Example #1
0
 def Lengths(
         self,
         eps,
         sig12,
         ssig1,
         csig1,
         ssig2,
         csig2,
         cbet1,
         cbet2,
         scalep,
         # Scratch areas of the right size
         C1a,
         C2a):
     # Return m12a = (reduced length)/_a; also calculate s12b = distance/_b,
     # and m0 = coefficient of secular term in expression for reduced length.
     Geodesic.C1f(eps, C1a)
     Geodesic.C2f(eps, C2a)
     A1m1 = Geodesic.A1m1f(eps)
     AB1 = (1 + A1m1) * (
         Geodesic.SinCosSeries(True, ssig2, csig2, C1a, Geodesic.nC1_) -
         Geodesic.SinCosSeries(True, ssig1, csig1, C1a, Geodesic.nC1_))
     A2m1 = Geodesic.A2m1f(eps)
     AB2 = (1 + A2m1) * (
         Geodesic.SinCosSeries(True, ssig2, csig2, C2a, Geodesic.nC2_) -
         Geodesic.SinCosSeries(True, ssig1, csig1, C2a, Geodesic.nC2_))
     cbet1sq = Math.sq(cbet1)
     cbet2sq = Math.sq(cbet2)
     w1 = math.sqrt(1 - self._e2 * cbet1sq)
     w2 = math.sqrt(1 - self._e2 * cbet2sq)
     # Make sure it's OK to have repeated dummy arguments
     m0x = A1m1 - A2m1
     J12 = m0x * sig12 + (AB1 - AB2)
     m0 = m0x
     # Missing a factor of _a.
     # Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure accurate
     # cancellation in the case of coincident points.
     m12a = ((w2 * (csig1 * ssig2) - w1 * (ssig1 * csig2)) -
             self._f1 * csig1 * csig2 * J12)
     # Missing a factor of _b
     s12b = (1 + A1m1) * sig12 + AB1
     if scalep:
         csig12 = csig1 * csig2 + ssig1 * ssig2
         J12 *= self._f1
         M12 = csig12 + (self._e2 * (cbet1sq - cbet2sq) * ssig2 /
                         (w1 + w2) - csig2 * J12) * ssig1 / w1
         M21 = csig12 - (self._e2 * (cbet1sq - cbet2sq) * ssig1 /
                         (w1 + w2) - csig1 * J12) * ssig2 / w2
     else:
         M12 = M21 = Math.nan
     return s12b, m12a, m0, M12, M21
Example #2
0
 def Lengths(self, eps, sig12,
             ssig1, csig1, ssig2, csig2, cbet1, cbet2, scalep,
             # Scratch areas of the right size
             C1a, C2a):
   # Return m12a = (reduced length)/_a; also calculate s12b = distance/_b,
   # and m0 = coefficient of secular term in expression for reduced length.
   Geodesic.C1f(eps, C1a)
   Geodesic.C2f(eps, C2a)
   A1m1 = Geodesic.A1m1f(eps)
   AB1 = (1 + A1m1) * (
     Geodesic.SinCosSeries(True, ssig2, csig2, C1a, Geodesic.nC1_) -
     Geodesic.SinCosSeries(True, ssig1, csig1, C1a, Geodesic.nC1_))
   A2m1 = Geodesic.A2m1f(eps)
   AB2 = (1 + A2m1) * (
     Geodesic.SinCosSeries(True, ssig2, csig2, C2a, Geodesic.nC2_) -
     Geodesic.SinCosSeries(True, ssig1, csig1, C2a, Geodesic.nC2_))
   cbet1sq = Math.sq(cbet1)
   cbet2sq = Math.sq(cbet2)
   w1 = math.sqrt(1 - self._e2 * cbet1sq)
   w2 = math.sqrt(1 - self._e2 * cbet2sq)
   # Make sure it's OK to have repeated dummy arguments
   m0x = A1m1 - A2m1
   J12 = m0x * sig12 + (AB1 - AB2)
   m0 = m0x
   # Missing a factor of _a.
   # Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure accurate
   # cancellation in the case of coincident points.
   m12a = ((w2 * (csig1 * ssig2) - w1 * (ssig1 * csig2))
           - self._f1 * csig1 * csig2 * J12)
   # Missing a factor of _b
   s12b =  (1 + A1m1) * sig12 + AB1
   if scalep:
     csig12 = csig1 * csig2 + ssig1 * ssig2
     J12 *= self._f1
     M12 = csig12 + (self._e2 * (cbet1sq - cbet2sq) * ssig2 / (w1 + w2)
                     - csig2 * J12) * ssig1 / w1
     M21 = csig12 - (self._e2 * (cbet1sq - cbet2sq) * ssig1 / (w1 + w2)
                       - csig1 * J12) * ssig2 / w2
   else:
     M12 = M21 = Math.nan
   return s12b, m12a, m0, M12, M21
Example #3
0
  def __init__(self, a, f):
    """
    Construct a Geodesic object for ellipsoid with major radius a and
    flattening f.
    """

    self._a = float(a)
    if f <= 1:
      self._f = float(f)
    else:
      self._f = 1.0/f
    self._f1 = 1 - self._f
    self._e2 = self._f * (2 - self._f)
    self._ep2 = self._e2 / Math.sq(self._f1) # e2 / (1 - e2)
    self._n = self._f / ( 2 - self._f)
    self._b = self._a * self._f1
    # authalic radius squared
    if self._e2 == 0:
      self._c2 = (Math.sq(self._a) + Math.sq(self._b))/2
    elif self._e2 > 0:
      self._c2 = (Math.sq(self._a) +
                  Math.sq(self._b) * Math.atanh(math.sqrt(self._e2)) /
                  math.sqrt(abs(self._e2)))/2
    else: # self._e2 < 0:
      self._c2 = (Math.sq(self._a) +
                  Math.sq(self._b) * math.atan(math.sqrt(-self._e2)) /
                  math.sqrt(abs(self._e2)))/2
    self._etol2 = Geodesic.tol2_ / max(0.1, math.sqrt(abs(self._e2)))
    if not(Math.isfinite(self._a) and self._a > 0):
      raise ValueError("Major radius is not positive")
    if not(Math.isfinite(self._b) and self._b > 0):
      raise ValueError("Minor radius is not positive")
    self._A3x = list(range(int(Geodesic.nA3x_)))
    self._C3x = list(range(int(Geodesic.nC3x_)))
    self._C4x = list(range(int(Geodesic.nC4x_)))
    self.A3coeff()
    self.C3coeff()
    self.C4coeff()
Example #4
0
 def C1pf(eps, c):
   eps2 = Math.sq(eps)
   d = eps
   c[1] = d*(eps2*(205*eps2-432)+768)/1536
   d *= eps
   c[2] = d*(eps2*(4005*eps2-4736)+3840)/12288
   d *= eps
   c[3] = d*(116-225*eps2)/384
   d *= eps
   c[4] = d*(2695-7173*eps2)/7680
   d *= eps
   c[5] = 3467*d/7680
   d *= eps
   c[6] = 38081*d/61440
Example #5
0
 def C1f(eps, c):
   eps2 = Math.sq(eps)
   d = eps
   c[1] = d*((6-eps2)*eps2-16)/32
   d *= eps
   c[2] = d*((64-9*eps2)*eps2-128)/2048
   d *= eps
   c[3] = d*(9*eps2-16)/768
   d *= eps
   c[4] = d*(3*eps2-5)/512
   d *= eps
   c[5] = -7*d/1280
   d *= eps
   c[6] = -7*d/2048
Example #6
0
 def C1pf(eps, c):
     eps2 = Math.sq(eps)
     d = eps
     c[1] = d * (eps2 * (205 * eps2 - 432) + 768) / 1536
     d *= eps
     c[2] = d * (eps2 * (4005 * eps2 - 4736) + 3840) / 12288
     d *= eps
     c[3] = d * (116 - 225 * eps2) / 384
     d *= eps
     c[4] = d * (2695 - 7173 * eps2) / 7680
     d *= eps
     c[5] = 3467 * d / 7680
     d *= eps
     c[6] = 38081 * d / 61440
Example #7
0
 def C2f(eps, c):
     eps2 = Math.sq(eps)
     d = eps
     c[1] = d * (eps2 * (eps2 + 2) + 16) / 32
     d *= eps
     c[2] = d * (eps2 * (35 * eps2 + 64) + 384) / 2048
     d *= eps
     c[3] = d * (15 * eps2 + 80) / 768
     d *= eps
     c[4] = d * (7 * eps2 + 35) / 512
     d *= eps
     c[5] = 63 * d / 1280
     d *= eps
     c[6] = 77 * d / 2048
Example #8
0
 def C1f(eps, c):
     eps2 = Math.sq(eps)
     d = eps
     c[1] = d * ((6 - eps2) * eps2 - 16) / 32
     d *= eps
     c[2] = d * ((64 - 9 * eps2) * eps2 - 128) / 2048
     d *= eps
     c[3] = d * (9 * eps2 - 16) / 768
     d *= eps
     c[4] = d * (3 * eps2 - 5) / 512
     d *= eps
     c[5] = -7 * d / 1280
     d *= eps
     c[6] = -7 * d / 2048
Example #9
0
 def C2f(eps, c):
   eps2 = Math.sq(eps)
   d = eps
   c[1] = d*(eps2*(eps2+2)+16)/32
   d *= eps
   c[2] = d*(eps2*(35*eps2+64)+384)/2048
   d *= eps
   c[3] = d*(15*eps2+80)/768
   d *= eps
   c[4] = d*(7*eps2+35)/512
   d *= eps
   c[5] = 63*d/1280
   d *= eps
   c[6] = 77*d/2048
Example #10
0
    def __init__(self, a, f):
        """
    Construct a Geodesic object for ellipsoid with major radius a and
    flattening f.
    """

