Example #1
0
    def test_get_extended_ZF(self):
        a = zadoffchu.calcBaseZC(139, u=20)
        b = zadoffchu.calcBaseZC(31, u=14)
        c = zadoffchu.calcBaseZC(19, u=5)

        # Compute and test the extended root sequence a for size 150
        a_ext = zadoffchu.get_extended_ZF(a, 150)
        expected_a_ext = np.hstack([a, a[0:11]])
        self.assertEqual(a_ext.size, 150)
        np.testing.assert_almost_equal(expected_a_ext, a_ext)

        # Compute and test the extended root sequence b for size 32
        b_ext = zadoffchu.get_extended_ZF(b, 32)
        expected_b_ext = np.hstack([b, b[0]])
        self.assertEqual(b_ext.size, 32)
        np.testing.assert_almost_equal(expected_b_ext, b_ext)

        # Compute and test the extended root sequence c for size 32
        c_ext = zadoffchu.get_extended_ZF(c, 32)
        expected_c_ext = np.hstack([c, c[0:13]])
        self.assertEqual(c_ext.size, 32)
        np.testing.assert_almost_equal(expected_c_ext, c_ext)

        # Compute and test the extended root sequence c for size 64
        c_ext = zadoffchu.get_extended_ZF(c, 64)
        expected_c_ext = np.hstack([c, c, c, c[0:7]])
        self.assertEqual(c_ext.size, 64)
        np.testing.assert_almost_equal(expected_c_ext, c_ext)
    def test_get_extended_ZF(self):
        a = zadoffchu.calcBaseZC(139, u=20)
        b = zadoffchu.calcBaseZC(31, u=14)
        c = zadoffchu.calcBaseZC(19, u=5)

        # Compute and test the extended root sequence a for size 150
        a_ext = zadoffchu.get_extended_ZF(a, 150)
        expected_a_ext = np.hstack([a, a[0:11]])
        self.assertEqual(a_ext.size, 150)
        np.testing.assert_almost_equal(expected_a_ext, a_ext)

        # Compute and test the extended root sequence b for size 32
        b_ext = zadoffchu.get_extended_ZF(b, 32)
        expected_b_ext = np.hstack([b, b[0]])
        self.assertEqual(b_ext.size, 32)
        np.testing.assert_almost_equal(expected_b_ext, b_ext)

        # Compute and test the extended root sequence c for size 32
        c_ext = zadoffchu.get_extended_ZF(c, 32)
        expected_c_ext = np.hstack([c, c[0:13]])
        self.assertEqual(c_ext.size, 32)
        np.testing.assert_almost_equal(expected_c_ext, c_ext)

        # Compute and test the extended root sequence c for size 64
        c_ext = zadoffchu.get_extended_ZF(c, 64)
        expected_c_ext = np.hstack([c, c, c, c[0:7]])
        self.assertEqual(c_ext.size, 64)
        np.testing.assert_almost_equal(expected_c_ext, c_ext)
    def test_seq_array(self):
        # calcBaseZC, get_srs_seq, get_extended_ZF

        expected_user_seq_no_ext1 = get_srs_seq(calcBaseZC(139, 25), 3)
        np.testing.assert_array_almost_equal(expected_user_seq_no_ext1,
                                             self.user_seq_no_ext1.seq_array())
        expected_user_seq_no_ext2 = get_srs_seq(calcBaseZC(31, 6), 1)
        np.testing.assert_array_almost_equal(expected_user_seq_no_ext2,
                                             self.user_seq_no_ext2.seq_array())
        expected_user_seq_no_ext2_other_shift = get_srs_seq(calcBaseZC(31, 6), 3)
        np.testing.assert_array_almost_equal(
            expected_user_seq_no_ext2_other_shift,
            self.user_seq_no_ext2_other.seq_array())

        expected_user_seq1 = get_srs_seq(get_extended_ZF(calcBaseZC(139, 25), 150), 7)
        np.testing.assert_array_almost_equal(self.user_seq1.seq_array(),
                                             expected_user_seq1)
        expected_user_seq2 = get_srs_seq(get_extended_ZF(calcBaseZC(139, 12), 150), 4)
        np.testing.assert_array_almost_equal(self.user_seq2.seq_array(),
                                             expected_user_seq2)
        expected_user_seq3 = get_srs_seq(get_extended_ZF(calcBaseZC(31, 25), 64), 1)
        np.testing.assert_array_almost_equal(self.user_seq3.seq_array(),
                                             expected_user_seq3)
        expected_user_seq4 = get_srs_seq(get_extended_ZF(calcBaseZC(31, 6), 64), 2)
        np.testing.assert_array_almost_equal(self.user_seq4.seq_array(),
                                             expected_user_seq4)
        expected_user_seq5 = get_srs_seq(get_extended_ZF(calcBaseZC(31, 6), 32), 3)
        np.testing.assert_array_almost_equal(self.user_seq5.seq_array(),
                                             expected_user_seq5)
        expected_user_seq6 = get_srs_seq(get_extended_ZF(calcBaseZC(31, 6), 256), 5)
        np.testing.assert_array_almost_equal(self.user_seq6.seq_array(),
                                             expected_user_seq6)
Example #4
0
    def test_calcBaseZC(self):
        Nzc = 63
        n = np.r_[0:Nzc]

