Example #1
0
    def run_ff(self,
               exp: ms.MSExperiment,
               type: str = 'centroided') -> ms.FeatureMap:
        """Runs an existing OpenMS feature finder on an experiment.

        Keyword arguments:
        exp: the experiment to run the existing feature finder on
        type: the name of the existing feature finder to run

        Returns: the features in the experiment.
        """
        if type == 'multiplex':
            return self.run_ffm(exp)

        ff = ms.FeatureFinder()
        ff.setLogType(ms.LogType.NONE)
        features, seeds = ms.FeatureMap(), ms.FeatureMap()

        params = ms.FeatureFinder().getParameters(
            type)  # default (Leon's) (modified)
        params.__setitem__(b'mass_trace:min_spectra', 7)  # 10 (5) (7)
        params.__setitem__(b'mass_trace:max_missing', 1)  # 1 (2) (1)
        params.__setitem__(b'seed:min_score', 0.65)  # 0.8 (0.5) (0.65)
        params.__setitem__(b'feature:min_score', 0.6)  # 0.7 (0.5) (0.6)

        exp.updateRanges()
        ff.run(type, exp, features, params, seeds)

        features.setUniqueIds()
        return features
Example #2
0
    def load_feature_maps(self, **kwargs):

        self.reference = oms.FeatureMap()
        self.toAlign = oms.FeatureMap()
        self.xml_file = oms.FeatureXMLFile()
        self.xml_file.load(self.input_fm_1, self.reference)
        self.xml_file.load(self.input_fm_2, self.toAlign)
Example #3
0
    def main(self): 
        #after path_parsing method we have self.src_full_name_list
        
        for f in get_list_full_names(self.src):
            print("Map Alignment implementation")
            print("Source file:", f)
            # to prepare(init) empty list and entity;
            self.init_entity(**self.kw)

            self.reference_map = oms.FeatureMap()
            self.toAlign_map = oms.FeatureMap()
            
            oms.FeatureXMLFile().load(self.reference_file, self.reference_map)
            oms.FeatureXMLFile().load(f, self.toAlign_map)
            
            #Set reference_map file
            self.ma.entity.setReference(self.reference_map)
            
            #3rd step create object for the computed transformation
            transformation = oms.TransformationDescription()

            # the 4rd step:
            self.ma.entity.align(self.toAlign_map, transformation)
            # the 5th step: is store result into file;
            self.dst_full_file_name = os.path.join(self.dst,\
                convert_src_to_dst_file_name(f,
                                            self.dst,
                                            self.suffix_dst_files,
                                            self.ext_dst_files) )
            
            #print("dst=",dst_full_file_name)
            oms.FeatureXMLFile().store(self.dst_full_file_name, self.toAlign_map)
            oms.FeatureXMLFile().store(self.dst_full_file_name, self.reference_map)

            print("Aligned data stored into:", self.dst_full_file_name)
Example #4
0
def run_feature_finder_centroided_on_experiment(input_map):
    """Function that runs FeatureFinderCentroided on the given input map.

    Args:
        input_map (MSExperiment): An OpenMS MSExperiment object.

    Returns:
        FeatureMap: A FeatureMap containing the found features from the given
        experiment.
    """
    # Load data
    input_map.updateRanges()

    ff = ms.FeatureFinder()
    ff.setLogType(ms.LogType.CMD)

    # Run the feature finder
    name = 'centroided'
    features = ms.FeatureMap()
    seeds = ms.FeatureMap()
    params = ms.FeatureFinder().getParameters(name)
    params.__setitem__(b'mass_trace:min_spectra', 5)
    params.__setitem__(b'mass_trace:max_missing', 2)
    params.__setitem__(b'seed:min_score', 0.5)
    params.__setitem__(b'feature:min_score', 0.5)
    ff.run(name, input_map, features, params, seeds)

    features.setUniqueIds()

    return features
Example #5
0
    def setup_feature_finder(self):

