def get_quantum_machine(): if USE_REAL_QCOMP: from pyquil.api import QVMConnection qm = QVMConnection() else: from pyquil.api import QPUConnection # Agave 8-qubit chip should be live and freely available qm = QPUConnection('8Q-Agave') return qm
def test_qpu_connection(): qpu = QPUConnection(device_name='fake_device') program = { "type": "multishot", "addresses": [0, 1], "trials": 2, "quil-instructions": "H 0\nCNOT 0 1\n" } def mock_queued_response(request, context): assert json.loads(request.text) == { "machine": "QPU", "program": program, "device": "fake_device" } return json.dumps({"jobId": JOB_ID, "status": "QUEUED"}) with requests_mock.Mocker() as m: m.post('https://job.rigetti.com/beta/job', text=mock_queued_response) m.get('https://job.rigetti.com/beta/job/' + JOB_ID, [{ 'text': json.dumps({ "jobId": JOB_ID, "status": "RUNNING" }) }, { 'text': json.dumps({ "jobId": JOB_ID, "status": "FINISHED", "result": [[0, 0], [1, 1]], "program": program }) }]) result = qpu.run(BELL_STATE, [0, 1], trials=2) assert result == [[0, 0], [1, 1]]
from pyquil.quil import Program from pyquil.api import QPUConnection from pyquil.gates import * qpu = QPUConnection(device_name='19Q-Acorn') grover = Program( I(0), I(1), I(4), I(5), CNOT(5, 2), CNOT(0, 2), CNOT(4, 2), CNOT(1, 2), ) print("Plaquette Z 0000") result = qpu.run_and_measure(grover, [2], 100) print(result)
# -*- coding: utf-8 -*- from pyquil.quil import Program from pyquil.api import QVMConnection from random import choice import numpy as np from pyquil.gates import * from math import pi from pyquil.paulis import * from pyquil.api import QVMConnection, QPUConnection, CompilerConnection import pickle import json qvm = QVMConnection() qpu = QPUConnection('19Q-Acorn') from pyquil.api import get_devices acorn = get_devices(as_dict=True)['19Q-Acorn'] qvmn = QVMConnection(acorn) compiler = CompilerConnection(acorn) devices = get_devices(as_dict=True) acorn = devices['19Q-Acorn'] compiler = CompilerConnection(acorn) comp_gates = { 'RX(-pi/2) 0': 'RX(pi/2) 0', 'RZ(-pi/2) 0': 'RZ(pi/2) 0', 'RX(pi/2) 0': 'RX(-pi/2) 0', 'RZ(pi/2) 0': 'RZ(-pi/2) 0' }
def test_qpu_connection(test_device): qpu = QPUConnection(device=test_device) run_program = { "type": "multishot", "addresses": [0, 1], "trials": 2, "uncompiled-quil": "H 0\nCNOT 0 1\nMEASURE 0 [0]\nMEASURE 1 [1]\n" } run_and_measure_program = { "type": "multishot-measure", "qubits": [0, 1], "trials": 2, "uncompiled-quil": "H 0\nCNOT 0 1\nMEASURE 0 [0]\nMEASURE 1 [1]\n" } reply_program = { "type": "multishot-measure", "qubits": [0, 1], "trials": 2, "uncompiled-quil": "H 0\nCNOT 0 1\nMEASURE 0 [0]\nMEASURE 1 [1]\n", "compiled-quil": "H 0\nCNOT 0 1\nMEASURE 0 [0]\nMEASURE 1 [1]\n" } def mock_queued_response_run(request, context): assert json.loads(request.text) == { "machine": "QPU", "program": run_program, "device": "test_device" } return json.dumps({"jobId": JOB_ID, "status": "QUEUED"}) with requests_mock.Mocker() as m: m.post('https://job.rigetti.com/beta/job', text=mock_queued_response_run) m.get('https://job.rigetti.com/beta/job/' + JOB_ID, [ {'text': json.dumps({"jobId": JOB_ID, "status": "RUNNING"})}, {'text': json.dumps({"jobId": JOB_ID, "status": "FINISHED", "result": [[0, 0], [1, 1]], "program": reply_program})} ]) result = qpu.run(BELL_STATE_MEASURE, [0, 1], trials=2) assert result == [[0, 0], [1, 1]] with requests_mock.Mocker() as m: m.post('https://job.rigetti.com/beta/job', text=mock_queued_response_run) m.get('https://job.rigetti.com/beta/job/' + JOB_ID, [ {'text': json.dumps({"jobId": JOB_ID, "status": "RUNNING"})}, {'text': json.dumps({"jobId": JOB_ID, "status": "FINISHED", "result": [[0, 0], [1, 1]], "program": reply_program, "metadata": { "compiled_quil": "H 0\nCNOT 0 1\nMEASURE 0 [0]\nMEASURE 1 [1]\n", "topological_swaps": 0, "gate_depth": 2 }})} ]) job = qpu.wait_for_job(qpu.run_async(BELL_STATE_MEASURE, [0, 1], trials=2)) assert job.result().tolist() == [[0, 0], [1, 1]] assert job.compiled_quil() == Program(H(0), CNOT(0, 1), MEASURE(0, 0), MEASURE(1, 1)) assert job.topological_swaps() == 0 assert job.gate_depth() == 2 def mock_queued_response_run_and_measure(request, context): assert json.loads(request.text) == { "machine": "QPU", "program": run_and_measure_program, "device": "test_device" } return json.dumps({"jobId": JOB_ID, "status": "QUEUED"}) with requests_mock.Mocker() as m: m.post('https://job.rigetti.com/beta/job', text=mock_queued_response_run_and_measure) m.get('https://job.rigetti.com/beta/job/' + JOB_ID, [ {'text': json.dumps({"jobId": JOB_ID, "status": "RUNNING"})}, {'text': json.dumps({"jobId": JOB_ID, "status": "FINISHED", "result": [[0, 0], [1, 1]], "program": reply_program})} ]) result = qpu.run_and_measure(BELL_STATE, [0, 1], trials=2) assert result == [[0, 0], [1, 1]] with requests_mock.Mocker() as m: m.post('https://job.rigetti.com/beta/job', text=mock_queued_response_run_and_measure) m.get('https://job.rigetti.com/beta/job/' + JOB_ID, [ {'text': json.dumps({"jobId": JOB_ID, "status": "RUNNING"})}, {'text': json.dumps({"jobId": JOB_ID, "status": "FINISHED", "result": [[0, 0], [1, 1]], "program": reply_program, "metadata": { "topological_swaps": 0, "gate_depth": 2 }})} ]) job = qpu.wait_for_job(qpu.run_and_measure_async(BELL_STATE, [0, 1], trials=2)) assert job.result().tolist() == [[0, 0], [1, 1]] assert job.compiled_quil() == Program(H(0), CNOT(0, 1), MEASURE(0, 0), MEASURE(1, 1)) assert job.topological_swaps() == 0 assert job.gate_depth() == 2
from pyquil.quil import Program from pyquil.api import QPUConnection from pyquil.gates import * qpu = QPUConnection(device_name='19Q-Acorn') grover = Program( H(1), H(2), S(1), S(2), H(2), CNOT(1, 2), H(2), S(1), S(2), H(1), H(2), X(1), X(2), H(2), CNOT(1, 2), H(2), X(1), X(2), H(1), H(2), ) print("Grover N=2 A=00")
def test_qpu_connection(): qpu = QPUConnection(device_name='fake_device') program = { "type": "multishot", "addresses": [0, 1], "trials": 2, "quil-instructions": "H 0\nCNOT 0 1\n" } def mock_queued_response(request, context): assert json.loads(request.text) == { "machine": "QPU", "program": program, "device": "fake_device" } return json.dumps({"jobId": JOB_ID, "status": "QUEUED"}) with requests_mock.Mocker() as m: m.post('https://job.rigetti.com/beta/job', text=mock_queued_response) m.get('https://job.rigetti.com/beta/job/' + JOB_ID, [{ 'text': json.dumps({ "jobId": JOB_ID, "status": "RUNNING" }) }, { 'text': json.dumps({ "jobId": JOB_ID, "status": "FINISHED", "result": [[0, 0], [1, 1]], "program": program }) }]) result = qpu.run(BELL_STATE, [0, 1], trials=2) assert result == [[0, 0], [1, 1]] with requests_mock.Mocker() as m: m.post('https://job.rigetti.com/beta/job', text=mock_queued_response) m.get('https://job.rigetti.com/beta/job/' + JOB_ID, [{ 'text': json.dumps({ "jobId": JOB_ID, "status": "RUNNING" }) }, { 'text': json.dumps({ "jobId": JOB_ID, "status": "FINISHED", "result": [[0, 0], [1, 1]], "program": program, "metadata": { "compiled_quil": "H 0\nCNOT 0 1\n", "topological_swaps": 0, "gate_depth": 2 } }) }]) job = qpu.wait_for_job(qpu.run_async(BELL_STATE, [0, 1], trials=2)) assert job.result() == [[0, 0], [1, 