        self._a = float(a)
        if f <= 1:
            self._f = float(f)
        else:
            self._f = 1.0 / f
        self._f1 = 1 - self._f
        self._e2 = self._f * (2 - self._f)
        self._ep2 = self._e2 / Math.sq(self._f1)  # e2 / (1 - e2)
        self._n = self._f / (2 - self._f)
        self._b = self._a * self._f1
        # authalic radius squared
        if self._e2 == 0:
            self._c2 = (Math.sq(self._a) + Math.sq(self._b)) / 2
        elif self._e2 > 0:
            self._c2 = (Math.sq(self._a) + Math.sq(self._b) * Math.atanh(
                math.sqrt(self._e2)) / math.sqrt(abs(self._e2))) / 2
        else:  # self._e2 < 0:
            self._c2 = (Math.sq(self._a) + Math.sq(self._b) * math.atan(
                math.sqrt(-self._e2)) / math.sqrt(abs(self._e2))) / 2
        self._etol2 = Geodesic.tol2_ / max(0.1, math.sqrt(abs(self._e2)))
        if not (Math.isfinite(self._a) and self._a > 0):
            raise ValueError("Major radius is not positive")
        if not (Math.isfinite(self._b) and self._b > 0):
            raise ValueError("Minor radius is not positive")
        self._A3x = list(range(int(Geodesic.nA3x_)))
        self._C3x = list(range(int(Geodesic.nC3x_)))
        self._C4x = list(range(int(Geodesic.nC4x_)))
        self.A3coeff()
        self.C3coeff()
        self.C4coeff()
Example #11
0
 def Astroid(x, y):
   # Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
   # This solution is adapted from Geocentric::Reverse.
   p = Math.sq(x)
   q = Math.sq(y)
   r = (p + q - 1) / 6
   if not(q == 0 and r <= 0):
     # Avoid possible division by zero when r = 0 by multiplying equations
     # for s and t by r^3 and r, resp.
     S = p * q / 4            # S = r^3 * s
     r2 = Math.sq(r)
     r3 = r * r2
     # The discrimant of the quadratic equation for T3.  This is zero on
     # the evolute curve p^(1/3)+q^(1/3) = 1
     disc =  S * (S + 2 * r3)
     u = r
     if (disc >= 0):
       T3 = S + r3
       # Pick the sign on the sqrt to maximize abs(T3).  This minimizes loss
       # of precision due to cancellation.  The result is unchanged because
       # of the way the T is used in definition of u.
       T3 += cmp(T3, 0) * math.sqrt(disc) # T3 = (r * t)^3
       # N.B. cbrt always returns the real root.  cbrt(-8) = -2.
       T = Math.cbrt(T3)       # T = r * t
       # T can be zero; but then r2 / T -> 0.
       u += T
       if T != 0:
         u += (r2 / T)
     else:
       # T is complex, but the way u is defined the result is real.
       ang = math.atan2(math.sqrt(-disc), -(S + r3))
       # There are three possible cube roots.  We choose the root which
       # avoids cancellation.  Note that disc < 0 implies that r < 0.
       u += 2 * r * math.cos(ang / 3)
     v = math.sqrt(Math.sq(u) + q)  # guaranteed positive
     # Avoid loss of accuracy when u < 0.
     # u+v, guaranteed positive
     if u < 0:
       uv = q / (v - u)
     else:
       uv = u + v
     w = (uv - q) / (2 * v)               # positive?
     # Rearrange expression for k to avoid loss of accuracy due to
     # subtraction.  Division by 0 not possible because uv > 0, w >= 0.
     k = uv / (math.sqrt(uv + Math.sq(w)) + w) # guaranteed positive
   else:                                       # q == 0 && r <= 0
     # y = 0 with |x| <= 1.  Handle this case directly.
     # for y small, positive root is k = abs(y)/sqrt(1-x^2)
     k = 0
   return k
Example #12
0
 def Astroid(x, y):
     # Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
     # This solution is adapted from Geocentric::Reverse.
     p = Math.sq(x)
     q = Math.sq(y)
     r = (p + q - 1) / 6
     if not (q == 0 and r <= 0):
         # Avoid possible division by zero when r = 0 by multiplying equations
         # for s and t by r^3 and r, resp.
         S = p * q / 4  # S = r^3 * s
         r2 = Math.sq(r)
         r3 = r * r2
         # The discrimant of the quadratic equation for T3.  This is zero on
         # the evolute curve p^(1/3)+q^(1/3) = 1
         disc = S * (S + 2 * r3)
         u = r
         if (disc >= 0):
             T3 = S + r3
             # Pick the sign on the sqrt to maximize abs(T3).  This minimizes loss
             # of precision due to cancellation.  The result is unchanged because
             # of the way the T is used in definition of u.
             T3 += cmp(T3, 0) * math.sqrt(disc)  # T3 = (r * t)^3
             # N.B. cbrt always returns the real root.  cbrt(-8) = -2.
             T = Math.cbrt(T3)  # T = r * t
             # T can be zero; but then r2 / T -> 0.
             u += T
             if T != 0:
                 u += (r2 / T)
         else:
             # T is complex, but the way u is defined the result is real.
             ang = math.atan2(math.sqrt(-disc), -(S + r3))
             # There are three possible cube roots.  We choose the root which
             # avoids cancellation.  Note that disc < 0 implies that r < 0.
             u += 2 * r * math.cos(ang / 3)
         v = math.sqrt(Math.sq(u) + q)  # guaranteed positive
         # Avoid loss of accuracy when u < 0.
         # u+v, guaranteed positive
         if u < 0:
             uv = q / (v - u)
         else:
             uv = u + v
         w = (uv - q) / (2 * v)  # positive?
         # Rearrange expression for k to avoid loss of accuracy due to
         # subtraction.  Division by 0 not possible because uv > 0, w >= 0.
         k = uv / (math.sqrt(uv + Math.sq(w)) + w)  # guaranteed positive
     else:  # q == 0 && r <= 0
         # y = 0 with |x| <= 1.  Handle this case directly.
         # for y small, positive root is k = abs(y)/sqrt(1-x^2)
         k = 0
     return k
Example #13
0
 def A1m1f(eps):
   eps2 = Math.sq(eps)
   t = eps2*(eps2*(eps2+4)+64)/256
   return (t + eps) / (1 - eps)
Example #14
0
  def __init__(self, geod, lat1, lon1, azi1, caps = GeodesicCapability.ALL):
    from pyproj.geodesic import Geodesic
    self._a = geod._a
    self._f = geod._f
    self._b = geod._b
    self._c2 = geod._c2
    self._f1 = geod._f1
    self._caps = caps | Geodesic.LATITUDE | Geodesic.AZIMUTH

    azi1 = Geodesic.AngNormalize(azi1)
    # Guard against underflow in salp0
    azi1 = Geodesic.AngRound(azi1)
    lon1 = Geodesic.AngNormalize(lon1)
    self._lat1 = lat1
    self._lon1 = lon1
    self._azi1 = azi1
    # alp1 is in [0, pi]
    alp1 = azi1 * Math.degree
    # Enforce sin(pi) == 0 and cos(pi/2) == 0.  Better to face the ensuing
    # problems directly than to skirt them.
    if azi1 == -180:
      self._salp1 = 0
    else:
      self._salp1 = math.sin(alp1)
    if abs(azi1) == 90:
      self._calp1 = 0
    else:
      self._calp1 = math.cos(alp1)
    # real cbet1, sbet1, phi
    phi = lat1 * Math.degree
    # Ensure cbet1 = +epsilon at poles
    sbet1 = self._f1 * math.sin(phi)
    if abs(lat1) == 90:
      cbet1 = Geodesic.tiny_
    else:
      cbet1 = math.cos(phi)
    sbet1, cbet1 = Geodesic.SinCosNorm(sbet1, cbet1)

    # Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
    self._salp0 = self._salp1 * cbet1 # alp0 in [0, pi/2 - |bet1|]
    # Alt: calp0 = hypot(sbet1, calp1 * cbet1).  The following
    # is slightly better (consider the case salp1 = 0).
    self._calp0 = math.hypot(self._calp1, self._salp1 * sbet1)
    # Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
    # sig = 0 is nearest northward crossing of equator.
    # With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
    # With bet1 =  pi/2, alp1 = -pi, sig1 =  pi/2
    # With bet1 = -pi/2, alp1 =  0 , sig1 = -pi/2
    # Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
    # With alp0 in (0, pi/2], quadrants for sig and omg coincide.
    # No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
    # With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
    self._ssig1 = sbet1; self._somg1 = self._salp0 * sbet1
    if sbet1 != 0 or self._calp1 != 0:
      self._csig1 = self._comg1 = cbet1 * self._calp1
    else:
      self._csig1 = self._comg1 = 1.0
    # sig1 in (-pi, pi]
    self._ssig1, self._csig1 = Geodesic.SinCosNorm(self._ssig1, self._csig1)
    self._somg1, self._comg1 = Geodesic.SinCosNorm(self._somg1, self._comg1)

    self._k2 = Math.sq(self._calp0) * geod._ep2
    eps = self._k2 / (2 * (1 + math.sqrt(1 + self._k2)) + self._k2)

    if self._caps & Geodesic.CAP_C1:
      self._A1m1 = Geodesic.A1m1f(eps)
      self._C1a = list(range(Geodesic.nC1_ + 1))
      Geodesic.C1f(eps, self._C1a)
      self._B11 = Geodesic.SinCosSeries(
        True, self._ssig1, self._csig1, self._C1a, Geodesic.nC1_)
      s = math.sin(self._B11); c = math.cos(self._B11)
      # tau1 = sig1 + B11
      self._stau1 = self._ssig1 * c + self._csig1 * s
      self._ctau1 = self._csig1 * c - self._ssig1 * s
      # Not necessary because C1pa reverts C1a
      #    _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa, nC1p_)

    if self._caps & Geodesic.CAP_C1p:
      self._C1pa = list(range(Geodesic.nC1p_ + 1))
      Geodesic.C1pf(eps, self._C1pa)

    if self._caps & Geodesic.CAP_C2:
      self._A2m1 =  Geodesic.A2m1f(eps)
      self._C2a = list(range(Geodesic.nC2_ + 1))
      Geodesic.C2f(eps, self._C2a)
      self._B21 = Geodesic.SinCosSeries(
        True, self._ssig1, self._csig1, self._C2a, Geodesic.nC2_)

    if self._caps & Geodesic.CAP_C3:
      self._C3a = list(range(Geodesic.nC3_))
      geod.C3f(eps, self._C3a)
      self._A3c = -self._f * self._salp0 * geod.A3f(eps)
      self._B31 = Geodesic.SinCosSeries(
        True, self._ssig1, self._csig1, self._C3a, Geodesic.nC3_-1)

    if self._caps & Geodesic.CAP_C4:
      self._C4a = list(range(Geodesic.nC4_))
      geod.C4f(self._k2, self._C4a)
      # Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
      self._A4 = Math.sq(self._a) * self._calp0 * self._salp0 * geod._e2
      self._B41 = Geodesic.SinCosSeries(
        False, self._ssig1, self._csig1, self._C4a, Geodesic.nC4_)
Example #15
0
  def GenInverse(self, lat1, lon1, lat2, lon2, outmask):
    a12 = s12 = azi1 = azi2 = m12 = M12 = M21 = S12 = Math.nan # return vals

    outmask &= Geodesic.OUT_ALL
    lon1 = Geodesic.AngNormalize(lon1)
    lon12 = Geodesic.AngNormalize(Geodesic.AngNormalize(lon2) - lon1)
    # If very close to being on the same meridian, then make it so.
    # Not sure this is necessary...
    lon12 = Geodesic.AngRound(lon12)
    # Make longitude difference positive.
    if lon12 >= 0:
      lonsign = 1
    else:
      lonsign = -1
    lon12 *= lonsign
    if lon12 == 180:
      lonsign = 1
    # If really close to the equator, treat as on equator.
    lat1 = Geodesic.AngRound(lat1)
    lat2 = Geodesic.AngRound(lat2)
    # Swap points so that point with higher (abs) latitude is point 1
    if abs(lat1) >= abs(lat2):
      swapp = 1
    else:
      swapp = -1
      lonsign *= -1
      lat2, lat1 = lat1, lat2
    # Make lat1 <= 0
    if lat1 < 0:
      latsign = 1
    else:
      latsign = -1
    lat1 *= latsign
    lat2 *= latsign
    # Now we have
    #
    #     0 <= lon12 <= 180
    #     -90 <= lat1 <= 0
    #     lat1 <= lat2 <= -lat1
    #
    # longsign, swapp, latsign register the transformation to bring the
    # coordinates to this canonical form.  In all cases, 1 means no change was
    # made.  We make these transformations so that there are few cases to
    # check, e.g., on verifying quadrants in atan2.  In addition, this
    # enforces some symmetries in the results returned.

    # real phi, sbet1, cbet1, sbet2, cbet2, s12x, m12x

    phi = lat1 * Math.degree
    # Ensure cbet1 = +epsilon at poles
    sbet1 = self._f1 * math.sin(phi)
    if lat1 == -90:
      cbet1 = Geodesic.tiny_
    else:
      cbet1 = math.cos(phi)
    sbet1, cbet1 = Geodesic.SinCosNorm(sbet1, cbet1)

    phi = lat2 * Math.degree
    # Ensure cbet2 = +epsilon at poles
    sbet2 = self._f1 * math.sin(phi)
    if abs(lat2) == 90:
      cbet2 = Geodesic.tiny_
    else:
      cbet2 = math.cos(phi)
    sbet2, cbet2 = Geodesic.SinCosNorm(sbet2, cbet2)

    # If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
    # |bet1| - |bet2|.  Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
    # a better measure.  This logic is used in assigning calp2 in Lambda12.
    # Sometimes these quantities vanish and in that case we force bet2 = +/-
    # bet1 exactly.  An example where is is necessary is the inverse problem
    # 48.522876735459 0 -48.52287673545898293 179.599720456223079643
    # which failed with Visual Studio 10 (Release and Debug)

    if cbet1 < -sbet1:
      if cbet2 == cbet1:
        if sbet2 < 0:
          sbet2 = sbet1
        else:
          sbet2 = -sbet1
    else:
      if abs(sbet2) == -sbet1:
        cbet2 = cbet1

    lam12 = lon12 * Math.degree
    if lon12 == 180:
      slam12 = 0.0
    else:
      slam12 = math.sin(lam12)
    clam12 = math.cos(lam12)      # lon12 == 90 isn't interesting

    # real a12, sig12, calp1, salp1, calp2, salp2
    # index zero elements of these arrays are unused
    C1a = list(range(Geodesic.nC1_ + 1))
    C2a = list(range(Geodesic.nC2_ + 1))
    C3a = list(range(Geodesic.nC3_))

    meridian = lat1 == -90 or slam12 == 0

    if meridian:

      # Endpoints are on a single full meridian, so the geodesic might lie on
      # a meridian.

      calp1 = clam12; salp1 = slam12 # Head to the target longitude
      calp2 = 1; salp2 = 0           # At the target we're heading north

      # tan(bet) = tan(sig) * cos(alp)
      ssig1 = sbet1; csig1 = calp1 * cbet1
      ssig2 = sbet2; csig2 = calp2 * cbet2

      # sig12 = sig2 - sig1
      sig12 = math.atan2(max(csig1 * ssig2 - ssig1 * csig2, 0.0),
                         csig1 * csig2 + ssig1 * ssig2)

      s12x, m12x, dummy, M12, M21 = self.Lengths(
        self._n, sig12, ssig1, csig1, ssig2, csig2, cbet1, cbet2,
        (outmask & Geodesic.GEODESICSCALE) != 0, C1a, C2a)

      # Add the check for sig12 since zero length geodesics might yield m12 <
      # 0.  Test case was
      #
      #    echo 20.001 0 20.001 0 | Geod -i
      #
      # In fact, we will have sig12 > pi/2 for meridional geodesic which is
      # not a shortest path.
      if sig12 < 1 or m12x >= 0:
        m12x *= self._a
        s12x *= self._b
        a12 = sig12 / Math.degree
      else:
        # m12 < 0, i.e., prolate and too close to anti-podal
        meridian = False
    # end if meridian:

    #real omg12
    if (not meridian and
        sbet1 == 0 and   # and sbet2 == 0
        # Mimic the way Lambda12 works with calp1 = 0
        (self._f <= 0 or lam12 <= math.pi - self._f * math.pi)):

      # Geodesic runs along equator
      calp1 = calp2 = 0; salp1 = salp2 = 1
      s12x = self._a * lam12
      m12x = self._b * math.sin(lam12 / self._f1)
      if outmask & Geodesic.GEODESICSCALE:
        M12 = M21 = math.cos(lam12 / self._f1)
      a12 = lon12 / self._f1
      sig12 = omg12 = lam12 / self._f1

    elif not meridian:

      # Now point1 and point2 belong within a hemisphere bounded by a
      # meridian and geodesic is neither meridional or equatorial.