        # setting up the FeatureFinder
        self.seeds = oms.FeatureMap()
        self.ff = oms.FeatureFinder()
        self.features = oms.FeatureMap()
        self.ff.setLogType(oms.LogType.CMD)
Example #6
0
def detect_peaks_gcms_centroid(ms_experiment, parameters, debug=False):
    """
    Applicable to centroided experiments, also see https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Documentation/nightly/html/a16103.html
    :param ms_experiment:
    :param parameters:
    :return:
    """
    print(f"Detecting peaks with {GCMSPeakDetectionMethod.CENTROIDED}")
    ff = oms.FeatureFinder()

    if not debug:
        ff.setLogType(oms.LogType.NONE)
    else:
        ff.setLogType(oms.LogType.CMD)

    # Run the feature finder
    name = "centroided"
    pdm_name = GCMSPeakDetectionMethod.CENTROIDED.name
    parameters['detection_mode'] = name
    parameters['pdm_name'] = pdm_name
    # name = parameters['detection_mode']
    features = oms.FeatureMap()
    seeds = oms.FeatureMap()
    ff_params = oms.FeatureFinder().getParameters(name)
    ff.run(name, ms_experiment, features, ff_params, seeds)
    # features.setUniqueIds()
    features.ensureUniqueId()
    fh = oms.FeatureXMLFile()
    feature_storage_path = f"{parameters['input_filename']}_output.featureXML"
    fh.store(feature_storage_path, features)
    parameters['feature_storage'] = feature_storage_path
    print("Found", features.size(), "features")
    return parameters
Example #7
0
def detect_peaks_gcms_peak_picker_wavelet(ms_experiment, parameters):
    """
    Use isotop wavelet to process raw data - can perform poorly on centroided data
        https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Documentation/nightly/html/a16159.html
    TODO use "corrected" intensity_type
    :param ms_experiment:
    :param parameters:
    :return:
    """
    #set estimate_peak_width to true

    # Run the feature finder
    name = "peak_picker_wavelet"
    parameters['detection_mode'] = name

    # outdated code in https://github.com/OpenMS/pyopenms-extra/blob/master/src/examples/peakpicker_scipyFFT.py

    # pick spectrum
    ff = oms.FeatureFinder()
    ff.setLogType(oms.LogType.NONE)

    algo_name = oms.FeatureFinderAlgorithmIsotopeWavelet().getProductName()
    # picker = oms.FeatureFinderAlgorithmIsotopeWavelet()

    feature_map = oms.FeatureMap()
    seeds = oms.FeatureMap()

    # seeds = FeatureMap()
    algo_params = ff.getParameters(algo_name)
    ff.run(algo_name, ms_experiment, feature_map, algo_params, seeds)
    feature_map.setUniqueIds()

    parameters = default_store_feature_xml(feature_map, parameters)

    return parameters
Example #8
0
def algorithm(exp, targeted, picker):

    output = pyopenms.FeatureMap()

    chrom_map = {}
    pepmap = {}
    trmap = {}
    for i, chrom in enumerate(exp.getChromatograms()):
        chrom_map[chrom.getNativeID()] = i
    for i, pep in enumerate(targeted.getPeptides()):
        pepmap[pep.id] = i
    for i, tr in enumerate(targeted.getTransitions()):
        tmp = trmap.get(tr.getPeptideRef(), [])
        tmp.append(i)
        trmap[tr.getPeptideRef()] = tmp

    for key, value in trmap.iteritems():
        print key, value
        transition_group = getTransitionGroup(exp, targeted, key, value,
                                              chrom_map)
        picker.pickTransitionGroup(transition_group)
        for mrmfeature in transition_group.getFeatures():
            features = mrmfeature.getFeatures()
            for f in features:
                # TODO
                # f.getConvexHulls().clear()
                f.ensureUniqueId()

            mrmfeature.setSubordinates(
                features)  # add all the subfeatures as subordinates
            output.push_back(mrmfeature)

    return output
Example #9
0
    def test_run_mrmfeaturefinder(self):

        # load chromatograms
        chromatograms = pyopenms.MSExperiment()
        fh = pyopenms.FileHandler()
        fh.loadExperiment(self.chromatograms, chromatograms)

        # load TraML file
        targeted = pyopenms.TargetedExperiment()
        tramlfile = pyopenms.TraMLFile()
        tramlfile.load(self.tramlfile, targeted)

