Example #1
0
def clustering_for_n_clusters(n, n_clusters, aggregate_carriers=None,
                              line_length_factor=1.25, potential_mode='simple',
                              solver_name="cbc", algorithm="kmeans",
                              extended_link_costs=0, focus_weights=None):

    if potential_mode == 'simple':
        p_nom_max_strategy = np.sum
    elif potential_mode == 'conservative':
        p_nom_max_strategy = np.min
    else:
        raise AttributeError("potential_mode should be one of 'simple' or 'conservative', "
                             "but is '{}'".format(potential_mode))

    clustering = get_clustering_from_busmap(
        n, busmap_for_n_clusters(n, n_clusters, solver_name, focus_weights, algorithm),
        bus_strategies=dict(country=_make_consense("Bus", "country")),
        aggregate_generators_weighted=True,
        aggregate_generators_carriers=aggregate_carriers,
        aggregate_one_ports=["Load", "StorageUnit"],
        line_length_factor=line_length_factor,
        generator_strategies={'p_nom_max': p_nom_max_strategy},
        scale_link_capital_costs=False)

    nc = clustering.network
    nc.links['underwater_fraction'] = (n.links.eval('underwater_fraction * length')
                                       .div(nc.links.length).dropna())
    nc.links['capital_cost'] = (nc.links['capital_cost']
                                .add((nc.links.length - n.links.length)
                                      .clip(lower=0).mul(extended_link_costs),
                                      fill_value=0))
    return clustering
Example #2
0
def clustering_for_n_clusters(n,
                              n_clusters,
                              aggregate_carriers=None,
                              line_length_factor=1.25,
                              potential_mode='simple',
                              solver_name="cbc",
                              algorithm="kmeans"):

    if potential_mode == 'simple':
        p_nom_max_strategy = np.sum
    elif potential_mode == 'conservative':
        p_nom_max_strategy = np.min
    else:
        raise AttributeError(
            "potential_mode should be one of 'simple' or 'conservative', "
            "but is '{}'".format(potential_mode))

    clustering = get_clustering_from_busmap(
        n,
        busmap_for_n_clusters(n, n_clusters, solver_name, algorithm),
        bus_strategies=dict(country=_make_consense("Bus", "country")),
        aggregate_generators_weighted=True,
        aggregate_generators_carriers=aggregate_carriers,
        aggregate_one_ports=["Load", "StorageUnit"],
        line_length_factor=line_length_factor,
        generator_strategies={'p_nom_max': p_nom_max_strategy})

    return clustering
def clustering_for_n_clusters(n,
                              n_clusters,
                              custom_busmap=False,
                              aggregate_carriers=None,
                              line_length_factor=1.25,
                              potential_mode='simple',
                              solver_name="cbc",
                              algorithm="kmeans",
                              extended_link_costs=0,
                              focus_weights=None):

    if potential_mode == 'simple':
        p_nom_max_strategy = np.sum
    elif potential_mode == 'conservative':
        p_nom_max_strategy = np.min
    else:
        raise AttributeError(
            f"potential_mode should be one of 'simple' or 'conservative' but is '{potential_mode}'"
        )

    if custom_busmap:
        busmap = pd.read_csv(snakemake.input.custom_busmap,
                             index_col=0,
                             squeeze=True)
        busmap.index = busmap.index.astype(str)
        logger.info(
            f"Imported custom busmap from {snakemake.input.custom_busmap}")
    else:
        busmap = busmap_for_n_clusters(n, n_clusters, solver_name,
                                       focus_weights, algorithm)

    clustering = get_clustering_from_busmap(
        n,
        busmap,
        bus_strategies=dict(country=_make_consense("Bus", "country")),
        aggregate_generators_weighted=True,
        aggregate_generators_carriers=aggregate_carriers,
        aggregate_one_ports=["Load", "StorageUnit"],
        line_length_factor=line_length_factor,
        generator_strategies={'p_nom_max': p_nom_max_strategy},
        scale_link_capital_costs=False)

    if not n.links.empty:
        nc = clustering.network
        nc.links['underwater_fraction'] = (
            n.links.eval('underwater_fraction * length').div(
                nc.links.length).dropna())
        nc.links['capital_cost'] = (nc.links['capital_cost'].add(
            (nc.links.length -
             n.links.length).clip(lower=0).mul(extended_link_costs),
            fill_value=0))

