Example #1
0
def build_template(in_files, slits, wv_cuts, binspec, outroot,
                   lowredux=True, ifiles=None, det_cut=None, chk=False):
    """
    Generate a full_template for a given instrument

    Args:
        in_files:
        slits:
        wv_cuts:
        binspec:
        outroot:
        lowredux:
        ifiles:
        det_cut:
        chk:

    Returns:

    """
    # Load xidl file
    # Grab it
    # Load and splice
    yvals = []
    lvals = []
    if not isinstance(in_files,list):
        in_files = [in_files]
        ifiles = [0]*len(slits)
    for kk, slit in enumerate(slits):
        in_file = in_files[ifiles[kk]]
        if lowredux:
            wv_vac, spec = xidl_arcspec(in_file, slit)
        else:
            wv_vac, spec = pypeit_arcspec(in_file, slit)
        # Cut
        if len(slits) > 1:
            if kk == 0:
                llow = 0.
                lhi = wv_cuts[0]
            elif kk == len(slits)-1:
                llow = wv_cuts[kk-1]
                lhi = 1e9
            else:
                llow = wv_cuts[kk-1]
                lhi = wv_cuts[kk]
            #
            gdi = (wv_vac > llow) & (wv_vac < lhi)
        else:
            gdi = np.arange(spec.size).astype(int)
        # Append
        yvals.append(spec[gdi])
        lvals.append(wv_vac[gdi])
    # Concatenate
    nwspec = np.concatenate(yvals)
    nwwv = np.concatenate(lvals)
    # Check
    if chk:
        debugger.plot1d(nwwv, nwspec)
    # Generate the table
    write_template(nwwv, nwspec, binspec, outpath, outroot, det_cut=det_cut)
Example #2
0
 def show_sensfunc(self):
     """
     Plot the sensitivity function
     """
     if self.sens_dict is None:
         msgs.warn("You need to generate the sens_dict first!")
         return None
     # Generate from model
     #wave = np.linspace(self.sens_dict['wave_min'], self.sens_dict['wave_max'], 1000)
     #mag_func = utils.func_val(self.sens_dict['c'], wave, self.sens_dict['func'])
     #sens = 10.0**(0.4*mag_func)
     # Plot
     debugger.plot1d(self.sens_dict['wave'],
                     self.sens_dict['sensfunc'],
                     xlbl='Wavelength',
                     ylbl='Sensitivity Function')
Example #3
0
 def show_sensfunc(self):
     """
     Plot the sensitivity function
     """
     if self.sens_dict is None:
         msgs.warn("You need to generate the sens_dict first!")
         return None
     # Generate from model
     #wave = np.linspace(self.sens_dict['wave_min'], self.sens_dict['wave_max'], 1000)
     #mag_func = utils.func_val(self.sens_dict['c'], wave, self.sens_dict['func'])
     #sens = 10.0**(0.4*mag_func)
     # Plot
     if self.spectrograph.pypeline == 'Echelle':
         for iord in range(len(self.std)):
             sord = str(iord)
             debugger.plot1d(self.sens_dict[sord]['wave'],
                             self.sens_dict[sord]['sensfunc'],
                             xlbl='Wavelength',
                             ylbl='Sensitivity Function')
     else:
         debugger.plot1d(self.sens_dict['0']['wave'],
                         self.sens_dict['0']['sensfunc'],
                         xlbl='Wavelength',
                         ylbl='Sensitivity Function')
Example #4
0
def build_template(in_files, slits, wv_cuts, binspec, outroot, outdir=None,
                   normalize=False, subtract_conti=False, wvspec=None,
                   lowredux=True, ifiles=None, det_cut=None, chk=False,
                   miny=None, overwrite=True):
    """
    Generate a full_template for a given instrument

    Args:
        in_files (list or str):
            Wavelength solution files, XIDL or PypeIt
        slits (list):
            Slits in the archive files to use
        wv_cuts (list):
            Wavelengths to cut each slit at
        binspec (int):
            Spectral binning of the archived spectrum
        outroot (str):
            Name of output archive
        outdir (str):
            Name of output directory
        lowredux (bool, optional):
            If true, in_files are from LowRedux
        wvspec (ndarray, optional):
            Manually input the wavelength values
        ifiles (list, optional):
            Ordering of the in_files.  Default is np.arange(len(in_files))
        det_cut (dict, optional):
            Cut the detector into pieces.  Important for long detectors with wavelengths on one side
        chk (bool, optional):
            Show a plot or two
        miny (float):
            Impose a minimum value
        normalize (bool, optional):
            If provided multiple in_files, normalize each
            snippet to have the same maximum amplitude.
        subtract_conti (bool, optional):
            Subtract the continuum for the final archive
    """
    if outdir is None:
        outdir = outpath

    # Load xidl file
    # Grab it
    # Load and splice
    yvals = []
    lvals = []
    if not isinstance(in_files,list):
        in_files = [in_files]
        ifiles = [0]*len(slits)
    for kk, slit in enumerate(slits):
        if wvspec is None:
            in_file = in_files[ifiles[kk]]
            if lowredux:
                wv_vac, spec = xidl_arcspec(in_file, slit)
            else:
                wv_vac, spec = pypeit_arcspec(in_file, slit)
        else:
            wv_vac, spec = wvspec['wv_vac'], wvspec['spec']
        # Cut
        if len(slits) > 1:
            if kk == 0:
                llow = 0.
                lhi = wv_cuts[0]
            elif kk == len(slits)-1:
                llow = wv_cuts[kk-1]
                lhi = 1e9
            else:
                llow = wv_cuts[kk-1]
                lhi = wv_cuts[kk]
            #
            gdi = (wv_vac > llow) & (wv_vac < lhi)
        else:
            gdi = np.arange(spec.size).astype(int)
        # Append
        yvals.append(spec[gdi])
        lvals.append(wv_vac[gdi])
    # Continuum
    if subtract_conti:
        for kk,spec in enumerate(yvals):
            _, _, _, _, spec_cont_sub = wvutils.arc_lines_from_spec(spec)
            yvals[kk] = spec_cont_sub
    # Normalize?
    if normalize:
        norm_val = 10000.
        # Max values
        maxs = []
        for kk,spec in enumerate(yvals):
            mx = np.max(spec)
            spec = spec * norm_val / mx
            yvals[kk] = spec
    # Concatenate
    nwspec = np.concatenate(yvals)
    nwwv = np.concatenate(lvals)
    # Min y?
    if miny is not None:
        nwspec = np.maximum(nwspec, miny)
    # Check
    if chk:
        debugger.plot1d(nwwv, nwspec)
        embed(header='123')
    # Generate the table
    write_template(nwwv, nwspec, binspec, outdir, outroot, det_cut=det_cut, overwrite=overwrite)