1]] assert job.compiled_quil() == Program(H(0), CNOT(0, 1)) assert job.topological_swaps() == 0 assert job.gate_depth() == 2 with requests_mock.Mocker() as m: m.post('https://job.rigetti.com/beta/job', text=mock_queued_response) m.get('https://job.rigetti.com/beta/job/' + JOB_ID, [{ 'text': json.dumps({ "jobId": JOB_ID, "status": "RUNNING" }) }, { 'text': json.dumps({ "jobId": JOB_ID, "status": "FINISHED", "result": [[0, 0], [1, 1]], "program": program }) }]) job = qpu.wait_for_job(qpu.run_async(BELL_STATE, [0, 1], trials=2)) assert job.result() == [[0, 0], [1, 1]] assert job.compiled_quil() is None assert job.topological_swaps() is None assert job.gate_depth() is None
def distribution(data): """ Distribution of measurement of quantum system """ combinations = {} for result in data: result_as_tuple = tuple(result) if result_as_tuple not in combinations: combinations[result_as_tuple] = 0 combinations[result_as_tuple] += 1 return combinations if __name__ == '__main__': agave = get_devices(as_dict=True)['8Q-Agave'] qpu = QPUConnection(agave) # Physical QPU compiler = CompilerConnection(agave) p = Program() p.inst(X(0)) p.inst(X(0)) p.inst(X(1)) p.inst(X(2)) p.inst(X(3)) p.inst(X(4)) p.inst(X(5)) p.measure(0, 0) p.measure(1, 1) p.measure(2, 2) p.measure(3, 3)
from pyquil.quil import Program from pyquil.api import QPUConnection from pyquil.api import QVMConnection from pyquil.gates import * qpu = QPUConnection(device_name='19Q-Acorn') qvm = QVMConnection() test_run_and_measure_empty = Program() print(test_run_and_measure_empty) result = qvm.run_and_measure(Program(), [0], 1) test_run = Program(H(0), CNOT(0, 1)) print("test_run") result = qvm.run(test_run, [0], 1) print(result) test_run_async = Program(H(0), CNOT(0, 1)) print("test_run_async") result = qvm.run(test_run_async, [0], 1) print(result) test_run_and_measure = Program(H(0), CNOT(0, 1)) print("test_run_and_measure") result = qvm.run_and_measure(test_run_and_measure, [0], 1) print(result)
from pyquil.quil import Program from pyquil.api import QPUConnection, Job from pyquil.gates import * import pyquil.paulis as paulis import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt if __name__ == '__main__': N_qubit = 10 for noise_prob in [0., .01, .05, .1]: #1% chance of each gate at each timestep pauli_channel = [noise_prob] * 3 qpu = QPUConnection('19Q-Acorn') p = Program(H(0)) for i in range(N_qubit - 1): p += Program(CNOT(i, i + 1)) # print(qpu.wavefunction(p)) print(p) classical_reg = [i for i in range(N_qubit)] for i in range(N_qubit): p.measure(i, i) num_trials = 1000 result = qpu.run(p, classical_reg, trials=num_trials)
prog = address_qubits(prog) print(prog) print("Executing in the QVM") qvm = QVMConnection() wf = qvm.wavefunction(prog) print(wf) print(wf.amplitudes) results = qvm.run(prog, classical_addresses=class_readouts, trials=10) for r in results: print r print("Executing in the QPU") acorn = get_devices(as_dict=True)['19Q-Acorn'] qpu = QPUConnection(acorn) # The device name as a string is also acceptable # qpu = QPUConnection('19Q-Acorn') results = qpu.run(prog, classical_addresses=class_readouts, trials=10) for r in results: print r
from pyquil.quil import Program from pyquil.api import QPUConnection from pyquil.gates import H, CNOT qpu = QPUConnection(device_name='19Q-Acorn') bell_state = Program(H(0), CNOT(0, 1)) result = qpu.run_and_measure(bell_state, [0, 1])