      # Figure a starting point for Newton's method
      sig12, salp1, calp1, salp2, calp2 = self.InverseStart(
        sbet1, cbet1, sbet2, cbet2, lam12, C1a, C2a)

      if sig12 >= 0:
        # Short lines (InverseStart sets salp2, calp2)
        w1 = math.sqrt(1 - self._e2 * Math.sq(cbet1))
        s12x = sig12 * self._a * w1
        m12x = (Math.sq(w1) * self._a / self._f1 *
                math.sin(sig12 * self._f1 / w1))
        if outmask & Geodesic.GEODESICSCALE:
          M12 = M21 = math.cos(sig12 * self._f1 / w1)
        a12 = sig12 / Math.degree
        omg12 = lam12 / w1
      else:

        # Newton's method
        # real ssig1, csig1, ssig2, csig2, eps
        ov = numit = trip = 0

        while numit < Geodesic.maxit_:
          (nlam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
           eps, omg12, dv) = self.Lambda12(
            sbet1, cbet1, sbet2, cbet2, salp1, calp1, trip < 1, C1a, C2a, C3a)
          v = nlam12 - lam12
          if not(abs(v) > Geodesic.tiny_) or not(trip < 1):
            if not(abs(v) <= max(Geodesic.tol1_, ov)):
              numit = Geodesic.maxit_
            break
          dalp1 = -v/dv
          sdalp1 = math.sin(dalp1); cdalp1 = math.cos(dalp1)
          nsalp1 = salp1 * cdalp1 + calp1 * sdalp1
          calp1 = calp1 * cdalp1 - salp1 * sdalp1
          salp1 = max(0.0, nsalp1)
          salp1, calp1 = Geodesic.SinCosNorm(salp1, calp1)
          # In some regimes we don't get quadratic convergence because slope
          # -> 0.  So use convergence conditions based on epsilon instead of
          # sqrt(epsilon).  The first criterion is a test on abs(v) against
          # 100 * epsilon.  The second takes credit for an anticipated
          # reduction in abs(v) by v/ov (due to the latest update in alp1) and
          # checks this against epsilon.
          if not(abs(v) >= Geodesic.tol1_ and
                 Math.sq(v) >= ov * Geodesic.tol0_):
            trip += 1
          ov = abs(v)
          numit += 1

        if numit >= Geodesic.maxit_:
          # Signal failure.
          return a12, s12, azi1, azi2, m12, M12, M21, S12

        s12x, m12x, dummy, M12, M21 = self.Lengths(
          eps, sig12, ssig1, csig1, ssig2, csig2, cbet1, cbet2,
          (outmask & Geodesic.GEODESICSCALE) != 0, C1a, C2a)

        m12x *= self._a
        s12x *= self._b
        a12 = sig12 / Math.degree
        omg12 = lam12 - omg12
    # end elif not meridian

    if outmask & Geodesic.DISTANCE:
      s12 = 0 + s12x           # Convert -0 to 0

    if outmask & Geodesic.REDUCEDLENGTH:
      m12 = 0 + m12x           # Convert -0 to 0

    if outmask & Geodesic.AREA:
      # From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
      salp0 = salp1 * cbet1
      calp0 = math.hypot(calp1, salp1 * sbet1) # calp0 > 0
      # real alp12
      if calp0 != 0 and salp0 != 0:
        # From Lambda12: tan(bet) = tan(sig) * cos(alp)
        ssig1 = sbet1; csig1 = calp1 * cbet1
        ssig2 = sbet2; csig2 = calp2 * cbet2
        k2 = Math.sq(calp0) * self._ep2
        # Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
        A4 = Math.sq(self._a) * calp0 * salp0 * self._e2
        ssig1, csig1 = Geodesic.SinCosNorm(ssig1, csig1)
        ssig2, csig2 = Geodesic.SinCosNorm(ssig2, csig2)
        C4a = list(range(Geodesic.nC4_))
        self.C4f(k2, C4a)
        B41 = Geodesic.SinCosSeries(False, ssig1, csig1, C4a, Geodesic.nC4_)
        B42 = Geodesic.SinCosSeries(False, ssig2, csig2, C4a, Geodesic.nC4_)
        S12 = A4 * (B42 - B41)
      else:
        # Avoid problems with indeterminate sig1, sig2 on equator
        S12 = 0
      if (not meridian and
          omg12 < 0.75 * math.pi and # Long difference too big
          sbet2 - sbet1 < 1.75):     # Lat difference too big
        # Use tan(Gamma/2) = tan(omg12/2)
        # * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
        # with tan(x/2) = sin(x)/(1+cos(x))
        somg12 = math.sin(omg12); domg12 = 1 + math.cos(omg12)
        dbet1 = 1 + cbet1; dbet2 = 1 + cbet2
        alp12 = 2 * math.atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
                                domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) )
      else:
        # alp12 = alp2 - alp1, used in atan2 so no need to normalize
        salp12 = salp2 * calp1 - calp2 * salp1
        calp12 = calp2 * calp1 + salp2 * salp1
        # The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
        # salp12 = -0 and alp12 = -180.  However this depends on the sign
        # being attached to 0 correctly.  The following ensures the correct
        # behavior.
        if salp12 == 0 and calp12 < 0:
          salp12 = Geodesic.tiny_ * calp1
          calp12 = -1
        alp12 = math.atan2(salp12, calp12)
      S12 += self._c2 * alp12
      S12 *= swapp * lonsign * latsign
      # Convert -0 to 0
      S12 += 0

    # Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
    if swapp < 0:
      salp2, salp1 = salp1, salp2
      calp2, calp1 = calp1, calp2
      if outmask & Geodesic.GEODESICSCALE:
        M21, M12 = M12, M21

    salp1 *= swapp * lonsign; calp1 *= swapp * latsign
    salp2 *= swapp * lonsign; calp2 *= swapp * latsign

    if outmask & Geodesic.AZIMUTH:
      # minus signs give range [-180, 180). 0- converts -0 to +0.
      azi1 = 0 - math.atan2(-salp1, calp1) / Math.degree
      azi2 = 0 - math.atan2(-salp2, calp2) / Math.degree

    # Returned value in [0, 180]
    return a12, s12, azi1, azi2, m12, M12, M21, S12
Example #16
0
 def A2m1f(eps):
     eps2 = Math.sq(eps)
     t = eps2 * (eps2 * (25 * eps2 + 36) + 64) / 256
     return t * (1 - eps) - eps
Example #17
0
 def A1m1f(eps):
     eps2 = Math.sq(eps)
     t = eps2 * (eps2 * (eps2 + 4) + 64) / 256
     return (t + eps) / (1 - eps)
Example #18
0
 def A2m1f(eps):
   eps2 = Math.sq(eps)
   t = eps2*(eps2*(25*eps2+36)+64)/256
   return t * (1 - eps) - eps
Example #19
0
  def InverseStart(self, sbet1, cbet1, sbet2, cbet2, lam12,
                   # Scratch areas of the right size
                   C1a, C2a):
    # Return a starting point for Newton's method in salp1 and calp1 (function
    # value is -1).  If Newton's method doesn't need to be used, return also
    # salp2 and calp2 and function value is sig12.
    sig12 = -1; salp2 = calp2 = Math.nan # Return values
    # bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
    sbet12 = sbet2 * cbet1 - cbet2 * sbet1
    cbet12 = cbet2 * cbet1 + sbet2 * sbet1
    # Volatile declaration needed to fix inverse cases
    # 88.202499451857 0 -88.202499451857 179.981022032992859592
    # 89.262080389218 0 -89.262080389218 179.992207982775375662
    # 89.333123580033 0 -89.333123580032997687 179.99295812360148422
    # which otherwise fail with g++ 4.4.4 x86 -O3
    sbet12a = sbet2 * cbet1
    sbet12a += cbet2 * sbet1

    shortline = cbet12 >= 0 and sbet12 < 0.5 and lam12 <= math.pi / 6
    if shortline:
      omg12 = lam12 / math.sqrt(1 - self._e2 * Math.sq(cbet1))
    else:
      omg12 = lam12
    somg12 = math.sin(omg12); comg12 = math.cos(omg12)

    salp1 = cbet2 * somg12
    if comg12 >= 0:
      calp1 = sbet12 + cbet2 * sbet1 * Math.sq(somg12) / (1 + comg12)
    else:
      calp1 = sbet12a - cbet2 * sbet1 * Math.sq(somg12) / (1 - comg12)

    ssig12 = math.hypot(salp1, calp1)
    csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12

    if shortline and ssig12 < self._etol2:
      # really short lines
      salp2 = cbet1 * somg12
      calp2 = sbet12 - cbet1 * sbet2 * Math.sq(somg12) / (1 + comg12)
      salp2, calp2 = Geodesic.SinCosNorm(salp2, calp2)
      # Set return value
      sig12 = math.atan2(ssig12, csig12)
    elif csig12 >= 0 or ssig12 >= 3 * abs(self._f) * math.pi * Math.sq(cbet1):
      # Nothing to do, zeroth order spherical approximation is OK
      pass
    else:
      # Scale lam12 and bet2 to x, y coordinate system where antipodal point
      # is at origin and singular point is at y = 0, x = -1.
      # real y, lamscale, betscale
      # Volatile declaration needed to fix inverse case
      # 56.320923501171 0 -56.320923501171 179.664747671772880215
      # which otherwise fails with g++ 4.4.4 x86 -O3
      # volatile real x
      if self._f >= 0:            # In fact f == 0 does not get here
        # x = dlong, y = dlat
        k2 = Math.sq(sbet1) * self._ep2
        eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
        lamscale = self._f * cbet1 * self.A3f(eps) * math.pi
        betscale = lamscale * cbet1
        x = (lam12 - math.pi) / lamscale
        y = sbet12a / betscale
      else:                     # _f < 0
        # x = dlat, y = dlong
        cbet12a = cbet2 * cbet1 - sbet2 * sbet1
        bet12a = math.atan2(sbet12a, cbet12a)
        # real m12a, m0, dummy
        # In the case of lon12 = 180, this repeats a calculation made in
        # Inverse.
        dummy, m12a, m0, dummy, dummy = self.Lengths(
          self._n, math.pi + bet12a, sbet1, -cbet1, sbet2, cbet2,
          cbet1, cbet2, dummy, False, C1a, C2a)
        x = -1 + m12a/(self._f1 * cbet1 * cbet2 * m0 * math.pi)
        if x < -real(0.01):
          betscale = sbet12a / x
        else:
          betscale = -self._f * Math.sq(cbet1) * math.pi
        lamscale = betscale / cbet1
        y = (lam12 - math.pi) / lamscale