        zf1 = calcBaseZC(Nzc=Nzc, u=0, q=0)
        self.assertEqual(zf1.size, 63)
        np.testing.assert_array_almost_equal(zf1, np.ones(63))

        zf2 = calcBaseZC(Nzc=Nzc, u=25, q=0)
        self.assertEqual(zf1.size, 63)

        expected_zf2 = np.exp(-1j * 25 * np.pi * n * (n + 1) / Nzc)
        np.testing.assert_array_almost_equal(zf2, expected_zf2)
Example #5
0
    def test_get_shifted_root_seq(self):
        Nzc = 63
        n = np.r_[0:Nzc]
        u = 25
        n_cs = 4
        denominator = 8

        zf1 = calcBaseZC(Nzc=Nzc, u=u, q=0)
        zf1_shifted = get_shifted_root_seq(zf1,
                                           n_cs=n_cs,
                                           denominator=denominator)
        expected_shifted_zf1 = zf1 * np.exp(
            1j * n * 2 * np.pi * n_cs / denominator)

        self.assertEqual(zf1_shifted.size, Nzc)
        np.testing.assert_almost_equal(zf1_shifted, expected_shifted_zf1)
Example #6
0
def main():
    # session = bp.Session(load_from_config=False)
    # bp.output_server(docname='simple_precoded_srs_AN1', session=session)
    bp.output_file('simple_precoded_srs.html', title="Simple Precoded SRS")

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Scenario Description xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # 3 Base Stations, each sending data to its own user while interfering
    # with the other users.

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Configuration xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    num_prbs = 25  # Number of PRBs to simulate
    Nsc = 12 * num_prbs  # Number of subcarriers
    Nzc = 149  # Size of the sequence
    u1 = 1  # Root sequence index of the first user
    u2 = 2  # Root sequence index of the first user
    u3 = 3  # Root sequence index of the first user
    numAnAnt = 4  # Number of Base station antennas
    numUeAnt = 2  # Number of UE antennas

    num_samples = 1  # Number of simulated channel samples (from
    # Jakes process)

    # Channel configuration
    speedTerminal = 0 / 3.6  # Speed in m/s
    fcDbl = 2.6e9  # Central carrier frequency (in Hz)
    timeTTIDbl = 1e-3  # Time of a single TTI
    subcarrierBandDbl = 15e3  # Subcarrier bandwidth (in Hz)
    numOfSubcarriersPRBInt = 12  # Number of subcarriers in each PRB
    L = 16  # The number of rays for the Jakes model.

    # Dependent parameters
    lambdaDbl = 3e8 / fcDbl  # Carrier wave length
    Fd = speedTerminal / lambdaDbl  # Doppler Frequency
    Ts = 1. / (Nsc * subcarrierBandDbl)  # Sampling time

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Generate the root sequence xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    a_u1 = get_extended_ZF(calcBaseZC(Nzc, u1), Nsc / 2)
    a_u2 = get_extended_ZF(calcBaseZC(Nzc, u2), Nsc / 2)
    a_u3 = get_extended_ZF(calcBaseZC(Nzc, u3), Nsc / 2)

    print("Nsc: {0}".format(Nsc))
    print("a_u.shape: {0}".format(a_u1.shape))

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Create shifted sequences for 3 users xxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # We arbitrarily choose some cyclic shift index and then we call
    # zadoffchu.get_srs_seq to get the shifted sequence.
    shift_index = 4
    r1 = get_srs_seq(a_u1, shift_index)
    r2 = get_srs_seq(a_u2, shift_index)
    r3 = get_srs_seq(a_u3, shift_index)

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Generate channels from users to the BS xxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    jakes_all_links = np.empty([3, 3], dtype=object)
    tdlchannels_all_links = np.empty([3, 3], dtype=object)
    impulse_responses = np.empty([3, 3], dtype=object)
    # Dimension: `UEs x ANs x num_subcarriers x numUeAnt x numAnAnt`
    freq_responses = np.empty([3, 3, Nsc, numUeAnt, numAnAnt], dtype=complex)

    for ueIdx in range(3):
        for anIdx in range(3):
            jakes_all_links[ueIdx,
                            anIdx] = JakesSampleGenerator(Fd,
                                                          Ts,
                                                          L,
                                                          shape=(numUeAnt,
                                                                 numAnAnt))

            tdlchannels_all_links[ueIdx, anIdx] = TdlChannel(
                jakes_all_links[ueIdx, anIdx],
                tap_powers_dB=COST259_TUx.tap_powers_dB,
                tap_delays=COST259_TUx.tap_delays)

            tdlchannels_all_links[ueIdx,
                                  anIdx].generate_impulse_response(num_samples)

            impulse_responses[ueIdx, anIdx] \
                = tdlchannels_all_links[
                ueIdx, anIdx].get_last_impulse_response()

            freq_responses[ueIdx, anIdx] = \
                impulse_responses[ueIdx, anIdx].get_freq_response(Nsc)[:, :, :,
                0]