def main(): agave = get_devices(as_dict=True)['8Q-Agave'] compiler = CompilerConnection(agave) qvm = QVMConnection() # Perfect QVM qvm_noisy = QVMConnection(agave) # Simulate Noise qpu = QPUConnection(agave) # Physical QPU print("Timestamp," "Singlet (Wavefunction), Triplet (Wavefunction), " "Singlet (QVM), Triplet (QVM)," "Singlet Mean (QVM Noise), Singlet Std (QVM Noise), " "Triplet Mean (QVM Noise), Triplet Std (QVM Noise)," "00 Mean (QVM Noise), 00 Std (QVM Noise)," "11 Mean (QVM Noise), 11 Std (QVM Noise)," "Singlet Mean (QPU), Singlet Std (QPU)," "Triplet Mean (QPU), Triplet Std (QPU)," "00 Mean (QPU), 00 Std (QPU)," "11 Mean (QPU), 1 Std (QPU)") # Rotation fp_raw = open("output.txt", "w") for t in range(0, 30): # ns # for t in np.arange(0.0, 30.0, 0.1): # ns p = create_singlet_state() add_switch_to_singlet_triplet_basis_gate_to_program(p) w_larmor = 0.46 # 4.6e8 1/s as determined in the experiment p.inst(PHASE(w_larmor * t, 0)) p.inst(("SWITCH_TO_SINGLET_TRIPLET_BASIS", 0, 1)) wavefunction = qvm.wavefunction(p) probs = wavefunction.get_outcome_probs() p.measure(0, 0) p.measure(1, 1) # Run the code on a perfect QVM (no noise) data = qvm.run(p, trials=1024) # simulate physical noise on QVM singlet_noisy = [] triplet_noisy = [] state11_noisy = [] state00_noisy = [] for i in range(0, 3): data_noisy = qvm_noisy.run(p, trials=1000) noisy_data_distr = distribution(data_noisy) singlet_noisy.append(noisy_data_distr[(1, 0)]) triplet_noisy.append(noisy_data_distr[(0, 1)]) state11_noisy.append(noisy_data_distr[(1, 1)]) state00_noisy.append(noisy_data_distr[(0, 0)]) # Run the code on QPU singlet_qpu = [] triplet_qpu = [] state11_qpu = [] state00_qpu = [] # Suppress print statements _old_stdout = sys.stdout for i in range(0, 9): with open(os.devnull, 'w') as fp: sys.stdout = fp data_qpu = qpu.run(p, trials=1024) qpu_data_distr = distribution(data_qpu) singlet_qpu.append(qpu_data_distr[(1, 0)]) triplet_qpu.append(qpu_data_distr[(0, 1)]) state11_qpu.append(qpu_data_distr[(1, 1)]) state00_qpu.append(qpu_data_distr[(0, 0)]) sys.stdout = _old_stdout # print('compiled quil', job.compiled_quil()) # print('gate volume', job.gate_volume()) # print('gate depth', job.gate_depth()) # print('topological swaps', job.topological_swaps()) # print('program fidelity', job.program_fidelity()) # print('multiqubit gate depth', job.multiqubit_gate_depth()) # Note the order of qubit in Rigetti # http://pyquil.readthedocs.io/en/latest/qvm.html#multi-qubit-basis-enumeration # (1, 0) is singlet, but in string notation it is reversed ('01'), because # # "The Rigetti QVM enumerates bitstrings such that qubit 0 is the least significant bit (LSB) # and therefore on the right end of a bitstring" # print("%s, Noise, Singlet, %s" % (t, singlet_noisy), file=fp_raw) print("%s, Noise, Triplet, %s" % (t, triplet_noisy), file=fp_raw) print("%s, Noise, 00, %s" % (t, state00_noisy), file=fp_raw) print("%s, Noise, 11, %s" % (t, state11_noisy), file=fp_raw) print("%s, QPU, Singlet, %s" % (t, singlet_qpu), file=fp_raw) print("%s, QPU, Triplet, %s" % (t, triplet_qpu), file=fp_raw) print("%s, QPU, 00, %s" % (t, state00_qpu), file=fp_raw) print("%s, QPU, 11, %s" % (t, state11_qpu), file=fp_raw) print( "%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s" % ( t, probs['01'], probs['10'], distribution(data).get((1, 0), 0), distribution(data).get((0, 1), 0), np.mean(singlet_noisy), np.std(singlet_noisy), np.mean(triplet_noisy), np.std(triplet_noisy), np.mean(state00_noisy), np.std(state00_noisy), np.mean(state11_noisy), np.std(state11_noisy), np.mean(singlet_qpu), np.std(singlet_qpu), np.mean(triplet_qpu), np.std(triplet_qpu), np.mean(state00_qpu), np.std(state00_qpu), np.mean(state11_qpu), np.std(state11_qpu), ))