16 order = 3 exittol = .1 t_final = 0.1 current_cfl = 1.0 vel = np.zeros(shape=(dim, )) orig = np.zeros(shape=(dim, )) vel[:dim] = 1.0 current_dt = .001 current_t = 0 eos = IdealSingleGas() initializer = Vortex2D(center=orig, velocity=vel) casename = "vortex" boundaries = {BTAG_ALL: PrescribedBoundary(initializer)} constant_cfl = False nstatus = 10 nviz = 10 rank = 0 checkpoint_t = current_t current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step box_ll = -5.0 box_ur = 5.0 rank = comm.Get_rank() if dim != 2: raise ValueError("This example must be run with dim = 2.") from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(actx, discr.nodes()) current_state = initializer(nodes) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ "step.max", "t_step.max", "t_log.max", "min_temperature", "L2_norm_momentum1" ]) try: logmgr.add_watches( ["memory_usage_python.max", "memory_usage_gpu.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["multiply_time.max"]) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) get_timestep = partial(inviscid_sim_timestep, discr=discr, t=current_t, dt=current_dt, cfl=current_cfl, eos=eos, t_final=t_final, constant_cfl=constant_cfl) def my_rhs(t, state): return euler_operator(discr, cv=state, t=t, boundaries=boundaries, eos=eos) def my_checkpoint(step, t, dt, state): return sim_checkpoint(discr, visualizer, eos, cv=state, exact_soln=initializer, vizname=casename, step=step, t=t, dt=dt, nstatus=nstatus, nviz=nviz, exittol=exittol, constant_cfl=constant_cfl, comm=comm, vis_timer=vis_timer) try: (current_step, current_t, current_state) = \ advance_state(rhs=my_rhs, timestepper=timestepper, checkpoint=my_checkpoint, get_timestep=get_timestep, state=current_state, t=current_t, t_final=t_final, logmgr=logmgr, eos=eos, dim=dim) except ExactSolutionMismatch as ex: current_step = ex.step current_t = ex.t current_state = ex.state # if current_t != checkpoint_t: if rank == 0: logger.info("Checkpointing final state ...") my_checkpoint(current_step, t=current_t, dt=(current_t - checkpoint_t), state=current_state) if current_t - t_final < 0: raise ValueError("Simulation exited abnormally") if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data())
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Run the example.""" cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) from mpi4py import MPI comm = MPI.COMM_WORLD num_parts = comm.Get_size() logmgr = initialize_logmgr(use_logmgr, filename="heat-source.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis mesh_dist = MPIMeshDistributor(comm) dim = 2 nel_1d = 16 t = 0 t_final = 0.0002 istep = 0 if mesh_dist.is_mananger_rank(): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(-0.5,)*dim, b=(0.5,)*dim, nelements_per_axis=(nel_1d,)*dim, boundary_tag_to_face={ "dirichlet": ["+x", "-x"], "neumann": ["+y", "-y"] } ) print("%d elements" % mesh.nelements) part_per_element = get_partition_by_pymetis(mesh, num_parts) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) del mesh else: local_mesh = mesh_dist.receive_mesh_part() order = 3 discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) if dim == 2: # no deep meaning here, just a fudge factor dt = 0.0025/(nel_1d*order**2) else: raise ValueError("don't have a stable time step guesstimate") source_width = 0.2 from arraycontext import thaw nodes = thaw(discr.nodes(), actx) boundaries = { DTAG_BOUNDARY("dirichlet"): DirichletDiffusionBoundary(0.), DTAG_BOUNDARY("neumann"): NeumannDiffusionBoundary(0.) } u = discr.zeros(actx) if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr.add_watches(["step.max", "t_step.max", "t_log.max"]) try: logmgr.add_watches(["memory_usage_python.max", "memory_usage_gpu.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["multiply_time.max"]) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) vis = make_visualizer(discr) def rhs(t, u): return ( diffusion_operator( discr, quad_tag=DISCR_TAG_BASE, alpha=1, boundaries=boundaries, u=u) + actx.np.exp(-np.dot(nodes, nodes)/source_width**2)) compiled_rhs = actx.compile(rhs) rank = comm.Get_rank() while t < t_final: if logmgr: logmgr.tick_before() if istep % 10 == 0: print(istep, t, actx.to_numpy(actx.np.linalg.norm(u[0]))) vis.write_vtk_file("fld-heat-source-mpi-%03d-%04d.vtu" % (rank, istep), [ ("u", u) ], overwrite=True) u = rk4_step(u, t, dt, compiled_rhs) t += dt istep += 1 if logmgr: set_dt(logmgr, dt) logmgr.tick_after() final_answer = discr.norm(u, np.inf) resid = abs(final_answer - 0.00020620711665201585) if resid > 1e-15: raise ValueError(f"Run did not produce the expected result {resid=}")
def main(): cl_ctx = cl.create_some_context() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) comm = MPI.COMM_WORLD num_parts = comm.Get_size() from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis mesh_dist = MPIMeshDistributor(comm) dim = 2 nel_1d = 16 if mesh_dist.is_mananger_rank(): from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, n=(nel_1d, ) * dim) print("%d elements" % mesh.nelements) part_per_element = get_partition_by_pymetis(mesh, num_parts) local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts) del mesh else: local_mesh = mesh_dist.receive_mesh_part() order = 3 discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) if dim == 2: # no deep meaning here, just a fudge factor dt = 0.75 / (nel_1d * order**2) elif dim == 3: # no deep meaning here, just a fudge factor dt = 0.45 / (nel_1d * order**2) else: raise ValueError("don't have a stable time step guesstimate") fields = flat_obj_array(bump(actx, discr), [discr.zeros(actx) for i in range(discr.dim)]) vis = make_visualizer(discr, order + 3 if dim == 2 else order) def rhs(t, w): return wave_operator(discr, c=1, w=w) rank = comm.Get_rank() t = 0 t_final = 3 istep = 0 while t < t_final: fields = rk4_step(fields, t, dt, rhs) if istep % 10 == 0: print(istep, t, discr.norm(fields[0])) vis.write_vtk_file( "fld-wave-eager-mpi-%03d-%04d.vtu" % (rank, istep), [ ("u", fields[0]), ("v", fields[1:]), ]) t += dt istep += 1