    # xxxxxxxxxx Channels in downlink direction xxxxxxxxxxxxxxxxxxxxxxxxxxx
    # Dimension: `Nsc x numUeAnt x numAnAnt`
    dH11 = freq_responses[0, 0]
    dH12 = freq_responses[0, 1]
    dH13 = freq_responses[0, 2]
    dH21 = freq_responses[1, 0]
    dH22 = freq_responses[1, 1]
    dH23 = freq_responses[1, 2]
    dH31 = freq_responses[2, 0]
    dH32 = freq_responses[2, 1]
    dH33 = freq_responses[2, 2]

    # xxxxxxxxxx Principal dimension in downlink direction xxxxxxxxxxxxxxxx
    sc_idx = 124  # Index of the subcarrier we are interested in
    [dU11, _, _] = np.linalg.svd(dH11[sc_idx])
    [dU22, _, _] = np.linalg.svd(dH22[sc_idx])
    [dU33, _, _] = np.linalg.svd(dH33[sc_idx])

    # xxxxxxxxxx Users precoders xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # Users' precoders are the main column of the U matrix
    F11 = dU11[:, 0].conj()
    F22 = dU22[:, 0].conj()
    F33 = dU33[:, 0].conj()

    # xxxxxxxxxx Channels in uplink direction xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # int_path_loss = 0.05  # Path loss of the interfering links
    # int_g = math.sqrt(int_path_loss)  # Gain of interfering links
    # dir_d = 1.0                   #  Gain of direct links

    pl = np.array([[2.21e-08, 2.14e-09, 1.88e-08],
                   [3.45e-10, 2.17e-08, 4.53e-10],
                   [4.38e-10, 8.04e-10, 4.75e-08]])
    # pl = np.array([[  1,   0.1,   0.1],
    #                [  0.1,   1,   0.1],
    #                [  0.1,   0.1,   1]])

    # Dimension: `Nsc x numAnAnt x numUeAnt`
    uH11 = math.sqrt(pl[0, 0]) * np.transpose(dH11, axes=[0, 2, 1])
    uH12 = math.sqrt(pl[0, 1]) * np.transpose(dH12, axes=[0, 2, 1])
    uH13 = math.sqrt(pl[0, 2]) * np.transpose(dH13, axes=[0, 2, 1])
    uH21 = math.sqrt(pl[1, 0]) * np.transpose(dH21, axes=[0, 2, 1])
    uH22 = math.sqrt(pl[1, 1]) * np.transpose(dH22, axes=[0, 2, 1])
    uH23 = math.sqrt(pl[1, 2]) * np.transpose(dH23, axes=[0, 2, 1])
    uH31 = math.sqrt(pl[2, 0]) * np.transpose(dH31, axes=[0, 2, 1])
    uH32 = math.sqrt(pl[2, 1]) * np.transpose(dH32, axes=[0, 2, 1])
    uH33 = math.sqrt(pl[2, 2]) * np.transpose(dH33, axes=[0, 2, 1])

    # Compute the equivalent uplink channels
    uH11_eq = uH11.dot(F11)
    uH12_eq = uH12.dot(F22)
    uH13_eq = uH13.dot(F33)
    uH21_eq = uH21.dot(F11)
    uH22_eq = uH22.dot(F22)
    uH23_eq = uH23.dot(F33)
    uH31_eq = uH31.dot(F11)
    uH32_eq = uH32.dot(F22)
    uH33_eq = uH33.dot(F33)

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Compute Received Signals xxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # Calculate the received signals
    comb_indexes = np.r_[0:Nsc:2]
    Y1_term11 = uH11_eq[comb_indexes] * r1[:, np.newaxis]
    Y1_term12 = uH12_eq[comb_indexes] * r2[:, np.newaxis]
    Y1_term13 = uH13_eq[comb_indexes] * r3[:, np.newaxis]
    Y1 = Y1_term11 + Y1_term12 + Y1_term13

    Y2_term21 = uH21_eq[comb_indexes] * r1[:, np.newaxis]
    Y2_term22 = uH22_eq[comb_indexes] * r2[:, np.newaxis]
    Y2_term23 = uH23_eq[comb_indexes] * r3[:, np.newaxis]
    Y2 = Y2_term21 + Y2_term22 + Y2_term23

    Y3_term31 = uH31_eq[comb_indexes] * r1[:, np.newaxis]
    Y3_term32 = uH32_eq[comb_indexes] * r2[:, np.newaxis]
    Y3_term33 = uH33_eq[comb_indexes] * r3[:, np.newaxis]
    Y3 = Y3_term31 + Y3_term32 + Y3_term33

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Estimate the equivalent channel xxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    (uH11_eq_est, uH12_eq_est, uH13_eq_est, uH21_eq_est, uH22_eq_est,
     uH23_eq_est, uH31_eq_est, uH32_eq_est,
     uH33_eq_est) = estimate_channels_remove_only_direct(
         Y1, Y2, Y3, r1, r2, r3, Nsc, comb_indexes)

    (uH11_eq_est_SIC, uH12_eq_est_SIC, uH13_eq_est_SIC, uH21_eq_est_SIC,
     uH22_eq_est_SIC, uH23_eq_est_SIC, uH31_eq_est_SIC, uH32_eq_est_SIC,
     uH33_eq_est_SIC) = estimate_channels_remove_direct_and_perform_SIC(
         Y1, Y2, Y3, r1, r2, r3, Nsc, comb_indexes)

