def configure_main_par(self, editor, object): experiment = editor.get_parent(object) paramset = object print('Total paramsets:', len(experiment.paramsets)) if paramset.m_params is None: # TODO: is it possible that control reaches here? If not, probably the if should be removed. paramset.m_params = par.PtvParams() else: paramset.m_params._reload() paramset.m_params.edit_traits(kind='modal')
def __init__(self, path): # load ptv_par ptvParams = par.PtvParams(path=path) ptvParams.read() self.n_img = ptvParams.n_img # load cal_ori calOriParams = par.CalOriParams(self.n_img, path=path) calOriParams.read() for i in range(self.n_img): self.oriEditors.append(oriEditor(get_path( calOriParams.img_ori[i])))
def _reload(self): # print("reloading") # self.__init__(self) # load ptv_par ptvParams = par.PtvParams(path=self.par_path) ptvParams.read() # read picture size parameters self.h_image_size = ptvParams.imx self.v_image_size = ptvParams.imy self.h_pixel_size = ptvParams.pix_x self.v_pixel_size = ptvParams.pix_y self.img_cal = ptvParams.img_cal if ptvParams.allCam_flag: self.pair_enable_flag = False else: self.pair_enable_flag = True # unesed parameters self.n_img = ptvParams.n_img self.img_name = ptvParams.img_name self.hp_flag = np.bool(ptvParams.hp_flag) self.allCam_flag = np.bool(ptvParams.allCam_flag) self.mmp_n1 = ptvParams.mmp_n1 self.mmp_n2 = ptvParams.mmp_n2 self.mmp_n3 = ptvParams.mmp_n3 self.mmp_d = ptvParams.mmp_d # read_calibration parameters calOriParams = par.CalOriParams(self.n_img, path=self.par_path) calOriParams.read() (fixp_name, img_cal_name, img_ori, tiff_flag, pair_flag, chfield) = \ (calOriParams.fixp_name, calOriParams.img_cal_name, calOriParams.img_ori, calOriParams.tiff_flag, calOriParams.pair_flag, calOriParams.chfield) for i in range(self.n_img): exec("self.cam_{0} = calOriParams.img_cal_name[{1}]".format( i + 1, i)) exec("self.ori_cam_{0} = calOriParams.img_ori[{1}]".format( i + 1, i)) self.tiff_head = np.bool(tiff_flag) self.pair_head = np.bool(pair_flag) self.fixp_name = fixp_name if chfield == 0: self.chfield = "Frame" elif chfield == 1: self.chfield = "Field odd" else: self.chfield = "Field even" # read detect plate parameters detectPlateParams = par.DetectPlateParams(path=self.par_path) detectPlateParams.read() (gv_th1, gv_th2, gv_th3, gv_th4, tolerable_discontinuity, min_npix, max_npix, min_npix_x, max_npix_x, min_npix_y, max_npix_y, sum_of_grey, size_of_crosses) = \ (detectPlateParams.gvth_1, detectPlateParams.gvth_2, detectPlateParams.gvth_3, detectPlateParams.gvth_4, detectPlateParams.tol_dis, detectPlateParams.min_npix, detectPlateParams.max_npix, detectPlateParams.min_npix_x, detectPlateParams.max_npix_x, detectPlateParams.min_npix_y, detectPlateParams.max_npix_y, detectPlateParams.sum_grey, detectPlateParams.size_cross) for i in range(self.n_img): exec('self.grey_value_treshold_{0} = gv_th{0}'.format(i + 1)) self.tolerable_discontinuity = tolerable_discontinuity self.min_npix = min_npix self.min_npix_x = min_npix_x self.min_npix_y = min_npix_y self.max_npix = max_npix self.max_npix_x = max_npix_x self.max_npix_y = max_npix_y