        # Create empty files as input and finally as output
        empty_swath = pyopenms.MSExperiment()
        trafo = pyopenms.TransformationDescription()
        output = pyopenms.FeatureMap()

        # set up featurefinder and run
        featurefinder = pyopenms.MRMFeatureFinderScoring()
        featurefinder.pickExperiment(chromatograms, output, targeted, trafo,
                                     empty_swath)

        self.assertAlmostEqual(output.size(), 3)
        self.assertAlmostEqual(output[0].getRT(), 3119.092041015, eps)
        self.assertAlmostEqual(output[0].getIntensity(), 3614.99755859375, eps)
        self.assertAlmostEqual(
            output[0].getMetaValue(b"var_xcorr_shape_weighted"),
            0.997577965259552, eps)
        self.assertAlmostEqual(output[0].getMetaValue(b"sn_ratio"),
                               86.00413513183594, eps)
Example #10
0
    def main(self):
        #after path_parsing method we have self.src_full_name_list
        print("FeatureFindingMetabo implementation")
        
        for f in get_list_full_names(self.src):

            print("Source file:", f)
            # to prepare(init) empty list and entity;
            self.init_entity(**self.kw)
            
            input_map = oms.PeakMap() # the 1st step: load map;
            fm = oms.FeatureMap()
            oms.MzMLFile().load(f, input_map)
            # the 2nd step: apply_ffm;
            self.mtd.entity.run(input_map, self.output_mt)
            self.epd.entity.detectPeaks(self.output_mt, self.splitted_mt)
            self.ffm.entity.run(self.splitted_mt, fm, self.filtered_mt)
            # the 3d step: is store result into file;
            dst_full_file_name = os.path.join(self.dst,\
                convert_src_to_dst_file_name(f,
                                            self.dst,
                                            self.suffix_dst_files,
                                            self.ext_dst_files) )
           
            oms.FeatureXMLFile().store(dst_full_file_name, fm)
            
            print("Centroided data stored into:", dst_full_file_name)
Example #11
0
def algorithm(chromatograms, targeted):
    # Create empty files as input and finally as output
    empty_swath = pyopenms.MSExperiment()
    trafo = pyopenms.TransformationDescription()
    output = pyopenms.FeatureMap()

    # set up featurefinder and run
    featurefinder = pyopenms.MRMFeatureFinderScoring()
    # set the correct rt use values
    scoring_params = pyopenms.MRMFeatureFinderScoring().getDefaults()
    scoring_params.setValue("Scores:use_rt_score", 'false', '')
    featurefinder.setParameters(scoring_params)
    featurefinder.pickExperiment(chromatograms, output, targeted, trafo,
                                 empty_swath)

    # get the pairs
    pairs = []
    simple_find_best_feature(output, pairs, targeted)
    pairs_corrected = pyopenms.MRMRTNormalizer().rm_outliers(pairs, 0.95, 0.6)
    pairs_corrected = [list(p) for p in pairs_corrected]

    # // store transformation, using a linear model as default
    trafo_out = pyopenms.TransformationDescription()
    trafo_out.setDataPoints(pairs_corrected)
    model_params = pyopenms.Param()
    model_params.setValue("symmetric_regression", 'false', '')
    model_type = "linear"
    trafo_out.fitModel(model_type, model_params)
    return trafo_out
def algorithm(exp, targeted, picker, scorer, trafo):

    output = pyopenms.FeatureMap()

    scorer.prepareProteinPeptideMaps_(targeted)

    chrom_map = {}
    pepmap = {}
    trmap = {}
    for i, chrom in enumerate(exp.getChromatograms()):
        chrom_map[ chrom.getNativeID() ] = i
    for i, pep in enumerate(targeted.getCompounds() ):
        pepmap[ pep.id ] = i
    for i, tr in enumerate(targeted.getTransitions() ):
        tmp = trmap.get( tr.getPeptideRef() , [])
        tmp.append( i )
        trmap[ tr.getPeptideRef() ] = tmp