    # Compute the MSE reduction due to SIC
    improve11 = compute_channel_estimation_error_dB(
        uH11_eq, uH11_eq_est) - compute_channel_estimation_error_dB(
            uH11_eq, uH11_eq_est_SIC)
    improve12 = compute_channel_estimation_error_dB(
        uH12_eq, uH12_eq_est) - compute_channel_estimation_error_dB(
            uH12_eq, uH12_eq_est_SIC)
    improve13 = compute_channel_estimation_error_dB(
        uH13_eq, uH13_eq_est) - compute_channel_estimation_error_dB(
            uH13_eq, uH13_eq_est_SIC)

    improve21 = compute_channel_estimation_error_dB(
        uH21_eq, uH21_eq_est) - compute_channel_estimation_error_dB(
            uH21_eq, uH21_eq_est_SIC)
    improve22 = compute_channel_estimation_error_dB(
        uH22_eq, uH22_eq_est) - compute_channel_estimation_error_dB(
            uH22_eq, uH22_eq_est_SIC)
    improve23 = compute_channel_estimation_error_dB(
        uH23_eq, uH23_eq_est) - compute_channel_estimation_error_dB(
            uH23_eq, uH23_eq_est_SIC)

    improve31 = compute_channel_estimation_error_dB(
        uH31_eq, uH31_eq_est) - compute_channel_estimation_error_dB(
            uH31_eq, uH31_eq_est_SIC)
    improve32 = compute_channel_estimation_error_dB(
        uH32_eq, uH32_eq_est) - compute_channel_estimation_error_dB(
            uH32_eq, uH32_eq_est_SIC)
    improve33 = compute_channel_estimation_error_dB(
        uH33_eq, uH33_eq_est) - compute_channel_estimation_error_dB(
            uH33_eq, uH33_eq_est_SIC)
    print(improve11)
    print(improve12)
    print(improve13)
    print(improve21)
    print(improve22)
    print(improve23)
    print(improve31)
    print(improve32)
    print(improve33)

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Plot the true and estimated channels xxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    p1 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH11_eq, uH11_eq_est, title='Direct Channel from UE1 to AN1')
    p2 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH12_eq, uH12_eq_est, title='Interfering Channel from UE2 to AN1')
    p3 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH13_eq, uH13_eq_est, title='Interfering Channel from UE3 to AN1')
    tab1 = bw.Panel(child=p1, title="UE1 to AN1")
    tab2 = bw.Panel(child=p2, title="UE2 to AN1")
    tab3 = bw.Panel(child=p3, title="UE3 to AN1")
    tabs_an1 = bw.Tabs(tabs=[tab1, tab2, tab3])

    p1 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH21_eq, uH21_eq_est, title='Interfering Channel from UE1 to AN2')
    p2 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH22_eq, uH22_eq_est, title='Direct Channel from UE2 to AN2')
    p3 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH23_eq, uH23_eq_est, title='Interfering Channel from UE3 to AN2')
    tab1 = bw.Panel(child=p1, title="UE1 to AN2")
    tab2 = bw.Panel(child=p2, title="UE2 to AN2")
    tab3 = bw.Panel(child=p3, title="UE3 to AN2")
    tabs_an2 = bw.Tabs(tabs=[tab1, tab2, tab3])

    p1 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH31_eq, uH31_eq_est, title='Interfering Channel from UE1 to AN3')
    p2 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH32_eq, uH32_eq_est, title='Interfering Channel from UE2 to AN3')
    p3 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH33_eq, uH33_eq_est, title='Direct Channel from UE3 to AN3')
    tab1 = bw.Panel(child=p1, title="UE1 to AN3")
    tab2 = bw.Panel(child=p2, title="UE2 to AN3")
    tab3 = bw.Panel(child=p3, title="UE3 to AN3")
    tabs_an3 = bw.Tabs(tabs=[tab1, tab2, tab3])

    # Put each AN tab as a panel of an "ANs tab" and show it
    tabs1 = bw.Panel(child=tabs_an1, title="AN1")
    tabs2 = bw.Panel(child=tabs_an2, title="AN2")
    tabs3 = bw.Panel(child=tabs_an3, title="AN3")
    tabs_all = bw.Tabs(tabs=[tabs1, tabs2, tabs3])
    bp.show(tabs_all)
Example #7
0
    def test_seq_array(self):
        # xxxxxxxxxx Small Root Sequences xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
        # Line 15 of the first table
        expected_small_root_seq1 = np.exp(
            1j * (np.pi / 4.0) *
            np.array([3, -1, 1, -3, -1, -1, 1, 1, 3, 1, -1, -3]))
        # Line 23 of the first table
        expected_small_root_seq2 = np.exp(
            1j * (np.pi / 4.0) *
            np.array([1, 1, -1, -3, -1, -3, 1, -1, 1, 3, -1, 1]))
        # Line 15 of the second table
        expected_small_root_seq3 = np.exp(1j * (np.pi / 4.0) * np.array([
            -1, -1, 1, -3, 1, 3, -3, 1, -1, -3, -1, 3, 1, 3, 1, -1, -3, -3, -1,
            -1, -3, -3, -3, -1
        ]))
        # Line 23 of the second table
        expected_small_root_seq4 = np.exp(1j * (np.pi / 4.0) * np.array([
            -1, -1, -1, -1, 3, 3, 3, 1, 3, 3, -3, 1, 3, -1, 3, -1, 3, 3, -3, 3,
            1, -1, 3, 3
        ]))