self.sum_of_grey = sum_of_grey self.size_of_crosses = size_of_crosses # read manual orientaion parameters manOriParams = par.ManOriParams(self.n_img, [], path=self.par_path) manOriParams.read() for i in range(self.n_img): for j in range(4): # 4 points per image exec(f"self.img_{i+1}_p{j+1} = manOriParams.nr[{i*4+j}]") # examine arameters examineParams = par.ExamineParams(path=self.par_path) examineParams.read() (self.Examine_Flag, self.Combine_Flag) = (examineParams.Examine_Flag, examineParams.Combine_Flag) # orientation parameters orientParams = par.OrientParams(path=self.par_path) orientParams.read() (po_num_of_ori, cc, xh, yh, k1, k2, k3, p1, p2, scale, shear, interf) = \ (orientParams.pnfo, orientParams.cc, orientParams.xh, orientParams.yh, orientParams.k1, orientParams.k2, orientParams.k3, orientParams.p1, orientParams.p2, orientParams.scale, orientParams.shear, orientParams.interf) self.point_number_of_orientation = po_num_of_ori self.cc = np.bool(cc) self.xh = np.bool(xh) self.yh = np.bool(yh) self.k1 = np.bool(k1) self.k2 = np.bool(k2) self.k3 = np.bool(k3) self.p1 = np.bool(p1) self.p2 = np.bool(p2) self.scale = np.bool(scale) self.shear = np.bool(shear) self.interf = np.bool(interf) dumbbellParams = par.DumbbellParams(path=self.par_path) dumbbellParams.read() (self.dumbbell_eps, self.dumbbell_scale, self.dumbbell_gradient_descent, self.dumbbell_penalty_weight, self.dumbbell_step, self.dumbbell_niter) = \ (dumbbellParams.dumbbell_eps, dumbbellParams.dumbbell_scale, dumbbellParams.dumbbell_gradient_descent, dumbbellParams.dumbbell_penalty_weight, dumbbellParams.dumbbell_step, dumbbellParams.dumbbell_niter) shakingParams = par.ShakingParams(path=self.par_path) shakingParams.read() (self.shaking_first_frame, self.shaking_last_frame, self.shaking_max_num_points, self.shaking_max_num_frames) = (shakingParams.shaking_first_frame, shakingParams.shaking_last_frame, shakingParams.shaking_max_num_points, shakingParams.shaking_max_num_frames)
def _reload(self): # load ptv_par ptvParams = par.PtvParams(path=self.par_path) ptvParams.read() for i in range(ptvParams.n_img): exec('self.Name_%d_Image = ptvParams.img_name[%d]' % (i + 1, i)) exec('self.Cali_%d_Image = ptvParams.img_cal[%d]' % (i + 1, i)) self.Refr_Air = ptvParams.mmp_n1 self.Refr_Glass = ptvParams.mmp_n2 self.Refr_Water = ptvParams.mmp_n3 self.Thick_Glass = ptvParams.mmp_d self.Accept_OnlyAllCameras = np.bool(ptvParams.allCam_flag) self.Num_Cam = ptvParams.n_img self.HighPass = np.bool(ptvParams.hp_flag) # load unused self.tiff_flag = np.bool(ptvParams.tiff_flag) self.imx = ptvParams.imx self.imy = ptvParams.imy self.pix_x = ptvParams.pix_x self.pix_y = ptvParams.pix_y self.chfield = ptvParams.chfield # read_calibration parameters calOriParams = par.CalOriParams(ptvParams.n_img, path=self.par_path) calOriParams.read() self.pair_Flag = np.bool(calOriParams.pair_flag) self.img_cal_name = calOriParams.img_cal_name self.img_ori = calOriParams.img_ori self.fixp_name = calOriParams.fixp_name # load read_targ_rec targRecParams = par.TargRecParams(ptvParams.n_img, path=self.par_path) targRecParams.read() for