    swath_maps_dummy = []
    for key, value in trmap.iteritems():
        try:
            transition_group = getTransitionGroup(exp, targeted, key, value, chrom_map)
        except Exception:
            print "Skip ", key, value
            continue
        picker.pickTransitionGroup(transition_group);
        scorer.scorePeakgroups(transition_group, trafo, swath_maps_dummy, output, False);

    return output
Example #13
0
def detect_peaks_gcms_isotopewavelet(ms_experiment, parameters, debug=False):
    """
    Use isotop wavelet to process raw data - can perform poorly on centroided data
        - also see https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Documentation/nightly/html/a16105.html
    TODO use "corrected" intensity_type
    :param ms_experiment:
    :param parameters:
    :return:
    """
    print(f"Detecting peaks with {GCMSPeakDetectionMethod.ISOTOPEWAVELET}")
    ff = oms.FeatureFinder()
    if not debug:
        ff.setLogType(oms.LogType.NONE)
    else:
        ff.setLogType(oms.LogType.CMD)

    # Run the feature finder
    name = "isotope_wavelet"
    pdm_name = GCMSPeakDetectionMethod.ISOTOPEWAVELET.name
    parameters['detection_mode'] = name
    parameters['pdm_name'] = pdm_name
    # name = parameters['detection_mode']
    features = oms.FeatureMap()
    seeds = oms.FeatureMap()
    ff_params = ff.getParameters(name)

    # complains about "the extremal length of the wavelet is larger (47661) than the number of data points"
    # wavelet_length is defined by mz_cutoff / min_spacing
    # hr_data must be true if high-resolution data (orbitrap, FTICR)
    # hr_data parameter for isotopewavelet function
    is_hr_data = parameters.get("hr_data", False)
    if is_hr_data:
        hr_key = b"hr_data"  # hr_data takes extremely long - >= 2h per measurement of (!)32MB - there are way larger spectra...
        ff_params.setValue(hr_key, b"true")

    ff.run(name, ms_experiment, features, ff_params, seeds)
    features.setUniqueIds()
    fh = oms.FeatureXMLFile()
    feature_storage_path = f"{parameters['input_filename']}_output.featureXML"
    fh.store(feature_storage_path, features)
    parameters['feature_storage'] = feature_storage_path
    print("Found", features.size(), "features")
    return parameters
Example #14
0
def run_featurefinder_centroided(input_map, params, seeds, out_path):

    ff = pms.FeatureFinder()
    ff.setLogType(pms.LogType.CMD)

    features = pms.FeatureMap()
    name = pms.FeatureFinderAlgorithmPicked.getProductName()
    ff.run(name, input_map, features, params, seeds)

    fh = pms.FeatureXMLFile()
    fh.store(out_path, features)
Example #15
0
 def fit(self, filenames, max_peaks_per_file=1000):
     try:
         feature_map = oms.FeatureMap()
     except:
         pass
     n_files = len(filenames)
     for i, fn in enumerate(filenames):
         self.progress = 100*(i+1)/n_files
         feature_map += oms_ffmetabo_single_file(
             fn, max_peaks_per_file=max_peaks_per_file
         )
     self._feature_map = feature_map
Example #16
0
def testFeatureFinder():
    """
    @tests:
     FeatureFinder.__init__
     FeatureFinder.endProgress
     FeatureFinder.getLogType
     FeatureFinder.getParameters
     FeatureFinder.run
     FeatureFinder.setLogType
     FeatureFinder.setProgress
     FeatureFinder.startProgress
    """
    ff = pyopenms.FeatureFinder()
    name = pyopenms.FeatureFinderAlgorithmPicked.getProductName()
    ff.run(name, pyopenms.MSExperiment(), pyopenms.FeatureMap(),
           pyopenms.Param(), pyopenms.FeatureMap())

    _testProgressLogger(ff)

    p = ff.getParameters(name)
    _testParam(p)
Example #17
0
    def collect_convex_hulls(self):

        self.convex_hulls = []

        # opening featureXML
        xml_file = oms.FeatureXMLFile()
        self.fmap = oms.FeatureMap()
        xml_file.load(self.feature_xml_fname, self.fmap)
        feature_mzs = []

        for i, fe in enumerate(self.fmap):

            feature_mzs.append([i, fe.getMZ()])

        feature_mzs = np.array(feature_mzs)
        feature_mzs = feature_mzs[feature_mzs[:, 1].argsort(), :]