        np.testing.assert_array_almost_equal(self.small_root_seq1.seq_array(),
                                             expected_small_root_seq1)
        np.testing.assert_array_almost_equal(self.small_root_seq2.seq_array(),
                                             expected_small_root_seq2)
        np.testing.assert_array_almost_equal(self.small_root_seq3.seq_array(),
                                             expected_small_root_seq3)
        np.testing.assert_array_almost_equal(self.small_root_seq4.seq_array(),
                                             expected_small_root_seq4)
        # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

        # xxxxxxxxxx Zadoff-Chu Sequences xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
        expected_root__no_ext1 = calcBaseZC(139, 25)
        np.testing.assert_array_almost_equal(self.root_seq_no_ext1.seq_array(),
                                             expected_root__no_ext1)
        expected_root__no_ext2 = calcBaseZC(31, 6)
        np.testing.assert_array_almost_equal(self.root_seq_no_ext2.seq_array(),
                                             expected_root__no_ext2)

        expected_root_seq1 = calcBaseZC(149, 25)
        expected_root_seq1 = np.hstack(
            [expected_root_seq1, expected_root_seq1[0:1]])
        np.testing.assert_array_almost_equal(self.root_seq1.seq_array(),
                                             expected_root_seq1)

        expected_root_seq2 = calcBaseZC(139, 12)
        expected_root_seq2 = np.hstack(
            [expected_root_seq2, expected_root_seq2[0:11]])
        np.testing.assert_array_almost_equal(self.root_seq2.seq_array(),
                                             expected_root_seq2)

        expected_root_seq3 = calcBaseZC(31, 25)
        expected_root_seq3 = np.hstack(
            [expected_root_seq3, expected_root_seq3, expected_root_seq3[0:2]])
        np.testing.assert_array_almost_equal(self.root_seq3.seq_array(),
                                             expected_root_seq3)

        expected_root_seq4 = calcBaseZC(61, 6)
        expected_root_seq4 = np.hstack(
            [expected_root_seq4, expected_root_seq4[0:3]])
        np.testing.assert_array_almost_equal(self.root_seq4.seq_array(),
                                             expected_root_seq4)

        expected_root_seq5 = calcBaseZC(31, 6)
        expected_root_seq5 = np.hstack(
            [expected_root_seq5, expected_root_seq5[0:1]])
        np.testing.assert_array_almost_equal(self.root_seq5.seq_array(),
                                             expected_root_seq5)

        expected_root_seq6 = calcBaseZC(31, 6)
        expected_root_seq6 = np.hstack([
            expected_root_seq6, expected_root_seq6, expected_root_seq6,
            expected_root_seq6, expected_root_seq6, expected_root_seq6,
            expected_root_seq6, expected_root_seq6, expected_root_seq6[0:8]
        ])
        np.testing.assert_array_almost_equal(self.root_seq6.seq_array(),
                                             expected_root_seq6)
    def test_seq_array(self):
        # xxxxxxxxxx Small Root Sequences xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
        # Line 15 of the first table
        expected_small_root_seq1 = np.exp(1j * (np.pi/4.0) * np.array(
            [3, -1, 1, -3, -1, -1, 1, 1, 3, 1, -1, -3]))
        # Line 23 of the first table
        expected_small_root_seq2 = np.exp(1j * (np.pi/4.0) * np.array(
            [1, 1, -1, -3, -1, -3, 1, -1, 1, 3, -1, 1]))
        # Line 15 of the second table
        expected_small_root_seq3 = np.exp(1j * (np.pi/4.0) * np.array(
            [-1, -1, 1, -3, 1, 3, -3, 1, -1, -3, -1, 3,
             1, 3, 1, -1, -3, -3, -1, -1, -3, -3, -3, -1]))
        # Line 23 of the second table
        expected_small_root_seq4 = np.exp(1j * (np.pi/4.0) * np.array(
            [-1, -1, -1, -1, 3, 3, 3, 1, 3, 3, -3, 1, 3,
             -1, 3, -1, 3, 3, -3, 3, 1, -1, 3, 3]))

        np.testing.assert_array_almost_equal(self.small_root_seq1.seq_array(),
                                             expected_small_root_seq1)
        np.testing.assert_array_almost_equal(self.small_root_seq2.seq_array(),
                                             expected_small_root_seq2)
        np.testing.assert_array_almost_equal(self.small_root_seq3.seq_array(),
                                             expected_small_root_seq3)
        np.testing.assert_array_almost_equal(self.small_root_seq4.seq_array(),
                                             expected_small_root_seq4)
        # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