      if y > -Geodesic.tol1_ and x >  -1 - Geodesic.xthresh_:
        # strip near cut
        if self._f >= 0:
          salp1 = min(1.0, -x); calp1 = - math.sqrt(1 - Math.sq(salp1))
        else:
          if x > -Geodesic.tol1_:
            calp1 = max(0.0, x)
          else:
            calp1 = max(-1.0, x)
          salp1 = math.sqrt(1 - Math.sq(calp1))
      else:
        # Estimate alp1, by solving the astroid problem.
        #
        # Could estimate alpha1 = theta + pi/2, directly, i.e.,
        #   calp1 = y/k; salp1 = -x/(1+k);  for _f >= 0
        #   calp1 = x/(1+k); salp1 = -y/k;  for _f < 0 (need to check)
        #
        # However, it's better to estimate omg12 from astroid and use
        # spherical formula to compute alp1.  This reduces the mean number of
        # Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
        # (min 0 max 5).  The changes in the number of iterations are as
        # follows:
        #
        # change percent
        #    1       5
        #    0      78
        #   -1      16
        #   -2       0.6
        #   -3       0.04
        #   -4       0.002
        #
        # The histogram of iterations is (m = number of iterations estimating
        # alp1 directly, n = number of iterations estimating via omg12, total
        # number of trials = 148605):
        #
        #  iter    m      n
        #    0   148    186
        #    1 13046  13845
        #    2 93315 102225
        #    3 36189  32341
        #    4  5396      7
        #    5   455      1
        #    6    56      0
        #
        # Because omg12 is near pi, estimate work with omg12a = pi - omg12
        k = Geodesic.Astroid(x, y)
        if self._f >= 0:
          omg12a = lamscale * -x * k/(1 + k)
        else:
          omg12a = lamscale * -y * (1 + k)/k
        somg12 = math.sin(omg12a); comg12 = -math.cos(omg12a)
        # Update spherical estimate of alp1 using omg12 instead of lam12
        salp1 = cbet2 * somg12
        calp1 = sbet12a - cbet2 * sbet1 * Math.sq(somg12) / (1 - comg12)
    salp1, calp1 = Geodesic.SinCosNorm(salp1, calp1)
    return sig12, salp1, calp1, salp2, calp2
Example #20
0
 def CheckDistance(s):
     if not (Math.isfinite(s)):
         raise ValueError("distance " + str(s) + " not a finite number")
Example #21
0
    def InverseStart(
            self,
            sbet1,
            cbet1,
            sbet2,
            cbet2,
            lam12,
            # Scratch areas of the right size
            C1a,
            C2a):
        # Return a starting point for Newton's method in salp1 and calp1 (function
        # value is -1).  If Newton's method doesn't need to be used, return also
        # salp2 and calp2 and function value is sig12.
        sig12 = -1
        salp2 = calp2 = Math.nan  # Return values
        # bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
        sbet12 = sbet2 * cbet1 - cbet2 * sbet1
        cbet12 = cbet2 * cbet1 + sbet2 * sbet1
        # Volatile declaration needed to fix inverse cases
        # 88.202499451857 0 -88.202499451857 179.981022032992859592
        # 89.262080389218 0 -89.262080389218 179.992207982775375662
        # 89.333123580033 0 -89.333123580032997687 179.99295812360148422
        # which otherwise fail with g++ 4.4.4 x86 -O3
        sbet12a = sbet2 * cbet1
        sbet12a += cbet2 * sbet1

        shortline = cbet12 >= 0 and sbet12 < 0.5 and lam12 <= math.pi / 6
        if shortline:
            omg12 = lam12 / math.sqrt(1 - self._e2 * Math.sq(cbet1))
        else:
            omg12 = lam12
        somg12 = math.sin(omg12)
        comg12 = math.cos(omg12)

        salp1 = cbet2 * somg12
        if comg12 >= 0:
            calp1 = sbet12 + cbet2 * sbet1 * Math.sq(somg12) / (1 + comg12)
        else:
            calp1 = sbet12a - cbet2 * sbet1 * Math.sq(somg12) / (1 - comg12)

        ssig12 = math.hypot(salp1, calp1)
        csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12

        if shortline and ssig12 < self._etol2:
            # really short lines
            salp2 = cbet1 * somg12
            calp2 = sbet12 - cbet1 * sbet2 * Math.sq(somg12) / (1 + comg12)
            salp2, calp2 = Geodesic.SinCosNorm(salp2, calp2)
            # Set return value
            sig12 = math.atan2(ssig12, csig12)
        elif csig12 >= 0 or ssig12 >= 3 * abs(
                self._f) * math.pi * Math.sq(cbet1):
            # Nothing to do, zeroth order spherical approximation is OK
            pass
        else:
            # Scale lam12 and bet2 to x, y coordinate system where antipodal point
            # is at origin and singular point is at y = 0, x = -1.
            # real y, lamscale, betscale
            # Volatile declaration needed to fix inverse case
            # 56.320923501171 0 -56.320923501171 179.664747671772880215
            # which otherwise fails with g++ 4.4.4 x86 -O3
            # volatile real x
            if self._f >= 0:  # In fact f == 0 does not get here
                # x = dlong, y = dlat
                k2 = Math.sq(sbet1) * self._ep2
                eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
                lamscale = self._f * cbet1 * self.A3f(eps) * math.pi
                betscale = lamscale * cbet1
                x = (lam12 - math.pi) / lamscale
                y = sbet12a / betscale
            else:  # _f < 0
                # x = dlat, y = dlong
                cbet12a = cbet2 * cbet1 - sbet2 * sbet1
                bet12a = math.atan2(sbet12a, cbet12a)
                # real m12a, m0, dummy
                # In the case of lon12 = 180, this repeats a calculation made in
                # Inverse.
                dummy, m12a, m0, dummy, dummy = self.Lengths(
                    self._n, math.pi + bet12a, sbet1, -cbet1, sbet2, cbet2,
                    cbet1, cbet2, dummy, False, C1a, C2a)
                x = -1 + m12a / (self._f1 * cbet1 * cbet2 * m0 * math.pi)
                if x < -real(0.01):
                    betscale = sbet12a / x
                else:
                    betscale = -self._f * Math.sq(cbet1) * math.pi
                lamscale = betscale / cbet1
                y = (lam12 - math.pi) / lamscale

            if y > -Geodesic.tol1_ and x > -1 - Geodesic.xthresh_:
                # strip near cut
                if self._f >= 0:
                    salp1 = min(1.0, -x)
                    calp1 = -math.sqrt(1 - Math.sq(salp1))
                else:
                    if x > -Geodesic.tol1_:
                        calp1 = max(0.0, x)
                    else:
                        calp1 = max(-1.0, x)
                    salp1 = math.sqrt(1 - Math.sq(calp1))
            else:
                # Estimate alp1, by solving the astroid problem.
                #
                # Could estimate alpha1 = theta + pi/2, directly, i.e.,
                #   calp1 = y/k; salp1 = -x/(1+k);  for _f >= 0
                #   calp1 = x/(1+k); salp1 = -y/k;  for _f < 0 (need to check)
                #
                # However, it's better to estimate omg12 from astroid and use
                # spherical formula to compute alp1.  This reduces the mean number of
                # Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
                # (min 0 max 5).  The changes in the number of iterations are as
                # follows:
                #
                # change percent
                #    1       5
                #    0      78
                #   -1      16
                #   -2       0.6
                #   -3       0.04
                #   -4       0.002
                #
                # The histogram of iterations is (m = number of iterations estimating
                # alp1 directly, n = number of iterations estimating via omg12, total
                # number of trials = 148605):
                #
                #  iter    m      n
                #    0   148    186
                #    1 13046  13845
                #    2 93315 102225
                #    3 36189  32341
                #    4  5396      7
                #    5   455      1
                #    6    56      0
                #
                # Because omg12 is near pi, estimate work with omg12a = pi - omg12
                k = Geodesic.Astroid(x, y)
                if self._f >= 0:
                    omg12a = lamscale * -x * k / (1 + k)
                else:
                    omg12a = lamscale * -y * (1 + k) / k
                somg12 = math.sin(omg12a)
                comg12 = -math.cos(omg12a)
                # Update spherical estimate of alp1 using omg12 instead of lam12
                salp1 = cbet2 * somg12
                calp1 = sbet12a - cbet2 * sbet1 * Math.sq(somg12) / (1 -
                                                                     comg12)
        salp1, calp1 = Geodesic.SinCosNorm(salp1, calp1)
        return sig12, salp1, calp1, salp2, calp2
Example #22
0
    def Lambda12(
            self,
            sbet1,
            cbet1,
            sbet2,
            cbet2,
            salp1,
            calp1,
            diffp,
            # Scratch areas of the right size
            C1a,
            C2a,
            C3a):

        if sbet1 == 0 and calp1 == 0:
            # Break degeneracy of equatorial line.  This case has already been
            # handled.
            calp1 = -Geodesic.tiny_

        # sin(alp1) * cos(bet1) = sin(alp0)
        salp0 = salp1 * cbet1
        calp0 = math.hypot(calp1, salp1 * sbet1)  # calp0 > 0

        # real somg1, comg1, somg2, comg2, omg12, lam12
        # tan(bet1) = tan(sig1) * cos(alp1)
        # tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
        ssig1 = sbet1
        somg1 = salp0 * sbet1
        csig1 = comg1 = calp1 * cbet1
        ssig1, csig1 = Geodesic.SinCosNorm(ssig1, csig1)
        # SinCosNorm(somg1, comg1); -- don't need to normalize!