        # looking up the example features in the featureXML
        self.examples_oms_features = {}

        for ex, (mz_t, mz_m) in self.peaks_peaks.items():

            i_mz_fe = lookup.find(feature_mzs[:, 1], mz_m, t=10)

            if i_mz_fe:

                self.examples_oms_features[feature_mzs[i_mz_fe, 0]] = ex

        # collecting convex hulls
        for ife, fe in enumerate(self.fmap):

            if ife in self.examples_oms_features:

                hull_list = fe.getConvexHulls()

                self.extend_hulls(hull_list, ife, 0)

                subord_feature = fe.getSubordinates()

                if subord_feature:

                    for subfe in subord_feature:

                        hull_list = subfe.getConvexHulls()

                        self.extend_hulls(hull_list, ife, 1)

        # columns: rt, mz, feature index, hull index, is sub-feature
        self.convex_hulls = np.vstack(self.convex_hulls)
        self.oms_feature_mzs = feature_mzs[feature_mzs[:, 0].argsort(), :]
Example #18
0
def id_mapper(in_file, id_file, out_file, params, use_centroid_rt,
              use_centroid_mz, use_subelements):

    in_type = pms.FileHandler.getType(in_file)

    protein_ids = []
    peptide_ids = []

    pms.IdXMLFile().load(id_file, protein_ids, peptide_ids)

    mapper = pms.IDMapper()
    mapper.setParameters(params)

    if in_type == pms.Type.CONSENSUSXML:
        file_ = pms.ConsensusXMLFile()
        map_ = pms.ConsensusMap()
        file_.load(in_file, map_)
        mapper.annotate(map_, peptide_ids, protein_ids, use_subelements)
        addDataProcessing(
            map_, params,
            pms.DataProcessing.ProcessingAction.IDENTIFICATION_MAPPING)
        file_.store(out_file, map_)

    elif in_type == pms.Type.FEATUREXML:
        file_ = pms.FeatureXMLFile()
        map_ = pms.FeatureMap()
        file_.load(in_file, map_)
        mapper.annotate(map_, peptide_ids, protein_ids, use_centroid_rt,
                        use_centroid_mz)
        addDataProcessing(
            map_, params,
            pms.DataProcessing.ProcessingAction.IDENTIFICATION_MAPPING)
        file_.store(out_file, map_)

    elif in_type == pms.Type.MZQ:
        file_ = pms.MzQuantMLFile()
        msq = pms.MSQuantifications()
        file_.load(in_file, msq)
        maps = msq.getConsensusMaps()
        for map_ in maps:
            mapper.annotate(map_, peptide_ids, protein_ids, use_subelements)
            addDataProcessing(
                map_, params,
                pms.DataProcessing.ProcessingAction.IDENTIFICATION_MAPPING)
        msq.setConsensusMaps(maps)
        file_.store(out_file, msq)

    else:
        raise Exception("invalid input file format")
Example #19
0
    def mgf(self):
        """
        Opens an mzML file.
        """

        options = oms.PeakFileOptions()
        options.setMSLevels([2])
        self.mzml = oms.MzMLFile()
        self.mzml.setOptions(options)
        self.exp = oms.MSExperiment()
        self.mzml.load(self.fname, self.exp)
        self.feature_finder = oms.FeatureFinder()
        self.ffname = 'centroided'
        self.features = oms.FeatureMap()
        self.seeds = oms.FeatureMap()
        self.params = oms.FeatureFinder().getParameters(self.ffname)
        self.feature_finder.run(
            self.ffname,
            self.exp,
            self.features,
            self.params,
            self.seeds,
        )
        self.features.setUniqueIds()
Example #20
0
    def match_features_internal(self,
                                features: ms.FeatureMap) -> ms.FeatureMap:
        """Matches features in a single bin; intended to correct satellite features.

        The feature in each feature set with the largest convex hull becomes the 'representative'
        feature of that set and the rest are discarded.