        # xxxxxxxxxx Zadoff-Chu Sequences xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
        expected_root__no_ext1 = calcBaseZC(139, 25)
        np.testing.assert_array_almost_equal(
            self.root_seq_no_ext1.seq_array(), expected_root__no_ext1)
        expected_root__no_ext2 = calcBaseZC(31, 6)
        np.testing.assert_array_almost_equal(
            self.root_seq_no_ext2.seq_array(), expected_root__no_ext2)

        expected_root_seq1 = calcBaseZC(149, 25)
        expected_root_seq1 = np.hstack([expected_root_seq1, expected_root_seq1[0:1]])
        np.testing.assert_array_almost_equal(
            self.root_seq1.seq_array(), expected_root_seq1)

        expected_root_seq2 = calcBaseZC(139, 12)
        expected_root_seq2 = np.hstack([expected_root_seq2, expected_root_seq2[0:11]])
        np.testing.assert_array_almost_equal(
            self.root_seq2.seq_array(), expected_root_seq2)

        expected_root_seq3 = calcBaseZC(31, 25)
        expected_root_seq3 = np.hstack(
            [expected_root_seq3, expected_root_seq3, expected_root_seq3[0:2]])
        np.testing.assert_array_almost_equal(
            self.root_seq3.seq_array(), expected_root_seq3)

        expected_root_seq4 = calcBaseZC(61, 6)
        expected_root_seq4 = np.hstack(
            [expected_root_seq4, expected_root_seq4[0:3]])
        np.testing.assert_array_almost_equal(
            self.root_seq4.seq_array(), expected_root_seq4)

        expected_root_seq5 = calcBaseZC(31, 6)
        expected_root_seq5 = np.hstack([expected_root_seq5, expected_root_seq5[0:1]])
        np.testing.assert_array_almost_equal(
            self.root_seq5.seq_array(), expected_root_seq5)

        expected_root_seq6 = calcBaseZC(31, 6)
        expected_root_seq6 = np.hstack(
            [expected_root_seq6, expected_root_seq6, expected_root_seq6,
             expected_root_seq6, expected_root_seq6, expected_root_seq6,
             expected_root_seq6, expected_root_seq6, expected_root_seq6[0:8]])
        np.testing.assert_array_almost_equal(
            self.root_seq6.seq_array(), expected_root_seq6)
Example #9
0
def main():
    # session = bp.Session(load_from_config=False)
    # bp.output_server(docname='simple_precoded_srs_AN1', session=session)
    bp.output_file('simple_precoded_srs.html', title="Simple Precoded SRS")

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Scenario Description xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # 3 Base Stations, each sending data to its own user while interfering
    # with the other users.

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Configuration xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    num_prbs = 25  # Number of PRBs to simulate
    Nsc = 12 * num_prbs  # Number of subcarriers
    Nzc = 149  # Size of the sequence
    u1 = 1  # Root sequence index of the first user
    u2 = 2  # Root sequence index of the first user
    u3 = 3  # Root sequence index of the first user
    numAnAnt = 4  # Number of Base station antennas
    numUeAnt = 2  # Number of UE antennas

    num_samples = 1  # Number of simulated channel samples (from
    # Jakes process)

    # Channel configuration
    speedTerminal = 0 / 3.6  # Speed in m/s
    fcDbl = 2.6e9  # Central carrier frequency (in Hz)
    timeTTIDbl = 1e-3  # Time of a single TTI
    subcarrierBandDbl = 15e3  # Subcarrier bandwidth (in Hz)
    numOfSubcarriersPRBInt = 12  # Number of subcarriers in each PRB
    L = 16  # The number of rays for the Jakes model.

    # Dependent parameters
    lambdaDbl = 3e8 / fcDbl  # Carrier wave length
    Fd = speedTerminal / lambdaDbl  # Doppler Frequency
    Ts = 1. / (Nsc * subcarrierBandDbl)  # Sampling time

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Generate the root sequence xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    a_u1 = get_extended_ZF(calcBaseZC(Nzc, u1), Nsc / 2)
    a_u2 = get_extended_ZF(calcBaseZC(Nzc, u2), Nsc / 2)
    a_u3 = get_extended_ZF(calcBaseZC(Nzc, u3), Nsc / 2)

    print("Nsc: {0}".format(Nsc))
    print("a_u.shape: {0}".format(a_u1.shape))

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Create shifted sequences for 3 users xxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # We arbitrarely choose some cyclic shift index and then we call
    # zadoffchu.get_srs_seq to get the shifted sequence.
    shift_index = 4
    r1 = get_srs_seq(a_u1, shift_index)
    r2 = get_srs_seq(a_u2, shift_index)
    r3 = get_srs_seq(a_u3, shift_index)

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Generate channels from users to the BS xxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    jakes_all_links = np.empty([3, 3], dtype=object)
    tdlchannels_all_links = np.empty([3, 3], dtype=object)
    impulse_responses = np.empty([3, 3], dtype=object)
    # Dimension: `UEs x ANs x num_subcarriers x numUeAnt x numAnAnt`
    freq_responses = np.empty([3, 3, Nsc, numUeAnt, numAnAnt], dtype=complex)

    for ueIdx in range(3):
        for anIdx in range(3):
            jakes_all_links[ueIdx, anIdx] = JakesSampleGenerator(
                Fd, Ts, L, shape=(numUeAnt, numAnAnt))

            tdlchannels_all_links[ueIdx, anIdx] = TdlChannel(
                jakes_all_links[ueIdx, anIdx],
                tap_powers_dB=COST259_TUx.tap_powers_dB,
                tap_delays=COST259_TUx.tap_delays)

            tdlchannels_all_links[ueIdx, anIdx]._generate_impulse_response(
                num_samples)

            impulse_responses[ueIdx, anIdx] \
                = tdlchannels_all_links[ueIdx, anIdx].get_last_impulse_response()

            freq_responses[ueIdx, anIdx] = \
                impulse_responses[ueIdx, anIdx].get_freq_response(Nsc)[:, :, :, 0]