        # Enforce symmetries in the case abs(bet2) = -bet1.  Need to be careful
        # about this case, since this can yield singularities in the Newton
        # iteration.
        # sin(alp2) * cos(bet2) = sin(alp0)
        if cbet2 != cbet1:
            salp2 = salp0 / cbet2
        else:
            salp2 = salp1
        # calp2 = sqrt(1 - sq(salp2))
        #       = sqrt(sq(calp0) - sq(sbet2)) / cbet2
        # and subst for calp0 and rearrange to give (choose positive sqrt
        # to give alp2 in [0, pi/2]).
        if cbet2 != cbet1 or abs(sbet2) != -sbet1:
            if cbet1 < -sbet1:
                calp2 = math.sqrt(
                    Math.sq(calp1 * cbet1) + (cbet2 - cbet1) *
                    (cbet1 + cbet2)) / cbet2
            else:
                calp2 = math.sqrt(
                    Math.sq(calp1 * cbet1) + (sbet1 - sbet2) *
                    (sbet1 + sbet2)) / cbet2
        else:
            calp2 = abs(calp1)
        # tan(bet2) = tan(sig2) * cos(alp2)
        # tan(omg2) = sin(alp0) * tan(sig2).
        ssig2 = sbet2
        somg2 = salp0 * sbet2
        csig2 = comg2 = calp2 * cbet2
        ssig2, csig2 = Geodesic.SinCosNorm(ssig2, csig2)
        # SinCosNorm(somg2, comg2); -- don't need to normalize!

        # sig12 = sig2 - sig1, limit to [0, pi]
        sig12 = math.atan2(max(csig1 * ssig2 - ssig1 * csig2, 0.0),
                           csig1 * csig2 + ssig1 * ssig2)

        # omg12 = omg2 - omg1, limit to [0, pi]
        omg12 = math.atan2(max(comg1 * somg2 - somg1 * comg2, 0.0),
                           comg1 * comg2 + somg1 * somg2)
        # real B312, h0
        k2 = Math.sq(calp0) * self._ep2
        eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
        self.C3f(eps, C3a)
        B312 = (
            Geodesic.SinCosSeries(True, ssig2, csig2, C3a, Geodesic.nC3_ - 1) -
            Geodesic.SinCosSeries(True, ssig1, csig1, C3a, Geodesic.nC3_ - 1))
        h0 = -self._f * self.A3f(eps)
        domg12 = salp0 * h0 * (sig12 + B312)
        lam12 = omg12 + domg12

        if diffp:
            if calp2 == 0:
                dlam12 = -2 * math.sqrt(1 - self._e2 * Math.sq(cbet1)) / sbet1
            else:
                dummy, dlam12, dummy, dummy, dummy = self.Lengths(
                    eps, sig12, ssig1, csig1, ssig2, csig2, cbet1, cbet2,
                    False, C1a, C2a)
                dlam12 /= calp2 * cbet2
        else:
            dlam12 = Math.nan

        return (lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
                domg12, dlam12)
Example #23
0
  def Lambda12(self, sbet1, cbet1, sbet2, cbet2, salp1, calp1, diffp,
               # Scratch areas of the right size
               C1a, C2a, C3a):

    if sbet1 == 0 and calp1 == 0:
      # Break degeneracy of equatorial line.  This case has already been
      # handled.
      calp1 = -Geodesic.tiny_

    # sin(alp1) * cos(bet1) = sin(alp0)
    salp0 = salp1 * cbet1
    calp0 = math.hypot(calp1, salp1 * sbet1) # calp0 > 0

    # real somg1, comg1, somg2, comg2, omg12, lam12
    # tan(bet1) = tan(sig1) * cos(alp1)
    # tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
    ssig1 = sbet1; somg1 = salp0 * sbet1
    csig1 = comg1 = calp1 * cbet1
    ssig1, csig1 = Geodesic.SinCosNorm(ssig1, csig1)
    # SinCosNorm(somg1, comg1); -- don't need to normalize!

    # Enforce symmetries in the case abs(bet2) = -bet1.  Need to be careful
    # about this case, since this can yield singularities in the Newton
    # iteration.
    # sin(alp2) * cos(bet2) = sin(alp0)
    if cbet2 != cbet1:
      salp2 = salp0 / cbet2
    else:
      salp2 = salp1
    # calp2 = sqrt(1 - sq(salp2))
    #       = sqrt(sq(calp0) - sq(sbet2)) / cbet2
    # and subst for calp0 and rearrange to give (choose positive sqrt
    # to give alp2 in [0, pi/2]).
    if cbet2 != cbet1 or abs(sbet2) != -sbet1:
      if cbet1 < -sbet1:
        calp2 = math.sqrt(Math.sq(calp1 * cbet1) +
                          (cbet2 - cbet1) * (cbet1 + cbet2)) / cbet2
      else:
        calp2 = math.sqrt(Math.sq(calp1 * cbet1) +
                          (sbet1 - sbet2) * (sbet1 + sbet2)) / cbet2
    else:
      calp2 = abs(calp1)
    # tan(bet2) = tan(sig2) * cos(alp2)
    # tan(omg2) = sin(alp0) * tan(sig2).
    ssig2 = sbet2; somg2 = salp0 * sbet2
    csig2 = comg2 = calp2 * cbet2
    ssig2, csig2 = Geodesic.SinCosNorm(ssig2, csig2)
    # SinCosNorm(somg2, comg2); -- don't need to normalize!

    # sig12 = sig2 - sig1, limit to [0, pi]
    sig12 = math.atan2(max(csig1 * ssig2 - ssig1 * csig2, 0.0),
                       csig1 * csig2 + ssig1 * ssig2)

    # omg12 = omg2 - omg1, limit to [0, pi]
    omg12 = math.atan2(max(comg1 * somg2 - somg1 * comg2, 0.0),
                       comg1 * comg2 + somg1 * somg2)
    # real B312, h0
    k2 = Math.sq(calp0) * self._ep2
    eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
    self.C3f(eps, C3a)
    B312 = (Geodesic.SinCosSeries(True, ssig2, csig2, C3a, Geodesic.nC3_-1) -
            Geodesic.SinCosSeries(True, ssig1, csig1, C3a, Geodesic.nC3_-1))
    h0 = -self._f * self.A3f(eps)
    domg12 = salp0 * h0 * (sig12 + B312)
    lam12 = omg12 + domg12

    if diffp:
      if calp2 == 0:
        dlam12 = - 2 * math.sqrt(1 - self._e2 * Math.sq(cbet1)) / sbet1
      else:
        dummy, dlam12, dummy, dummy, dummy = self.Lengths(
          eps, sig12, ssig1, csig1, ssig2, csig2, cbet1, cbet2, False, C1a, C2a)
        dlam12 /= calp2 * cbet2
    else:
      dlam12 = Math.nan

    return (lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
            domg12, dlam12)
Example #24
0
    def GenInverse(self, lat1, lon1, lat2, lon2, outmask):
        a12 = s12 = azi1 = azi2 = m12 = M12 = M21 = S12 = Math.nan  # return vals

        outmask &= Geodesic.OUT_ALL
        lon1 = Geodesic.AngNormalize(lon1)
        lon12 = Geodesic.AngNormalize(Geodesic.AngNormalize(lon2) - lon1)
        # If very close to being on the same meridian, then make it so.
        # Not sure this is necessary...
        lon12 = Geodesic.AngRound(lon12)
        # Make longitude difference positive.
        if lon12 >= 0:
            lonsign = 1
        else:
            lonsign = -1
        lon12 *= lonsign
        if lon12 == 180:
            lonsign = 1
        # If really close to the equator, treat as on equator.
        lat1 = Geodesic.AngRound(lat1)
        lat2 = Geodesic.AngRound(lat2)
        # Swap points so that point with higher (abs) latitude is point 1
        if abs(lat1) >= abs(lat2):
            swapp = 1
        else:
            swapp = -1
            lonsign *= -1
            lat2, lat1 = lat1, lat2
        # Make lat1 <= 0
        if lat1 < 0:
            latsign = 1
        else:
            latsign = -1
        lat1 *= latsign
        lat2 *= latsign
        # Now we have
        #
        #     0 <= lon12 <= 180
        #     -90 <= lat1 <= 0
        #     lat1 <= lat2 <= -lat1
        #
        # longsign, swapp, latsign register the transformation to bring the
        # coordinates to this canonical form.  In all cases, 1 means no change was
        # made.  We make these transformations so that there are few cases to
        # check, e.g., on verifying quadrants in atan2.  In addition, this
        # enforces some symmetries in the results returned.