        Keyword arguments:
        features: the features of a single bin for intra-bin matching

        Returns: a matched set of features.
        """
        features.sortByRT()
        matched = ms.FeatureMap()

        for i in range(features.size()):
            feature1 = features[i]
            max_area = util.polygon_area(
                feature1.getConvexHull().getHullPoints())
            max_feature = feature1

            similar = []
            first_idx = util.binary_search_left_rt(
                features,
                feature1.getRT() - self.RT_THRESHOLD)

            for j in range(first_idx, features.size()):
                if i == j:
                    continue
                feature2 = features[j]
                if feature2.getRT() > feature1.getRT() + self.RT_THRESHOLD:
                    break

                if util.similar_features(feature1, feature2, self.RT_THRESHOLD,
                                         self.MZ_THRESHOLD):
                    similar.append(feature2)

            for feature2 in similar:
                area = util.polygon_area(
                    feature2.getConvexHull().getHullPoints())
                if area > max_area:
                    max_area = area
                    max_feature = feature2

            if max_feature not in matched:
                matched.push_back(max_feature)

        return matched
Example #21
0
def oms_ffmetabo_single_file(filename, max_peaks_per_file=5000):

    feature_map = oms.FeatureMap()
    mass_traces = []
    mass_traces_split = []
    mass_traces_filtered = []
    exp = oms.MSExperiment()
    peak_map = oms.PeakMap()
    options = oms.PeakFileOptions()
    
    options.setMSLevels([1])

    if filename.lower().endswith('.mzxml'):
        fh = oms.MzXMLFile()

    elif filename.lower().endswith('.mzml'):
        fh = oms.MzMLFile()
    else:
        assert False, filename

    fh.setOptions(options)

    # Peak map
    fh.load(filename, exp)

    #for chrom in exp.getChromatograms():
    #    peak_map.addChrom(chrom)

    for spec in exp.getSpectra():
        peak_map.addSpectrum(spec)

    mass_trace_detect = oms.MassTraceDetection()
    mass_trace_detect.run(peak_map, mass_traces, max_peaks_per_file)

    elution_peak_detection = oms.ElutionPeakDetection()
    elution_peak_detection.detectPeaks(mass_traces, mass_traces_split)

    feature_finding_metabo = oms.FeatureFindingMetabo()
    feature_finding_metabo.run(
                mass_traces_split,
                feature_map,
                mass_traces_filtered)

    feature_map.sortByOverallQuality()
    return feature_map
Example #22
0
def testFeatureXMLFile():
    """
    @tests:
     FeatureXMLFile.__init__
     FeatureXMLFile.load
     FeatureXMLFile.store
     FileHandler.__init__
     FileHandler.loadFeatures
    """

    fm = pyopenms.FeatureMap()
    fm.setUniqueIds()
    fh = pyopenms.FeatureXMLFile()
    fh.store("test.featureXML", fm)
    fh.load("test.featureXML", fm)

    fh = pyopenms.FileHandler()
    fh.loadFeatures("test.featureXML", fm)
Example #23
0
    def test_run_mrmrtnormalizer(self):

        # load chromatograms
        chromatograms = pyopenms.MSExperiment()
        fh = pyopenms.FileHandler()
        fh.loadExperiment(self.chromatograms, chromatograms)

        # load TraML file
        targeted = pyopenms.TargetedExperiment()
        tramlfile = pyopenms.TraMLFile()
        tramlfile.load(self.tramlfile, targeted)

        # Create empty files as input and finally as output
        empty_swath = pyopenms.MSExperiment()
        trafo = pyopenms.TransformationDescription()
        output = pyopenms.FeatureMap()

        # set up featurefinder and run
        featurefinder = pyopenms.MRMFeatureFinderScoring()
        # set the correct rt use values
        scoring_params = pyopenms.MRMFeatureFinderScoring().getDefaults()
        scoring_params.setValue("Scores:use_rt_score".encode(),
                                'false'.encode(), ''.encode())
        featurefinder.setParameters(scoring_params)
        featurefinder.pickExperiment(chromatograms, output, targeted, trafo,
                                     empty_swath)