    # xxxxxxxxxx Channels in downlink direction xxxxxxxxxxxxxxxxxxxxxxxxxxx
    # Dimension: `Nsc x numUeAnt x numAnAnt`
    dH11 = freq_responses[0, 0]
    dH12 = freq_responses[0, 1]
    dH13 = freq_responses[0, 2]
    dH21 = freq_responses[1, 0]
    dH22 = freq_responses[1, 1]
    dH23 = freq_responses[1, 2]
    dH31 = freq_responses[2, 0]
    dH32 = freq_responses[2, 1]
    dH33 = freq_responses[2, 2]

    # xxxxxxxxxx Principal dimension in downlink direction xxxxxxxxxxxxxxxx
    sc_idx = 124  # Index of the subcarrier we are interested in
    [dU11, dS11, dV11_H] = np.linalg.svd(dH11[sc_idx])
    [dU22, dS22, dV22_H] = np.linalg.svd(dH22[sc_idx])
    [dU33, dS33, dV33_H] = np.linalg.svd(dH33[sc_idx])

    # xxxxxxxxxx Users precoders xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # Users' precoders are the main column of the U matrix
    F11 = dU11[:, 0].conj()
    F22 = dU22[:, 0].conj()
    F33 = dU33[:, 0].conj()

    # xxxxxxxxxx Channels in uplink direction xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # int_path_loss = 0.05  # Path loss of the interfering links
    # int_g = math.sqrt(int_path_loss)  # Gain of interfering links
    # dir_d = 1.0                   #  Gain of direct links

    pl = np.array([[  2.21e-08,   2.14e-09,   1.88e-08],
                   [  3.45e-10,   2.17e-08,   4.53e-10],
                   [  4.38e-10,   8.04e-10,   4.75e-08]])
    # pl = np.array([[  1,   0.1,   0.1],
    #                [  0.1,   1,   0.1],
    #                [  0.1,   0.1,   1]])


    # Dimension: `Nsc x numAnAnt x numUeAnt`
    uH11 = math.sqrt(pl[0, 0]) * np.transpose(dH11, axes=[0, 2, 1])
    uH12 = math.sqrt(pl[0, 1]) * np.transpose(dH12, axes=[0, 2, 1])
    uH13 = math.sqrt(pl[0, 2]) * np.transpose(dH13, axes=[0, 2, 1])
    uH21 = math.sqrt(pl[1, 0]) * np.transpose(dH21, axes=[0, 2, 1])
    uH22 = math.sqrt(pl[1, 1]) * np.transpose(dH22, axes=[0, 2, 1])
    uH23 = math.sqrt(pl[1, 2]) * np.transpose(dH23, axes=[0, 2, 1])
    uH31 = math.sqrt(pl[2, 0]) * np.transpose(dH31, axes=[0, 2, 1])
    uH32 = math.sqrt(pl[2, 1]) * np.transpose(dH32, axes=[0, 2, 1])
    uH33 = math.sqrt(pl[2, 2]) * np.transpose(dH33, axes=[0, 2, 1])

    # Compute the equivalent uplink channels
    uH11_eq = uH11.dot(F11)
    uH12_eq = uH12.dot(F22)
    uH13_eq = uH13.dot(F33)
    uH21_eq = uH21.dot(F11)
    uH22_eq = uH22.dot(F22)
    uH23_eq = uH23.dot(F33)
    uH31_eq = uH31.dot(F11)
    uH32_eq = uH32.dot(F22)
    uH33_eq = uH33.dot(F33)

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Compute Received Signals xxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # Calculate the received signals
    comb_indexes = np.r_[0:Nsc:2]
    Y1_term11 = uH11_eq[comb_indexes] * r1[:, np.newaxis]
    Y1_term12 = uH12_eq[comb_indexes] * r2[:, np.newaxis]
    Y1_term13 = uH13_eq[comb_indexes] * r3[:, np.newaxis]
    Y1 = Y1_term11 + Y1_term12 + Y1_term13

    Y2_term21 = uH21_eq[comb_indexes] * r1[:, np.newaxis]
    Y2_term22 = uH22_eq[comb_indexes] * r2[:, np.newaxis]
    Y2_term23 = uH23_eq[comb_indexes] * r3[:, np.newaxis]
    Y2 = Y2_term21 + Y2_term22 + Y2_term23

    Y3_term31 = uH31_eq[comb_indexes] * r1[:, np.newaxis]
    Y3_term32 = uH32_eq[comb_indexes] * r2[:, np.newaxis]
    Y3_term33 = uH33_eq[comb_indexes] * r3[:, np.newaxis]
    Y3 = Y3_term31 + Y3_term32 + Y3_term33