        # real phi, sbet1, cbet1, sbet2, cbet2, s12x, m12x

        phi = lat1 * Math.degree
        # Ensure cbet1 = +epsilon at poles
        sbet1 = self._f1 * math.sin(phi)
        if lat1 == -90:
            cbet1 = Geodesic.tiny_
        else:
            cbet1 = math.cos(phi)
        sbet1, cbet1 = Geodesic.SinCosNorm(sbet1, cbet1)

        phi = lat2 * Math.degree
        # Ensure cbet2 = +epsilon at poles
        sbet2 = self._f1 * math.sin(phi)
        if abs(lat2) == 90:
            cbet2 = Geodesic.tiny_
        else:
            cbet2 = math.cos(phi)
        sbet2, cbet2 = Geodesic.SinCosNorm(sbet2, cbet2)

        # If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
        # |bet1| - |bet2|.  Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
        # a better measure.  This logic is used in assigning calp2 in Lambda12.
        # Sometimes these quantities vanish and in that case we force bet2 = +/-
        # bet1 exactly.  An example where is is necessary is the inverse problem
        # 48.522876735459 0 -48.52287673545898293 179.599720456223079643
        # which failed with Visual Studio 10 (Release and Debug)

        if cbet1 < -sbet1:
            if cbet2 == cbet1:
                if sbet2 < 0:
                    sbet2 = sbet1
                else:
                    sbet2 = -sbet1
        else:
            if abs(sbet2) == -sbet1:
                cbet2 = cbet1

        lam12 = lon12 * Math.degree
        if lon12 == 180:
            slam12 = 0.0
        else:
            slam12 = math.sin(lam12)
        clam12 = math.cos(lam12)  # lon12 == 90 isn't interesting

        # real a12, sig12, calp1, salp1, calp2, salp2
        # index zero elements of these arrays are unused
        C1a = list(range(Geodesic.nC1_ + 1))
        C2a = list(range(Geodesic.nC2_ + 1))
        C3a = list(range(Geodesic.nC3_))

        meridian = lat1 == -90 or slam12 == 0

        if meridian:

            # Endpoints are on a single full meridian, so the geodesic might lie on
            # a meridian.

            calp1 = clam12
            salp1 = slam12  # Head to the target longitude
            calp2 = 1
            salp2 = 0  # At the target we're heading north

            # tan(bet) = tan(sig) * cos(alp)
            ssig1 = sbet1
            csig1 = calp1 * cbet1
            ssig2 = sbet2
            csig2 = calp2 * cbet2

            # sig12 = sig2 - sig1
            sig12 = math.atan2(max(csig1 * ssig2 - ssig1 * csig2, 0.0),
                               csig1 * csig2 + ssig1 * ssig2)

            s12x, m12x, dummy, M12, M21 = self.Lengths(
                self._n, sig12, ssig1, csig1, ssig2, csig2, cbet1, cbet2,
                (outmask & Geodesic.GEODESICSCALE) != 0, C1a, C2a)

            # Add the check for sig12 since zero length geodesics might yield m12 <
            # 0.  Test case was
            #
            #    echo 20.001 0 20.001 0 | Geod -i
            #
            # In fact, we will have sig12 > pi/2 for meridional geodesic which is
            # not a shortest path.
            if sig12 < 1 or m12x >= 0:
                m12x *= self._a
                s12x *= self._b
                a12 = sig12 / Math.degree
            else:
                # m12 < 0, i.e., prolate and too close to anti-podal
                meridian = False
        # end if meridian:

        #real omg12
        if (not meridian and sbet1 == 0 and  # and sbet2 == 0
                # Mimic the way Lambda12 works with calp1 = 0
            (self._f <= 0 or lam12 <= math.pi - self._f * math.pi)):

            # Geodesic runs along equator
            calp1 = calp2 = 0
            salp1 = salp2 = 1
            s12x = self._a * lam12
            m12x = self._b * math.sin(lam12 / self._f1)
            if outmask & Geodesic.GEODESICSCALE:
                M12 = M21 = math.cos(lam12 / self._f1)
            a12 = lon12 / self._f1
            sig12 = omg12 = lam12 / self._f1

        elif not meridian:

            # Now point1 and point2 belong within a hemisphere bounded by a
            # meridian and geodesic is neither meridional or equatorial.

            # Figure a starting point for Newton's method
            sig12, salp1, calp1, salp2, calp2 = self.InverseStart(
                sbet1, cbet1, sbet2, cbet2, lam12, C1a, C2a)

            if sig12 >= 0:
                # Short lines (InverseStart sets salp2, calp2)
                w1 = math.sqrt(1 - self._e2 * Math.sq(cbet1))
                s12x = sig12 * self._a * w1
                m12x = (Math.sq(w1) * self._a / self._f1 *
                        math.sin(sig12 * self._f1 / w1))
                if outmask & Geodesic.GEODESICSCALE:
                    M12 = M21 = math.cos(sig12 * self._f1 / w1)
                a12 = sig12 / Math.degree
                omg12 = lam12 / w1
            else:

                # Newton's method
                # real ssig1, csig1, ssig2, csig2, eps
                ov = numit = trip = 0

                while numit < Geodesic.maxit_:
                    (nlam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
                     eps, omg12, dv) = self.Lambda12(sbet1, cbet1, sbet2,
                                                     cbet2, salp1, calp1,
                                                     trip < 1, C1a, C2a, C3a)
                    v = nlam12 - lam12
                    if not (abs(v) > Geodesic.tiny_) or not (trip < 1):
                        if not (abs(v) <= max(Geodesic.tol1_, ov)):
                            numit = Geodesic.maxit_
                        break
                    dalp1 = -v / dv
                    sdalp1 = math.sin(dalp1)
                    cdalp1 = math.cos(dalp1)
                    nsalp1 = salp1 * cdalp1 + calp1 * sdalp1
                    calp1 = calp1 * cdalp1 - salp1 * sdalp1
                    salp1 = max(0.0, nsalp1)
                    salp1, calp1 = Geodesic.SinCosNorm(salp1, calp1)
                    # In some regimes we don't get quadratic convergence because slope
                    # -> 0.  So use convergence conditions based on epsilon instead of
                    # sqrt(epsilon).  The first criterion is a test on abs(v) against
                    # 100 * epsilon.  The second takes credit for an anticipated
                    # reduction in abs(v) by v/ov (due to the latest update in alp1) and
                    # checks this against epsilon.
                    if not (abs(v) >= Geodesic.tol1_
                            and Math.sq(v) >= ov * Geodesic.tol0_):
                        trip += 1
                    ov = abs(v)
                    numit += 1

                if numit >= Geodesic.maxit_:
                    # Signal failure.
                    return a12, s12, azi1, azi2, m12, M12, M21, S12

                s12x, m12x, dummy, M12, M21 = self.Lengths(
                    eps, sig12, ssig1, csig1, ssig2, csig2, cbet1, cbet2,
                    (outmask & Geodesic.GEODESICSCALE) != 0, C1a, C2a)

                m12x *= self._a
                s12x *= self._b
                a12 = sig12 / Math.degree
                omg12 = lam12 - omg12
        # end elif not meridian

        if outmask & Geodesic.DISTANCE:
            s12 = 0 + s12x  # Convert -0 to 0

        if outmask & Geodesic.REDUCEDLENGTH:
            m12 = 0 + m12x  # Convert -0 to 0

        if outmask & Geodesic.AREA:
            # From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
            salp0 = salp1 * cbet1
            calp0 = math.hypot(calp1, salp1 * sbet1)  # calp0 > 0
            # real alp12
            if calp0 != 0 and salp0 != 0:
                # From Lambda12: tan(bet) = tan(sig) * cos(alp)
                ssig1 = sbet1
                csig1 = calp1 * cbet1
                ssig2 = sbet2
                csig2 = calp2 * cbet2
                k2 = Math.sq(calp0) * self._ep2
                # Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
                A4 = Math.sq(self._a) * calp0 * salp0 * self._e2
                ssig1, csig1 = Geodesic.SinCosNorm(ssig1, csig1)
                ssig2, csig2 = Geodesic.SinCosNorm(ssig2, csig2)
                C4a = list(range(Geodesic.nC4_))
                self.C4f(k2, C4a)
                B41 = Geodesic.SinCosSeries(False, ssig1, csig1, C4a,
                                            Geodesic.nC4_)
                B42 = Geodesic.SinCosSeries(False, ssig2, csig2, C4a,
                                            Geodesic.nC4_)
                S12 = A4 * (B42 - B41)
            else:
                # Avoid problems with indeterminate sig1, sig2 on equator
                S12 = 0
            if (not meridian and omg12 < 0.75 * math.pi
                    and  # Long difference too big
                    sbet2 - sbet1 < 1.75):  # Lat difference too big
                # Use tan(Gamma/2) = tan(omg12/2)
                # * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
                # with tan(x/2) = sin(x)/(1+cos(x))
                somg12 = math.sin(omg12)
                domg12 = 1 + math.cos(omg12)
                dbet1 = 1 + cbet1
                dbet2 = 1 + cbet2
                alp12 = 2 * math.atan2(
                    somg12 * (sbet1 * dbet2 + sbet2 * dbet1),
                    domg12 * (sbet1 * sbet2 + dbet1 * dbet2))
            else:
                # alp12 = alp2 - alp1, used in atan2 so no need to normalize
                salp12 = salp2 * calp1 - calp2 * salp1
                calp12 = calp2 * calp1 + salp2 * salp1
                # The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
                # salp12 = -0 and alp12 = -180.  However this depends on the sign
                # being attached to 0 correctly.  The following ensures the correct
                # behavior.
                if salp12 == 0 and calp12 < 0:
                    salp12 = Geodesic.tiny_ * calp1
                    calp12 = -1
                alp12 = math.atan2(salp12, calp12)
            S12 += self._c2 * alp12
            S12 *= swapp * lonsign * latsign
            # Convert -0 to 0
            S12 += 0

        # Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
        if swapp < 0:
            salp2, salp1 = salp1, salp2
            calp2, calp1 = calp1, calp2
            if outmask & Geodesic.GEODESICSCALE:
                M21, M12 = M12, M21

        salp1 *= swapp * lonsign
        calp1 *= swapp * latsign
        salp2 *= swapp * lonsign
        calp2 *= swapp * latsign

        if outmask & Geodesic.AZIMUTH:
            # minus signs give range [-180, 180). 0- converts -0 to +0.
            azi1 = 0 - math.atan2(-salp1, calp1) / Math.degree
            azi2 = 0 - math.atan2(-salp2, calp2) / Math.degree

        # Returned value in [0, 180]
        return a12, s12, azi1, azi2, m12, M12, M21, S12
Example #25
0
 def CheckDistance(s):
   if not (Math.isfinite(s)):
     raise ValueError("distance " + str(s) + " not a finite number")
Example #26
0
  def GenPosition(self, arcmode, s12_a12, outmask):

    from pyproj.geodesic import Geodesic
    a12 = lat2 = lon2 = azi2 = s12 = m12 = M12 = M21 = S12 = Math.nan
    outmask &= self._caps & Geodesic.OUT_ALL
    if not (arcmode or (self._caps & Geodesic.DISTANCE_IN & Geodesic.OUT_ALL)):
      # Uninitialized or impossible distance calculation requested
      return a12, lat2, lon2, azi2, s12, m12, M12, M21, S12

    # Avoid warning about uninitialized B12.
    B12 = 0; AB1 = 0
    if arcmode:
      # Interpret s12_a12 as spherical arc length
      sig12 = s12_a12 * Math.degree
      s12a = abs(s12_a12)
      s12a -= 180 * math.floor(s12a / 180)
      if s12a == 0:
        ssig12 = 0.0
      else:
        ssig12 = math.sin(sig12)
      if s12a == 90:
        csig12 = 0.0
      else:
        csig12 = math.cos(sig12)
    else:
      # Interpret s12_a12 as distance
      tau12 = s12_a12 / (self._b * (1 + self._A1m1))
      s = math.sin(tau12); c = math.cos(tau12)
      # tau2 = tau1 + tau12
      B12 = - Geodesic.SinCosSeries(True, self._stau1 * c + self._ctau1 * s,
                                     self._ctau1 * c - self._stau1 * s,
                                     self._C1pa, Geodesic.nC1p_)
      sig12 = tau12 - (B12 - self._B11)
      ssig12 = math.sin(sig12); csig12 = math.cos(sig12)

    # real omg12, lam12, lon12
    # real ssig2, csig2, sbet2, cbet2, somg2, comg2, salp2, calp2
    # sig2 = sig1 + sig12
    ssig2 = self._ssig1 * csig12 + self._csig1 * ssig12
    csig2 = self._csig1 * csig12 - self._ssig1 * ssig12
    if outmask & (
      Geodesic.DISTANCE | Geodesic.REDUCEDLENGTH | Geodesic.GEODESICSCALE):
      if arcmode:
        B12 = Geodesic.SinCosSeries(True, ssig2, csig2,
                                    self._C1a, Geodesic.nC1_)
      AB1 = (1 + self._A1m1) * (B12 - self._B11)
    # sin(bet2) = cos(alp0) * sin(sig2)
    sbet2 = self._calp0 * ssig2
    # Alt: cbet2 = hypot(csig2, salp0 * ssig2)
    cbet2 = math.hypot(self._salp0, self._calp0 * csig2)
    if cbet2 == 0:
      # I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case
      cbet2 = csig2 = Geodesic.tiny_
    # tan(omg2) = sin(alp0) * tan(sig2)
    somg2 = self._salp0 * ssig2; comg2 = csig2  # No need to normalize
    # tan(alp0) = cos(sig2)*tan(alp2)
    salp2 = self._salp0; calp2 = self._calp0 * csig2 # No need to normalize
    # omg12 = omg2 - omg1
    omg12 = math.atan2(somg2 * self._comg1 - comg2 * self._somg1,
                  comg2 * self._comg1 + somg2 * self._somg1)

    if outmask & Geodesic.DISTANCE:
      if arcmode:
        s12 = self._b * ((1 + self._A1m1) * sig12 + AB1)
      else:
        s12 = s12_a12

    if outmask & Geodesic.LONGITUDE:
      lam12 = omg12 + self._A3c * (
        sig12 + (Geodesic.SinCosSeries(True, ssig2, csig2,
                                       self._C3a, Geodesic.nC3_-1)
                 - self._B31))
      lon12 = lam12 / Math.degree
      # Can't use AngNormalize because longitude might have wrapped multiple
      # times.
      lon12 = lon12 - 360 * math.floor(lon12/360 + 0.5)
      lon2 = Geodesic.AngNormalize(self._lon1 + lon12)

    if outmask & Geodesic.LATITUDE:
      lat2 = math.atan2(sbet2, self._f1 * cbet2) / Math.degree

    if outmask & Geodesic.AZIMUTH:
      # minus signs give range [-180, 180). 0- converts -0 to +0.
      azi2 = 0 - math.atan2(-salp2, calp2) / Math.degree

    if outmask & (Geodesic.REDUCEDLENGTH | Geodesic.GEODESICSCALE):
      ssig1sq = Math.sq(self._ssig1)
      ssig2sq = Math.sq( ssig2)
      w1 = math.sqrt(1 + self._k2 * ssig1sq)
      w2 = math.sqrt(1 + self._k2 * ssig2sq)
      B22 = Geodesic.SinCosSeries(True, ssig2, csig2, self._C2a, Geodesic.nC2_)
      AB2 = (1 + self._A2m1) * (B22 - self._B21)
      J12 = (self._A1m1 - self._A2m1) * sig12 + (AB1 - AB2)
      if outmask & Geodesic.REDUCEDLENGTH:
        # Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
        # accurate cancellation in the case of coincident points.
        m12 = self._b * ((w2 * (self._csig1 * ssig2) -
                          w1 * (self._ssig1 * csig2))
                  - self._csig1 * csig2 * J12)
      if outmask & Geodesic.GEODESICSCALE:
        M12 = csig12 + (self._k2 * (ssig2sq - ssig1sq) *  ssig2 / (w1 + w2)
                        - csig2 * J12) * self._ssig1 / w1
        M21 = csig12 - (self._k2 * (ssig2sq - ssig1sq) * self._ssig1 / (w1 + w2)
                        - self._csig1 * J12) * ssig2 / w2

    if outmask & Geodesic.AREA:
      B42 = Geodesic.SinCosSeries(False, ssig2, csig2, self._C4a, Geodesic.nC4_)
      # real salp12, calp12
      if self._calp0 == 0 or self._salp0 == 0:
        # alp12 = alp2 - alp1, used in atan2 so no need to normalized
        salp12 = salp2 * self._calp1 - calp2 * self._salp1
        calp12 = calp2 * self._calp1 + salp2 * self._salp1
        # The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
        # salp12 = -0 and alp12 = -180.  However this depends on the sign being
        # attached to 0 correctly.  The following ensures the correct behavior.
        if salp12 == 0 and calp12 < 0:
          salp12 = Geodesic.tiny_ * self._calp1
          calp12 = -1
      else:
        # tan(alp) = tan(alp0) * sec(sig)
        # tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
        # = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
        # If csig12 > 0, write
        #   csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
        # else
        #   csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
        # No need to normalize
        if csig12 > 0:
          salp12 = self._calp0 * self._salp0 * (
            ssig12 * (self._csig1 * ssig12 / (1 + csig12) + self._ssig1))
        else:
          salp12 = self._calp0 * self._salp0 * (
            self._csig1 * (1 - csig12) + ssig12 * self._ssig1)
        calp12 = (Math.sq(self._salp0) +
                  Math.sq(self._calp0) * self._csig1 * csig2)
      S12 = self._c2 * math.atan2(salp12, calp12) + self._A4 * (B42 - self._B41)

    if arcmode:
      a12 = s12_a12
    else:
      a12 = sig12 / Math.degree
    return a12, lat2, lon2, azi2, s12, m12, M12, M21, S12