        # get the pairs
        pairs = []
        simple_find_best_feature(output, pairs, targeted)
        pairs_corrected = pyopenms.MRMRTNormalizer().removeOutliersIterative(
            pairs, 0.95, 0.6, True, "iter_jackknife")
        pairs_corrected = [list(p) for p in pairs_corrected]

        expected = [(1497.56884765625, 1881.0), (2045.9776611328125, 2409.0),
                    (2151.4814453125, 2509.0), (1924.0750732421875, 2291.0),
                    (612.9832153320312, 990.0), (1086.2474365234375, 1470.0),
                    (1133.89404296875, 1519.0), (799.5291137695312, 1188.0),
                    (1397.1541748046875, 1765.0)]

        for exp, res in zip(expected, pairs_corrected):
            self.assertAlmostEqual(exp[0], res[0], eps)
            self.assertAlmostEqual(exp[1], res[1], eps)
Example #24
0
def parse_featureXML_GT(feature_file):
    featuremap = pyopenms.FeatureMap()
    featurexml = pyopenms.FeatureXMLFile()
    featurexml.load(feature_file, featuremap)

    hulls = pd.DataFrame(
        columns=['rt_min', 'rt_max', 'mz_min', 'mz_max', 'detected', 'pic_id'])
    for i in range(featuremap.size()):
        feature = featuremap[i]
        chs = feature.getConvexHulls()
        for j in range(len(chs)):
            pts = chs[j].getHullPoints()
            hulls.loc[len(hulls)] = [
                pts.min(0)[0],
                pts.max(0)[0],
                pts.min(0)[1],
                pts.max(0)[1], False, -1
            ]
    return hulls
Example #25
0
def FeatureFindingMetabo(mzfile, noise_threshold_int, snr):
    finder = 'C:/Program Files/OpenMS/bin/FeatureFinderMetabo.exe'
    feature_file = 'tmp.featureXML'
    noise_threshold_int = noise_threshold_int / snr
    subprocess.call([finder, '-in', mzfile, '-out', feature_file, 
               '-algorithm:common:noise_threshold_int', f'{noise_threshold_int}',
               '-algorithm:common:chrom_peak_snr', f'{snr}',
               '-algorithm:common:chrom_fwhm', '10',
               '-algorithm:mtd:mass_error_ppm', '20',
               '-algorithm:mtd:reestimate_mt_sd', 'true',
               '-algorithm:mtd:min_sample_rate', '0',
               '-algorithm:mtd:min_trace_length', '2',
               '-algorithm:epd:width_filtering', 'off',
               '-algorithm:ffm:charge_lower_bound', '1',
               '-algorithm:ffm:charge_lower_bound', '5'])  
    featuremap = pyopenms.FeatureMap()
    featurexml = pyopenms.FeatureXMLFile()
    featurexml.load(feature_file, featuremap)
    os.remove(feature_file)
    return featuremap
Example #26
0
def FeatureFindingMetabo1(mzfile):
    exp = pyopenms.MSExperiment()
    pyopenms.MzMLFile().load(mzfile, exp)

    mtd_params = pyopenms.MassTraceDetection().getDefaults()
    mtd = pyopenms.MassTraceDetection()
    mtd.setParameters(mtd_params)
    mass_traces = []
    mtd.run(exp, mass_traces)

    epdet_params = pyopenms.ElutionPeakDetection().getDefaults()
    epdet = pyopenms.ElutionPeakDetection()
    epdet.setParameters(epdet_params)
    splitted_mass_traces = []
    epdet.detectPeaks(mass_traces, splitted_mass_traces)

    ffm_params = pyopenms.FeatureFindingMetabo().getDefaults()
    ffm = pyopenms.FeatureFindingMetabo()
    ffm.setParameters(ffm_params)
    feature_map = pyopenms.FeatureMap()
    ffm.run(splitted_mass_traces, feature_map)
    return feature_map
Example #27
0
def run_featurefinder_centroided(input_path, params, seeds, out_path):

    fh = pms.MzMLFile()
    options = pms.PeakFileOptions()
    options.setMSLevels([1,1])
    fh.setOptions(options)
    input_map = pms.MSExperiment()
    fh.load(input_path, input_map)
    input_map.updateRanges()