    return clustering
Example #4
0
def clustering_for_n_clusters(n,
                              n_clusters,
                              aggregate_renewables=True,
                              line_length_factor=1.25):
    aggregate_generators_carriers = (None if aggregate_renewables else (
        pd.Index(n.generators.carrier.unique()).difference(
            ['onwind', 'offwind', 'solar'])))
    clustering = get_clustering_from_busmap(
        n,
        busmap_for_n_clusters(n, n_clusters),
        bus_strategies=dict(country=_make_consense("Bus", "country")),
        aggregate_generators_weighted=True,
        aggregate_generators_carriers=aggregate_generators_carriers,
        aggregate_one_ports=["Load", "StorageUnit"],
        line_length_factor=line_length_factor)

    return clustering
Example #5
0
def aggregate_to_substations(n, buses_i=None):
    # can be used to aggregate a selection of buses to electrically closest neighbors
    # if no buses are given, nodes that are no substations or without offshore connection are aggregated

    if buses_i is None:
        logger.info(
            "Aggregating buses that are no substations or have no valid offshore connection"
        )
        buses_i = list(
            set(n.buses.index) - set(n.generators.bus) - set(n.loads.bus))

    weight = pd.concat({
        'Line': n.lines.length / n.lines.s_nom.clip(1e-3),
        'Link': n.links.length / n.links.p_nom.clip(1e-3)
    })

    adj = n.adjacency_matrix(branch_components=['Line', 'Link'],
                             weights=weight)

    bus_indexer = n.buses.index.get_indexer(buses_i)
    dist = pd.DataFrame(dijkstra(adj, directed=False, indices=bus_indexer),
                        buses_i, n.buses.index)

    dist[
        buses_i] = np.inf  # bus in buses_i should not be assigned to different bus in buses_i

    for c in n.buses.country.unique():
        incountry_b = n.buses.country == c
        dist.loc[incountry_b, ~incountry_b] = np.inf

    busmap = n.buses.index.to_series()
    busmap.loc[buses_i] = dist.idxmin(1)

    clustering = get_clustering_from_busmap(
        n,
        busmap,
        bus_strategies=dict(country=_make_consense("Bus", "country")),
        aggregate_generators_weighted=True,
        aggregate_generators_carriers=None,
        aggregate_one_ports=["Load", "StorageUnit"],
        line_length_factor=1.0,
        generator_strategies={'p_nom_max': 'sum'},
        scale_link_capital_costs=False)

    return clustering.network, busmap
Example #6
0
def clustering_for_n_clusters(
    n,
    n_clusters,
    custom_busmap=False,
    aggregate_carriers=None,
    line_length_factor=1.25,
    potential_mode="simple",
    solver_name="cbc",
    algorithm="kmeans",
    extended_link_costs=0,
    focus_weights=None,
):

    if potential_mode == "simple":
        p_nom_max_strategy = np.sum
    elif potential_mode == "conservative":
        p_nom_max_strategy = np.min
    else:
        raise AttributeError(
            f"potential_mode should be one of 'simple' or 'conservative' but is '{potential_mode}'"
        )

    if custom_busmap:
        busmap = pd.read_csv(snakemake.input.custom_busmap,
                             index_col=0,
                             squeeze=True)
        busmap.index = busmap.index.astype(str)
        logger.info(
            f"Imported custom busmap from {snakemake.input.custom_busmap}")
    else:

        if snakemake.config["cluster_options"]["alternative_clustering"]:
            n, busmap = busmap_for_gadm_clusters(
                n, snakemake.config["build_shape_options"]["gadm_layer_id"]
            )  # TODO make func only return busmap, and get level from config
        else:
            busmap = busmap_for_n_clusters(n, n_clusters, solver_name,
                                           focus_weights, algorithm)

    weighted_agg_gens = True

    clustering = get_clustering_from_busmap(
        n,
        busmap,
        bus_strategies=dict(country=_make_consense("Bus", "country")),
        aggregate_generators_weighted=weighted_agg_gens,
        aggregate_generators_carriers=aggregate_carriers,
        aggregate_one_ports=["Load", "StorageUnit"],
        line_length_factor=line_length_factor,
        generator_strategies={
            "p_nom_max": p_nom_max_strategy,
            "p_nom_min": np.sum
        },
        scale_link_capital_costs=False,
    )

    if not n.links.empty:
        nc = clustering.network
        nc.links["underwater_fraction"] = (
            n.links.eval("underwater_fraction * length").div(
                nc.links.length).dropna())
        nc.links["capital_cost"] = nc.links["capital_cost"].add(
            (nc.links.length -
             n.links.length).clip(lower=0).mul(extended_link_costs),
            fill_value=0,
        )

    return clustering