i in range(ptvParams.n_img): exec("self.Gray_Tresh_{0} = targRecParams.gvthres[{1}]".format( i + 1, i)) self.Min_Npix = targRecParams.nnmin self.Max_Npix = targRecParams.nnmax self.Min_Npix_x = targRecParams.nxmin self.Max_Npix_x = targRecParams.nxmax self.Min_Npix_y = targRecParams.nymin self.Max_Npix_y = targRecParams.nymax self.Sum_Grey = targRecParams.sumg_min self.Tol_Disc = targRecParams.disco self.Size_Cross = targRecParams.cr_sz # load pft_version pftVersionParams = par.PftVersionParams(path=self.par_path) pftVersionParams.read() self.Existing_Target = np.bool(pftVersionParams.Existing_Target) # load sequence_par sequenceParams = par.SequenceParams(ptvParams.n_img, path=self.par_path) sequenceParams.read() for i in range(ptvParams.n_img): exec( "self.Basename_{0}_Seq = sequenceParams.base_name[{1}]".format( i + 1, i)) self.Seq_First = sequenceParams.first self.Seq_Last = sequenceParams.last # load criteria_par criteriaParams = par.CriteriaParams(path=self.par_path) criteriaParams.read() self.Xmin = criteriaParams.X_lay[0] self.Xmax = criteriaParams.X_lay[1] self.Zmin1 = criteriaParams.Zmin_lay[0] self.Zmin2 = criteriaParams.Zmin_lay[1] self.Zmax1 = criteriaParams.Zmax_lay[0] self.Zmax2 = criteriaParams.Zmax_lay[1] self.Min_Corr_nx = criteriaParams.cnx self.Min_Corr_ny = criteriaParams.cny self.Min_Corr_npix = criteriaParams.cn self.Sum_gv = criteriaParams.csumg self.Min_Weight_corr = criteriaParams.corrmin self.Tol_Band = criteriaParams.eps0
def closed(self, info, is_ok): mainParams = info.object par_path = mainParams.par_path Handler.closed(self, info, is_ok) if is_ok: img_name = [ mainParams.Name_1_Image, mainParams.Name_2_Image, mainParams.Name_3_Image, mainParams.Name_4_Image ] img_cal_name = [ mainParams.Cali_1_Image, mainParams.Cali_2_Image, mainParams.Cali_3_Image, mainParams.Cali_4_Image ] gvthres = [ mainParams.Gray_Tresh_1, mainParams.Gray_Tresh_2, mainParams.Gray_Tresh_3, mainParams.Gray_Tresh_4 ] base_name = [ mainParams.Basename_1_Seq, mainParams.Basename_2_Seq, mainParams.Basename_3_Seq, mainParams.Basename_4_Seq ] X_lay = [mainParams.Xmin, mainParams.Xmax] Zmin_lay = [mainParams.Zmin1, mainParams.Zmin2] Zmax_lay = [mainParams.Zmax1, mainParams.Zmax2] # write ptv_par par.PtvParams(mainParams.Num_Cam, img_name, img_cal_name, mainParams.HighPass, mainParams.Accept_OnlyAllCameras, mainParams.tiff_flag, mainParams.imx, mainParams.imy, mainParams.pix_x, mainParams.pix_y, mainParams.chfield, mainParams.Refr_Air, mainParams.Refr_Glass, mainParams.Refr_Water, mainParams.Thick_Glass, path=par_path).write() # write calibration parameters par.CalOriParams(mainParams.Num_Cam, mainParams.fixp_name, mainParams.img_cal_name, mainParams.img_ori, mainParams.tiff_flag, mainParams.pair_Flag, mainParams.chfield, path=par_path).write() # write targ_rec_par par.TargRecParams(mainParams.Num_Cam, gvthres, mainParams.Tol_Disc, mainParams.Min_Npix, mainParams.Max_Npix, mainParams.Min_Npix_x, mainParams.Max_Npix_x, mainParams.Min_Npix_y, mainParams.Max_Npix_y, mainParams.Sum_Grey, mainParams.Size_Cross, path=par_path).write() # write pft_version_par par.PftVersionParams(mainParams.Existing_Target, path=par_path).write() # write sequence_par par.SequenceParams(mainParams.Num_Cam, base_name, mainParams.Seq_First, mainParams.Seq_Last, path=par_path).write() # write criteria_par par.CriteriaParams(X_lay, Zmin_lay, Zmax_lay, mainParams.Min_Corr_nx, mainParams.Min_Corr_ny, mainParams.Min_Corr_npix, mainParams.Sum_gv, mainParams.Min_Weight_corr, mainParams.Tol_Band, path=par_path).write()