    ff = pms.FeatureFinder()
    ff.setLogType(pms.LogType.CMD)

    features = pms.FeatureMap()
    name = pms.FeatureFinderAlgorithmPicked.getProductName()
    ff.run(name, input_map, features, params, seeds)

    features.setUniqueIds()
    addDataProcessing(features, params, pms.ProcessingAction.QUANTITATION)

    fh = pms.FeatureXMLFile()
    fh.store(out_path, features)
Example #28
0
def extract_data(in_file_name, mz_search):
    xml_file = oms.FeatureXMLFile()
    fmap = oms.FeatureMap()
    xml_file.load(in_file_name, fmap)
    delta = 0.01
    #print( "FeatureMap size=", fmap.size() )
    for n in fmap:
        
        #if mz_search == n.getMZ():
        if abs(mz_search - n.getMZ()) < delta:
            """
            print( "mz=", n.getMZ(),
                    "rt=", n.getRT(),
                    " intensity=", n. getIntensity(),
                    "width=", n.getWidth(),
                    "charge=", n. getCharge() )
            """
            
            hull_list = n.getConvexHulls()  #getConvexHull() return ConvexHull2D;
            for hull in hull_list:
                hull_points = hull.getHullPoints()  # hull_points is numpy.ndarray;
                #print( "hull_points.size=", hull_points.size )
                for p in hull_points:
                    print( p[0], p[1] )
            
            subord_feature = n.getSubordinates()
            if subord_feature:
                #print("getSubordinates:")
                for f in subord_feature:
                    hull_list = f.getConvexHulls()
                    for hull in hull_list:
                        hull_points = hull.getHullPoints()  # hull_points is numpy.ndarray;
                        #print( "hull_points.size=", hull_points.size )
                        for p in hull_points:
                            print( p[0], p[1] )
        else:

            continue
Example #29
0
def main(options):

    # load featureXML
    features = pyopenms.FeatureMap()
    fh = pyopenms.FileHandler()
    fh.loadFeatures(options.infile, features)

    # load TraML file
    targeted = pyopenms.TargetedExperiment();
    tramlfile = pyopenms.TraMLFile();
    tramlfile.load(options.traml_in, targeted);

    # write TSV file
    filename = options.infile.split(".")[0]
    fh = open(options.outfile, "w")
    wr = csv.writer(fh, delimiter='\t')
    header = get_header(features)
    wr.writerow(header)
    for f in features:
        keys = []
        f.getKeys(keys)
        row = convert_to_row(f,targeted,filename,keys,filename)
        wr.writerow(row)
Example #30
0
import pyopenms
"""
Producing the test data for TOPP_FeatureLinkerUnlabeledQT_5 and TOPP_FeatureLinkerUnlabeledQT_6
"""

fmaps = [pyopenms.FeatureMap() for i in range(3)]
pepids = []
pepseq = ["PEPTIDEA", "PEPTIDEK", "PEPTIDER"]
for s in pepseq:
    pepid = pyopenms.PeptideIdentification()
    hit = pyopenms.PeptideHit()
    hit.setSequence(pyopenms.AASequence.fromString(s, True))
    pepid.insertHit(hit)
    pepid.setIdentifier("Protein0")
    pepids.append(pepid)

protid = pyopenms.ProteinIdentification()
protid.setIdentifier("Protein0")
for i, fmap in enumerate(fmaps):
    fmap.setProteinIdentifications([protid])
    # add 3 features to each map, but with a twist (adding different peptide ids to different maps)
    for k in range(3):
        f = pyopenms.Feature()
        f.setRT(300 + k * 100 + i * 10)
        f.setMZ(500 + k * 0.001 + i * 0.01)
        f.setIntensity(500 + i * 100)
        f.setMetaValue("sequence",
                       pepseq[(i + k) % 3])  # easier viewing in TOPPView
        f.setPeptideIdentifications([pepids[(i + k) % 3]])
        fmap.push_back(f)
    pyopenms.FeatureXMLFile().store("output_%s.featureXML" % i, fmap)