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Estimate the equivalent channel xxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    (uH11_eq_est, uH12_eq_est, uH13_eq_est, uH21_eq_est, uH22_eq_est,
     uH23_eq_est, uH31_eq_est, uH32_eq_est, uH33_eq_est
    ) = estimate_channels_remove_only_direct(Y1, Y2, Y3, r1, r2, r3, Nsc, comb_indexes)

    (uH11_eq_est_SIC, uH12_eq_est_SIC, uH13_eq_est_SIC, uH21_eq_est_SIC, uH22_eq_est_SIC,
     uH23_eq_est_SIC, uH31_eq_est_SIC, uH32_eq_est_SIC, uH33_eq_est_SIC
    ) = estimate_channels_remove_direct_and_perform_SIC(
        Y1, Y2, Y3, r1, r2, r3, Nsc, comb_indexes)

    # Compute the MSE reduction due to SIC
    improve11 = compute_channel_estimation_error_dB(uH11_eq, uH11_eq_est) - compute_channel_estimation_error_dB(uH11_eq, uH11_eq_est_SIC)
    improve12 = compute_channel_estimation_error_dB(uH12_eq, uH12_eq_est) - compute_channel_estimation_error_dB(uH12_eq, uH12_eq_est_SIC)
    improve13 = compute_channel_estimation_error_dB(uH13_eq, uH13_eq_est) - compute_channel_estimation_error_dB(uH13_eq, uH13_eq_est_SIC)

    improve21 = compute_channel_estimation_error_dB(uH21_eq, uH21_eq_est) - compute_channel_estimation_error_dB(uH21_eq, uH21_eq_est_SIC)
    improve22 = compute_channel_estimation_error_dB(uH22_eq, uH22_eq_est) - compute_channel_estimation_error_dB(uH22_eq, uH22_eq_est_SIC)
    improve23 = compute_channel_estimation_error_dB(uH23_eq, uH23_eq_est) - compute_channel_estimation_error_dB(uH23_eq, uH23_eq_est_SIC)

    improve31 = compute_channel_estimation_error_dB(uH31_eq, uH31_eq_est) - compute_channel_estimation_error_dB(uH31_eq, uH31_eq_est_SIC)
    improve32 = compute_channel_estimation_error_dB(uH32_eq, uH32_eq_est) - compute_channel_estimation_error_dB(uH32_eq, uH32_eq_est_SIC)
    improve33 = compute_channel_estimation_error_dB(uH33_eq, uH33_eq_est) - compute_channel_estimation_error_dB(uH33_eq, uH33_eq_est_SIC)
    print(improve11)
    print(improve12)
    print(improve13)
    print(improve21)
    print(improve22)
    print(improve23)
    print(improve31)
    print(improve32)
    print(improve33)

    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxx Plot the true and estimated channels xxxxxxxxxxxxxxxx
    # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    p1 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH11_eq, uH11_eq_est,
        title='Direct Channel from UE1 to AN1')
    p2 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH12_eq, uH12_eq_est,
        title='Interfering Channel from UE2 to AN1')
    p3 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH13_eq, uH13_eq_est,
        title='Interfering Channel from UE3 to AN1')
    tab1 = bw.Panel(child=p1, title="UE1 to AN1")
    tab2 = bw.Panel(child=p2, title="UE2 to AN1")
    tab3 = bw.Panel(child=p3, title="UE3 to AN1")
    tabs_an1 = bw.Tabs(tabs=[tab1, tab2, tab3])

    p1 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH21_eq, uH21_eq_est,
        title='Interfering Channel from UE1 to AN2')
    p2 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH22_eq, uH22_eq_est,
        title='Direct Channel from UE2 to AN2')
    p3 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH23_eq, uH23_eq_est,
        title='Interfering Channel from UE3 to AN2')
    tab1 = bw.Panel(child=p1, title="UE1 to AN2")
    tab2 = bw.Panel(child=p2, title="UE2 to AN2")
    tab3 = bw.Panel(child=p3, title="UE3 to AN2")
    tabs_an2 = bw.Tabs(tabs=[tab1, tab2, tab3])

    p1 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH31_eq, uH31_eq_est,
        title='Interfering Channel from UE1 to AN3')
    p2 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH32_eq, uH32_eq_est,
        title='Interfering Channel from UE2 to AN3')
    p3 = plot_true_and_estimated_channel_with_bokeh_all_antennas(
        uH33_eq, uH33_eq_est,
        title='Direct Channel from UE3 to AN3')
    tab1 = bw.Panel(child=p1, title="UE1 to AN3")
    tab2 = bw.Panel(child=p2, title="UE2 to AN3")
    tab3 = bw.Panel(child=p3, title="UE3 to AN3")
    tabs_an3 = bw.Tabs(tabs=[tab1, tab2, tab3])


    # Put each AN tab as a pannel of an "ANs tab" and show it
    tabs1 = bw.Panel(child=tabs_an1, title="AN1")
    tabs2 = bw.Panel(child=tabs_an2, title="AN2")
    tabs3 = bw.Panel(child=tabs_an3, title="AN3")
    tabs_all = bw.Tabs(tabs=[tabs1, tabs2, tabs3])
    bp.show(tabs_all)