def closed(self, info, is_ok): calibParams = info.object par_path = calibParams.par_path print("inside CalHandler ", par_path) Handler.closed(self, info, is_ok) if is_ok: img_cal_name = [ calibParams.cam_1, calibParams.cam_2, calibParams.cam_3, calibParams.cam_4 ] img_ori = [ calibParams.ori_cam_1, calibParams.ori_cam_2, calibParams.ori_cam_3, calibParams.ori_cam_4 ] nr1 = [ calibParams.img_1_p1, calibParams.img_1_p2, calibParams.img_1_p3, calibParams.img_1_p4 ] nr2 = [ calibParams.img_2_p1, calibParams.img_2_p2, calibParams.img_2_p3, calibParams.img_2_p4 ] nr3 = [ calibParams.img_3_p1, calibParams.img_3_p2, calibParams.img_3_p3, calibParams.img_3_p4 ] nr4 = [ calibParams.img_4_p1, calibParams.img_4_p2, calibParams.img_4_p3, calibParams.img_4_p4 ] nr = [nr1, nr2, nr3, nr4] if (calibParams.chfield == "Frame"): chfield = 0 elif (calibParams.chfield == "Field odd"): chfield = 1 else: chfield = 2 par.PtvParams(calibParams.n_img, calibParams.img_name, calibParams.img_cal, calibParams.hp_flag, calibParams.allCam_flag, calibParams.tiff_head, calibParams.h_image_size, calibParams.v_image_size, calibParams.h_pixel_size, calibParams.v_pixel_size, chfield, calibParams.mmp_n1, calibParams.mmp_n2, calibParams.mmp_n3, calibParams.mmp_d, path=par_path).write() par.CalOriParams(calibParams.n_img, calibParams.fixp_name, img_cal_name, img_ori, calibParams.tiff_head, calibParams.pair_head, chfield, path=par_path).write() par.DetectPlateParams(calibParams.grey_value_treshold_1, calibParams.grey_value_treshold_2, calibParams.grey_value_treshold_3, calibParams.grey_value_treshold_4, calibParams.tolerable_discontinuity, calibParams.min_npix, calibParams.max_npix, calibParams.min_npix_x, calibParams.max_npix_x, calibParams.min_npix_y, calibParams.max_npix_y, calibParams.sum_of_grey, calibParams.size_of_crosses, path=par_path).write() par.ManOriParams(calibParams.n_img, nr, path=par_path).write() par.ExamineParams(calibParams.Examine_Flag, calibParams.Combine_Flag, path=par_path).write() par.OrientParams(calibParams.point_number_of_orientation, calibParams.cc, calibParams.xh, calibParams.yh, calibParams.k1, calibParams.k2, calibParams.k3, calibParams.p1, calibParams.p2, calibParams.scale, calibParams.shear, calibParams.interf, path=par_path).write() par.ShakingParams(calibParams.shaking_first_frame, calibParams.shaking_last_frame, calibParams.shaking_max_num_points, calibParams.shaking_max_num_frames, path=par_path).write() par.DumbbellParams(calibParams.dumbbell_eps, calibParams.dumbbell_scale, calibParams.dumbbell_gradient_descent, calibParams.dumbbell_penalty_weight, calibParams.dumbbell_step, calibParams.dumbbell_niter, path=par_path).write()