def demo_fsl_feeds(data_dir="/tmp/fsl-feeds-data", output_dir="/tmp/fsl_feeds_mrimc_output"): """Demo for FSL Feeds data. Parameters ---------- data_dir: string, optional where the data is located on your disk, where it will be downloaded to output_dir: string, optional where output will be written to """ # fetch data fsl_feeds_data = fetch_fsl_feeds_data(data_dir=data_dir) # subject data factory def subject_factory(): subject_id = "sub001" yield SubjectData( subject_id=subject_id, func=fsl_feeds_data.func, output_dir=os.path.join(output_dir, subject_id) ) # invoke demon to run de demo _demo_runner(subject_factory(), "FSL FEEDS")
def demo_fsl_feeds(data_dir="/tmp/fsl-feeds-data", output_dir="/tmp/fsl_feeds_mrimc_output", ): """Demo for FSL Feeds data. Parameters ---------- data_dir: string, optional where the data is located on your disk, where it will be downloaded to output_dir: string, optional where output will be written to """ # fetch data fsl_feeds_data = fetch_fsl_feeds_data(data_dir=data_dir) # subject data factory def subject_factory(): subject_id = "sub001" yield SubjectData(subject_id=subject_id, func=fsl_feeds_data.func, output_dir=os.path.join(output_dir, subject_id)) # invoke demon to run de demo _demo_runner(subject_factory(), "FSL FEEDS")
onset = list(EV1_onset) + list(EV2_onset) duration = [EV1_on] * EV1_epochs + [EV2_on] * EV2_epochs paradigm = BlockParadigm(con_id=conditions, onset=onset, duration=duration) frametimes = np.linspace(0, (n_scans - 1) * TR, n_scans) maximum_epoch_duration = max(EV1_epoch_duration, EV2_epoch_duration) hfcut = 1.5 * maximum_epoch_duration # why ? """construct design matrix""" drift_model = 'Cosine' hrf_model = 'Canonical With Derivative' design_matrix = make_dmtx(frametimes, paradigm, hrf_model=hrf_model, drift_model=drift_model, hfcut=hfcut) """fetch input data""" _subject_data = fetch_fsl_feeds_data(data_dir) subject_data = SubjectData() subject_data.subject_id = "sub001" subject_data.func = _subject_data.func subject_data.anat = _subject_data.anat subject_data.output_dir = os.path.join( output_dir, subject_data.subject_id) """preprocess the data""" results = do_subjects_preproc( [subject_data], output_dir=output_dir, fwhm=8, dataset_id="FSL FEEDS single-subject", dataset_description=DATASET_DESCRIPTION, do_shutdown_reloaders=False,
onset = list(EV1_onset) + list(EV2_onset) duration = [EV1_on] * EV1_epochs + [EV2_on] * EV2_epochs paradigm = BlockParadigm(con_id=conditions, onset=onset, duration=duration) frametimes = np.linspace(0, (n_scans - 1) * TR, n_scans) maximum_epoch_duration = max(EV1_epoch_duration, EV2_epoch_duration) hfcut = 1.5 * maximum_epoch_duration # why ? """construct design matrix""" drift_model = 'Cosine' hrf_model = 'Canonical With Derivative' design_matrix = make_dmtx(frametimes, paradigm, hrf_model=hrf_model, drift_model=drift_model, hfcut=hfcut) """fetch input data""" _subject_data = fetch_fsl_feeds_data(data_dir) subject_data = SubjectData() subject_data.subject_id = "sub001" subject_data.func = _subject_data.func subject_data.anat = _subject_data.anat subject_data.output_dir = os.path.join(output_dir, subject_data.subject_id) """preprocess the data""" results = do_subjects_preproc( [subject_data], output_dir=output_dir, fwhm=8, dataset_id="FSL FEEDS single-subject", dataset_description=DATASET_DESCRIPTION, do_shutdown_reloaders=False, ) """collect preprocessed data"""